Use of Artificial Intelligence in Terms of Open Innovation Process and Management
Abstract
:1. Introduction
2. Materials and Methods
3. Results
- Red cluster: artificial intelligence, business model, technological development, autonomous vehicles, commerce, intelligent robots, open innovation, patents and inventions, modelling, and information management;
- Green cluster: innovation, business development, and digital transformation;
- Blue cluster: technological innovation;
- Yellow cluster: supply chain management;
- Violet cluster: competition;
- Turquoise cluster: innovation process, innovation management;
- Orange cluster: business model innovation.
3.1. An Open Operating Model
3.2. Artificial Intelligence in Open Innovation
4. Discussion
4.1. Benefits and Challenges of Artificial Intelligence across the Open Innovation Process
4.1.1. The Define Stage
4.1.2. The Design Stage
4.1.3. The Validate Stage
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lipp, A.; Marshall, A.; Dencik, J. Open the Door to Open Innovation Realizing the Value of Ecosystem Collaboration Research Insights; IBM Corporation: Armonk, NY, USA, 2022. [Google Scholar]
- Ryszko, A.; Szafraniec, M. Mapping the Landscape of the Business Model and Open Innovation Scientific Field to Set Proposals for Directions of Future Research. J. Open Innov. Technol. Mark. Complex. 2022, 8, 150. [Google Scholar] [CrossRef]
- Tutak, M.; Brodny, J. Business Digital Maturity in Europe and Its Implication for Open Innovation. J. Open Innov. Technol. Mark. Complex. 2022, 8, 27. [Google Scholar] [CrossRef]
- Noponen, N. Impact of Artificial Intelligence on Management. Electron. J. Bus. Ethics Organ. Stud. 2019, 24, 43. [Google Scholar]
- Borges, A.F.S.; Laurindo, F.J.B.; Spínola, M.M.; Gonçalves, R.F.; Mattos, C.A. The Strategic Use of Artificial Intelligence in the Digital Era: Systematic Literature Review and Future Research Directions. Int. J. Inf. Manag. 2020, 57, 102225. [Google Scholar] [CrossRef]
- Berente, N.; Bin, G.; Recker, J.; Santhanam, R. Managing Artificial Intelligence. MIS Q. 2021, 45, 1433–1450. [Google Scholar] [CrossRef]
- Kwilinski, A.; Tkachenko, V.; Kuzior, A. Transparent Cognitive Technologies to Ensure Sustainable Society Development. J. Secur. Sustain. Issues 2019, 9, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Baden-Fuller, C.; Haefliger, S. Business Models and Technological Innovation. Long Range Plan. 2013, 46, 419–426. [Google Scholar] [CrossRef]
- Haftor, D.M.; Climent Costa, R. Five Dimensions of Business Model Innovation: A Multi-Case Exploration of Industrial Incumbent Firm’s Business Model Transformations. J. Bus. Res. 2023, 154, 113352. [Google Scholar] [CrossRef]
- Böttcher, T.P.; Weking, J.; Hein, A.; Böhm, M.; Krcmar, H. Pathways to Digital Business Models: The Connection of Sensing and Seizing in Business Model Innovation. J. Strateg. Inf. Syst. 2022, 31, 101742. [Google Scholar] [CrossRef]
- Bilan, S.; Šuleř, P.; Skrynnyk, O.; Krajňáková, E.; Vasilyeva, T. Systematic Bibliometric Review of Artificial Intelligence Technology in Organizational Management, Development, Change and Culture. Bus. Theory Pract. 2022, 23, 1–13. [Google Scholar] [CrossRef]
- Michell, K.; Brown, N.; Terblanche, J.; Tucker, J. The Effect of Disruptive Technologies on Facilities Management: A Case Study of the Industrial Sector. In Construction in 5D: Deconstruction, Digitalization, Disruption, Disaster, Development; Springer: Cham, Switzerland, 2022; pp. 113–123. [Google Scholar] [CrossRef]
- Majumdar, D.; Banerji, P.K.; Chakrabarti, S. Disruptive Technology and Disruptive Innovation: Ignore at Your Peril! Technol. Anal. Strateg. Manag. 2018, 30, 1247–1255. [Google Scholar] [CrossRef]
- Fenwick, M.; Vermeulen, E.P.M.; Corrales, M. Business and Regulatory Responses to Artificial Intelligence: Dynamic Regulation, Innovation Ecosystems and the Strategic Management of Disruptive Technology. In Robotics, AI and the Future of Law; Springer: Singapore, 2018; pp. 81–103. [Google Scholar] [CrossRef]
- Bates, M.J. The Design of Browsing and Berrypicking Techniques for the Online Search Interface. Online Rev. 1989, 13, 407–424. [Google Scholar] [CrossRef]
- Savolainen, R. Berrypicking and Information Foraging: Comparison of Two Theoretical Frameworks for Studying Exploratory Search. J. Inf. Sci. 2017, 44, 580–593. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2009, 84, 523–538. [Google Scholar] [CrossRef]
- Torkkeli, M.T.; Kock, C.J.; Salmi, P.A.S. The “Open Innovation” Paradigm: A Contingency Perspective. J. Ind. Eng. Manag. 2009, 2, 176–207. [Google Scholar] [CrossRef]
- Curley, M.; Adviser, M. Open Innovation 2.O: A New Paradigm Bror Salmelin; OISPG White Paper; European Commission: Brussels, Belgium, 2013.
- Bogers, M.; Chesbrough, H.; Heaton, S.; Teece, D.J. Strategic Management of Open Innovation: A Dynamic Capabilities Perspective. Calif. Manag. Rev. 2019, 62, 77–94. [Google Scholar] [CrossRef]
- Naruetharadhol, P.; Srisathan, W.A.; Gebsombut, N.; Ketkaew, C. Towards the Open Eco-Innovation Mode: A Model of Open Innovation and Green Management Practices. Cogent Bus. Manag. 2021, 8, 1945425. [Google Scholar] [CrossRef]
- Chistov, V.; Aramburu, N.; Carrillo-Hermosilla, J. Open Eco-Innovation: A Bibliometric Review of Emerging Research. J. Clean. Prod. 2021, 311, 127627. [Google Scholar] [CrossRef]
- Sanni, M.; Verdolini, E. Eco-Innovation and Openness: Mapping the Growth Trajectories and the Knowledge Structure of Open Eco-Innovation. Sustain. Futures 2022, 4, 100067. [Google Scholar] [CrossRef]
- Kwilinski, A.; Kuzior, A. Cognitive Technologies in the Management and Formation of Directions of the Priority Development of Industrial Enterprises. Manag. Syst. Prod. Eng. 2020, 28, 133–138. [Google Scholar] [CrossRef]
- Lazzarotti, V.; Manzini, R. Different Modes of Open Innovation: A Theoretical Framework and an Empirical Study. Int. J. Innov. Manag. 2009, 13, 615–636. [Google Scholar] [CrossRef]
- Kuzior, A.; Kwilinski, A.; Tkachenko, V. Sustainable Development of Organizations Based on the Combinatorial Model of Artificial Intelligence. Entrep. Sustain. Issues 2019, 7, 1353–1376. [Google Scholar] [CrossRef] [PubMed]
- Marques, H.; Ávila, E.; Pereira, R.; Zambalde, A. Open Innovation and Implementation of Different Types of Innovation: An Analysis Based on Panel Data. Braz. Bus. Rev. 2022, 19, 39–58. [Google Scholar] [CrossRef]
- Mingaleva, Z.; Postnikov, V. New Approaches to Innovation Management in the Context of Digital Transformation. In Digital Transformation—Towards New Frontiers and Business Opportunities; InTech Open: London, UK, 2022. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, B.; Lu, C. Exploring the Effects of Innovation Ecosystem Models on Innovative Performances of Start-Ups: The Contingent Role of Open Innovation. Entrep. Res. J. 2021, 20200529. [Google Scholar] [CrossRef]
- Chesbrough, H. Business Model Innovation: Opportunities and Barriers. Long Range Plan. 2010, 43, 354–363. [Google Scholar] [CrossRef]
- Dhir, A.; Khan, S.J.; Islam, N.; Ractham, P.; Meenakshi, N. Drivers of Sustainable Business Model Innovations. An Upper Echelon Theory Perspective. Technol. Forecast. Soc. Chang. 2023, 191, 122409. [Google Scholar] [CrossRef]
- Rodet-Kroichvili, N.; Cabaret, K.; Picard, F. New Insights into Innovation: The Business Model Approach and Chesbrough’s Seminal Contribution to Open Innovation. J. Innov. Econ. 2014, 15, 79. [Google Scholar] [CrossRef]
- Allied Consultants Europe. A Comprehensive Guide to “Efficient Open Innovation”. Benefits and Challenges—A European Perspective; ACE: Sofia, Bulgaria, 2012. [Google Scholar]
- Marshall, A.; Dencik, J.; Singh, R.R. Open Innovation: Digital Technology Creates New Opportunities. Strategy Leadersh. 2021, 49, 32–38. [Google Scholar] [CrossRef]
- Kuzior, A.; Mańka-Szulik, M.; Krawczyk, D. Changes in the management of electronic public services in the metropolis during the COVID-19 pandemic. Pol. J. Manag. Stud. 2021, 24, 261–275. [Google Scholar] [CrossRef]
- Reim, W.; Åström, J.; Eriksson, O. Implementation of Artificial Intelligence (ARTIFICIAL INTELLIGENCE): A Roadmap for Business Model Innovation. Artif. Intell. 2020, 1, 180–191. [Google Scholar] [CrossRef]
- Feuerriegel, S.; Toetzke, M. 3 Strategies to Leverage ARTIFICIAL INTELLIGENCE in the Development Sector. Available online: https://www.weforum.org/agenda/2022/10/3-strategies-to-leverage-ai-in-the-development-sector/ (accessed on 21 December 2022).
- Bahoo, S.; Cucculelli, M.; Qamar, D. Artificial Intelligence and Corporate Innovation: A Review and Research Agenda. Technol. Forecast. Soc. Chang. 2023, 188, 122264. [Google Scholar] [CrossRef]
- Sjödin, D.; Parida, V.; Palmié, M.; Wincent, J. How ARTIFICIAL INTELLIGENCE Capabilities Enable Business Model Innovation: Scaling ARTIFICIAL INTELLIGENCE through Co-Evolutionary Processes and Feedback Loops. J. Bus. Res. 2021, 134, 574–587. [Google Scholar] [CrossRef]
- Füller, J.; Hutter, K.; Wahl, J.; Bilgram, V.; Tekic, Z. How ARTIFICIAL INTELLIGENCE Revolutionizes Innovation Management—Perceptions and Implementation Preferences of ARTIFICIAL INTELLIGENCE-Based Innovators. Technol. Forecast. Soc. Chang. 2022, 178, 121598. [Google Scholar] [CrossRef]
- Correia, M.J.; Matos, F. The Impact of Artificial Intelligence on Innovation Management: A Literature Review. In Proceedings of the European Conference on Innovation and Entrepreneurship 2021, Lisbon, Portugal, 16–17 September 2021. [Google Scholar] [CrossRef]
- Huang, G.; Yu, Y. The Application of Artificial Intelligence in Organizational Innovation Management: Take the Autonomous Driving Technology of Tesla as an Example. In Advances in Artificial Systems for Logistics Engineering; Springer: Cham, Switzerland, 2022; pp. 690–697. [Google Scholar] [CrossRef]
- Mortara, L.; Napp, J.; Slacik, I.; Minshall, T. How to Implement Open Innovation Lessons from Studying Large Multinational Companies Open Innovation Is… “the Use of Purposive Inflows and Outflows of Knowledge to Accelerate Internal Innovation, and Expand the Markets for External Use of Innovation, Respectively”; University of Cambridge: Cambridge, UK, 2003. [Google Scholar]
- Yams, N.B.; Richardson, V.; Shubina, G.E.; Albrecht, S.; Gillblad, D. Integrated ARTIFICIAL INTELLIGENCE and Innovation Management: The Beginning of a Beautiful Friendship. In Artificial Intelligence and Innovation Management; World Scientific: Singapore, 2020; p. 10. [Google Scholar]
- Brătianu, C. Exploring Knowledge Entropy in Organizations. Manag. Dyn. Knowl. Econ. 2019, 7, 353–366. [Google Scholar] [CrossRef]
- OpenEthics. AI For Public Good: Open-Source Is Not Enough. Open Ethics Initiative. Available online: https://openethics.ai/ai-for-public-good-open-source-is-not-enough (accessed on 13 April 2023).
- Saler, J. Could Artificial Intelligence Contribute to Open Innovation? yet2. Available online: https://www.yet2.com/could-artificial-intelligence-contribute-to-open-innovation/ (accessed on 13 April 2023).
- Lu, X.; Wijayaratna, K.; Huang, Y.; Qiu, A. AI-Enabled Opportunities and Transformation Challenges for SMEs in the Post-Pandemic Era: A Review and Research Agenda. Front. Public Health 2022, 10, 885067. [Google Scholar] [CrossRef]
- Truong, Y.; Papagiannidis, S. Artificial Intelligence as an Enabler for Innovation: A Review and Future Research Agenda. Technol. Forecast. Soc. Chang. 2022, 183, 121852. [Google Scholar] [CrossRef]
- Hamburg, I.; O’brien, E.; Vladut, G. Entrepreneurial Learning and AI Literacy to Support Digital Entrepreneurship. Balk. Reg. Conf. Eng. Bus. Educ. 2019, 3, 132–144. [Google Scholar] [CrossRef]
- Fobel, P.; Kuzior, A. The future (Industry 4.0) is closer than we think. Will it also be ethical? AIP Conf. Proc. 2019, 2186, 080003. [Google Scholar]
- Liepold, C.; Saif, I.; Mittal, N.; Iyengar, S.; Katyal, V. Artificial Intelligence and Ethics: An Emerging Area of Board Oversight Responsibility. Available online: https://corpgov.law.harvard.edu/2020/06/25/artificial-intelligence-and-ethics-an-emerging-area-of-board-oversight-responsibility/ (accessed on 25 February 2023).
- Hagendorff, T. The Ethics of AI Ethics: An Evaluation of Guidelines. Minds Mach. 2020, 30, 99–120. [Google Scholar] [CrossRef]
- IBM. Everyday Ethics for Artificial Intelligence a Practical Guide for Designers & Developers Introduction 6. 2018. Available online: https://www.ibm.com/watson/assets/duo/pdf/everydayethics.pdf (accessed on 25 February 2023).
- Felzmann, H.; Fosch-Villaronga, E.; Lutz, C.; Tamò-Larrieux, A. Towards Transparency by Design for Artificial Intelligence. Sci. Eng. Ethics 2020, 26, 3333–3361. [Google Scholar] [CrossRef]
- Ryan, M. In AI We Trust: Ethics, Artificial Intelligence, and Reliability. Sci. Eng. Ethics 2020, 26, 2749–2767. [Google Scholar] [CrossRef]
- Wright, S.A.; Schultz, A.E. The Rising Tide of Artificial Intelligence and Business Automation: Developing an Ethical Framework. Bus. Horiz. 2018, 61, 823–832. [Google Scholar] [CrossRef]
- IBM. AI Ethics. Available online: https://www.ibm.com/topics/ai-ethics (accessed on 25 February 2023).
- UNESCO. Recommendation on the Ethics of Artificial Intelligence. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000381137 (accessed on 25 February 2023).
- Bakiner, O. Regulation and Artificial Intelligence Ethics: The State of Play; Seattle University: Seattle, WA, USA, 2022. [Google Scholar]
- European Commission. Ethics Guidelines for Trustworthy AI. Shaping Europe’s Digital Future. Available online: https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai (accessed on 18 March 2023).
- European Commission. Policy and Investment Recommendations for Trustworthy Artificial Intelligence. Shaping Europe’s Digital Future. Available online: https://digital-strategy.ec.europa.eu/en/library/policy-and-investment-recommendations-trustworthy-artificial-intelligence (accessed on 18 March 2023).
- European Commission. Assessment List for Trustworthy Artificial Intelligence (ALTAI) for Self-Assessment. Shaping Europe’s Digital Future. Available online: https://digital-strategy.ec.europa.eu/en/library/assessment-list-trustworthy-artificial-intelligence-altai-self-assessment (accessed on 18 March 2023).
- European Commission. Futurium. European AI Alliance—AI HLEG–Sectoral Considerations on Policy and Investment Recommendations for Trustworthy AI. Available online: https://futurium.ec.europa.eu/en/european-ai-alliance/document/ai-hleg-sectoral-considerations-policy-and-investment-recommendations-trustworthy-ai (accessed on 18 March 2023).
- European Parliament. The ethics of artificial intelligence: Issues and initiatives. Think Tank. European Parliament. Available online: https://www.europarl.europa.eu/thinktank/en/document/EPRS_STU(2020)634452 (accessed on 18 March 2023).
- European Commission. Liability Rules for Artificial Intelligence. Available online: https://commission.europa.eu/business-economy-euro/doing-business-eu/contract-rules/digital-contracts/liability-rules-artificial-intelligence_en#documents (accessed on 20 March 2023).
- Chauhan, C.; Parida, V.; Dhir, A. Linking Circular Economy and Digitalisation Technologies: A Systematic Literature Review of Past Achievements and Future Promises. Technol. Forecast. Soc. Chang. 2022, 177, 121508. [Google Scholar] [CrossRef]
- Mariani, M.M.; Machado, I.; Magrelli, V.; Dwivedi, Y.K. Artificial Intelligence in Innovation Research: A Systematic Review, Conceptual Framework, and Future Research Directions. Technovation 2022, 122, 102623. [Google Scholar] [CrossRef]
- Mariani, M.M.; Machado, I.; Nambisan, S. Types of Innovation and Artificial Intelligence: A Systematic Quantitative Literature Review and Research Agenda. J. Bus. Res. 2023, 155, 113364. [Google Scholar] [CrossRef]
- Haefner, N.; Wincent, J.; Parida, V.; Gassmann, O. Artificial Intelligence and Innovation Management: A Review, Framework, and Research Agenda. Technol. Forecast. Soc. Chang. 2021, 162, 120392. [Google Scholar] [CrossRef]
- Grebski, W.; Ulewicz, R. Heat and Power System as an Independent Source of Electric Power. Case Study. Manag. Syst. Prod. Eng. 2022, 30, 262–268. [Google Scholar] [CrossRef]
- Park, H.S. Technology Convergence, Open Innovation, and Dynamic Economy. J. Open Innov. Technol. Mark. Complex. 2017, 3, 24. [Google Scholar] [CrossRef]
- IBM. Open Innovation in Blockchain Is Key to Mass Adoption; Blockchain Pulse: IBM Blockchain Blog; IBM: Armonk, NY, USA; Available online: https://www.ibm.com/blogs/blockchain/2019/05/open-innovation-in-blockchain-is-key-to-mass-adoption/ (accessed on 25 February 2023).
- Bilan, Y.; Samusevych, Y.; Lyeonov, S.; Strzelec, M.; Tenytska, I. The Keys to Clean Energy Technology: Impact of Environmental Taxes on Biofuel Production and Consumption. Energies 2022, 15, 9470. [Google Scholar] [CrossRef]
- Yevdokimov, Y.; Chygryn, O.; Pimonenko, T.; Lyulyov, O. Biogas as an Alternative Energy Resource for Ukrainian Companies: EU Experience. Innov. Mark. 2018, 14, 7–15. [Google Scholar] [CrossRef]
- Popescu, M. Energy Efficiency in Electric Transportation Systems. Energies 2022, 15, 8177. [Google Scholar] [CrossRef]
- Zozuľak, J.; Zozuľaková, V. Ethical and Ecological Dilemmas of Environmental Protection. Manag. Syst. Prod. Eng. 2022, 30, 282–290. [Google Scholar] [CrossRef]
- Wołowiec, T.; Kolosok, S.; Vasylieva, T.; Artyukhov, A.; Skowron, Ł.; Dluhopolskyi, O.; Sergiienko, L. Sustainable Governance, Energy Security, and Energy Losses of Europe in Turbulent Times. Energies 2022, 15, 8857. [Google Scholar] [CrossRef]
- Pradhan, N.R.; Singh, A.P.; Verma, S.; Kavita; Wozniak, M.; Shafi, J.; Ijaz, M.F. A Blockchain Based Lightweight Peer-To-Peer Energy Trading Framework for Secured High Throughput Micro-Transactions. Sci. Rep. 2022, 12, 14523. [Google Scholar] [CrossRef] [PubMed]
- Kuzior, A.; Sira, M.; Brozek, P. Using Blockchain and Artificial Intelligence in Energy Management as a Tool to Achieve Energy Efficiency. Virtual Econ. 2022, 5, 69–90. [Google Scholar] [CrossRef]
- Li, J.; Herdem, M.S.; Nathwani, J.; Wen, J.Z. Methods and Applications for Artificial Intelligence, Big Data, Internet of Things, and Blockchain in Smart Energy Management. Energy AI 2023, 11, 100208. [Google Scholar] [CrossRef]
- Miglani, A.; Kumar, N.; Chamola, V.; Zeadally, S. Blockchain for Internet of Energy Management: Review, Solutions, and Challenges. Comput. Commun. 2020, 151, 395–418. [Google Scholar] [CrossRef]
- Kumari, A.; Gupta, R.; Tanwar, S.; Kumar, N. Blockchain and AI Amalgamation for Energy Cloud Management: Challenges, Solutions, and Future Directions. J. Parallel Distrib. Comput. 2020, 143, 148–166. [Google Scholar] [CrossRef]
- Samusevych, Y.; Lyeonov, S.; Artyukhov, A.; Martyniuk, V.; Tenytska, I.; Wyrwisz, J.; Wojciechowska, K. Optimal Design of Transport Tax on the Way to National Security: Balancing Environmental Footprint, Energy Efficiency and Economic Growth. Sustainability 2023, 15, 831. [Google Scholar] [CrossRef]
- Racetin, I.; Kilić Pamuković, J.; Zrinjski, M.; Peko, M. Blockchain-Based Land Management for Sustainable Development. Sustainability 2022, 14, 10649. [Google Scholar] [CrossRef]
- Shoaib, M.; Zhang, S.; Ali, H. A Bibliometric Study on Blockchain-Based Supply Chain: A Theme Analysis, Adopted Methodologies, and Future Research Agenda. Environ. Sci. Pollut. Res. 2022, 30, 14029–14049. [Google Scholar] [CrossRef]
- Angerschmid, A.; Zhou, J.; Theuermann, K.; Chen, F.; Holzinger, A. Fairness and Explanation in AI-Informed Decision Making. Mach. Learn. Knowl. Extr. 2022, 4, 556–579. [Google Scholar] [CrossRef]
- Jarrahi, M.H. Artificial Intelligence and the Future of Work: Human-AI Symbiosis in Organizational Decision Making. Bus. Horiz. 2018, 61, 577–586. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Hughes, L.; Ismagilova, E.; Aarts, G.; Coombs, C.; Crick, T.; Duan, Y.; Dwivedi, R.; Edwards, J.; Eirug, A.; et al. Artificial Intelligence (AI): Multidisciplinary Perspectives on Emerging Challenges, Opportunities, and Agenda for Research, Practice and Policy. Int. J. Inf. Manag. 2019, 57, 101994. [Google Scholar] [CrossRef]
- Zirar, A.; Ali, S.I.; Islam, N. Worker and Workplace Artificial Intelligence (AI) Coexistence: Emerging Themes and Research Agenda. Technovation 2023, 124, 102747. [Google Scholar] [CrossRef]
- Ferràs, X.; Hitchen, E.L.; Tarrats-Pons, E.; Arimany-Serrat, N. Smart Tourism Empowered by Artificial Intelligence. J. Cases Inf. Technol. 2020, 22, 1–13. [Google Scholar] [CrossRef]
- Barlatier, P.-J.; Mention, A.-L.; Misra, A. The Interplay of Digital Technologies and the Open Innovation Process: Benefits and Challenges. In Open Innovation: Bridging Theory and Practice, Managing Digital Open Innovation; World Scientific: Singapore, 2020; pp. 1–34. [Google Scholar] [CrossRef]
- Kuzior, A.; Kwilinski, A. Cognitive Technologies and Artificial Intelligence in Social Perception. Manag. Syst. Prod. Eng. 2022, 30, 109–115. [Google Scholar] [CrossRef]
- Cihon, P.; Maas, M.M.; Kemp, L. Should Artificial Intelligence Governance Be Centralised? In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, New York, NY, USA, 7–9 February 2020. [Google Scholar] [CrossRef]
- Accenture. Bridging the Skills Gap in the Future Workforce. Available online: https://www.accenture.com/_acnmedia/thought-leadership-assets/pdf/accenture-education-and-technology-skills-research.pdf (accessed on 22 December 2022).
- Purdy, M.; Daugherty, P. How AI Industry Profits and Innovation Boosts; Accenture: Dublin, Ireland, 2017. [Google Scholar]
- Ober, J. Open Innovation in the ICT Industry: Substantiation from Poland. J. Open Innov. Technol. Mark. Complex. 2022, 8, 158. [Google Scholar] [CrossRef]
- Ober, J. Innovation Adoption: Empirical Analysis on the Example of Selected Factors of Organizational Culture in the IT Industry in Poland. Sustainability 2020, 12, 8630. [Google Scholar] [CrossRef]
- Grebski, M.; Mazur, M. Social Climate of Support for Innovativeness. Prod. Eng. Arch. 2022, 28, 110–116. [Google Scholar] [CrossRef]
- Jonek-Kowalska, I.; Wolniak, R. The Influence of Local Economic Conditions on Start-Ups and Local Open Innovation System. J. Open Innov. Technol. Mark. Complex. 2021, 7, 110. [Google Scholar] [CrossRef]
- Strielkowski, W.; Samoilikova, A.; Smutka, L.; Civín, L.; Lieonov, S. Dominant Trends in Intersectoral Research on Funding Innovation in Business Companies: A Bibliometric Analysis Approach. J. Innov. Knowl. 2022, 7, 100271. [Google Scholar] [CrossRef]
- PricewaterhouseCoopers. Understanding Algorithmic Bias and How to Build Trust in AI. Available online: https://www.pwc.com/us/en/tech-effect/ai-analytics/algorithmic-bias-and-trust-in-ai.html (accessed on 22 December 2022).
- Edlich, A.; Phalin, G.; Jogani, R.; Kaniyar, S. Driving Impact at Scale from Automation and AI; McKinsey Global Institute: New York, NY, USA, 2019. [Google Scholar]
- Durbin, S. How Enterprises Can Control AI Algorithms for the Better. Available online: https://www.weforum.org/agenda/2022/08/how-the-responsible-use-of-ai-can-create-safer-online-spaces/ (accessed on 22 December 2022).
- Australian Human Rights Commission. Using Artificial Intelligence to Make Decisions: Addressing the Problem of Algorithmic Bias; Australian Human Rights Commission: Sydney, NSW, Australia, 2020.
- Edelman, D.C.; Abraham, M. Customer Experience in the Age of AI. Available online: https://hbr.org/2022/03/customer-experience-in-the-age-of-ai (accessed on 22 December 2022).
- Gao, Y.; Liu, H. Artificial Intelligence-Enabled Personalization in Interactive Marketing: A Customer Journey Perspective. J. Res. Interact. Mark. 2022, 1–18. [Google Scholar] [CrossRef]
- EU Science Hub. AI Watch Estimating Investments in General Purpose Technologies: The Case of AI Investments in Europe; Publications Office of the European Union: Luxembourg, 2020. [CrossRef]
- Deloitte. Open Innovation in RegTech Methodology and Use Cases of Successful Startup–Corporate Collaboration in a Highly Regulated Environment; Deloitte: London, UK, 2022. [Google Scholar]
- MDOTM. AI-Powered R&D: Accelerating Innovation. MDOTM AI-Driven Investment Solutions. Available online: https://www.mdotm.eu/videos-webinars/mdotm-webflow-io-webinars-mdotm-frontiers-4 (accessed on 9 February 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuzior, A.; Sira, M.; Brożek, P. Use of Artificial Intelligence in Terms of Open Innovation Process and Management. Sustainability 2023, 15, 7205. https://doi.org/10.3390/su15097205
Kuzior A, Sira M, Brożek P. Use of Artificial Intelligence in Terms of Open Innovation Process and Management. Sustainability. 2023; 15(9):7205. https://doi.org/10.3390/su15097205
Chicago/Turabian StyleKuzior, Aleksandra, Mariya Sira, and Paulina Brożek. 2023. "Use of Artificial Intelligence in Terms of Open Innovation Process and Management" Sustainability 15, no. 9: 7205. https://doi.org/10.3390/su15097205
APA StyleKuzior, A., Sira, M., & Brożek, P. (2023). Use of Artificial Intelligence in Terms of Open Innovation Process and Management. Sustainability, 15(9), 7205. https://doi.org/10.3390/su15097205