Optimizing Nitrogen Nutrient Management for the Sustainable Enhancement of Secondary Metabolites and Yield in Onion Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of Onion Varieties
2.2. Field Small-Plot Nutrition Experiment Description
- 1 Variant—unfertilized control (further referred to as “0” in the text).
- 2 Variant—fertilization at a rate of 140 kg N ha−1 (NH4+).
- 3 Variant—fertilization at a rate of 140 kg N ha−1 + fertilization at a rate of 19 kg of available sulfur (SO42+) per hectare (N+S).
- 4 Variant—fertilization at a rate of 140 kg N ha−1 + fertilization at a rate of 19 kg of available sulfur (SO42+) per hectare + 5 kg of iron (Fe2+) per hectare (N+S+Fe).
2.3. Fertilization Application Description
2.4. Determining Yield and Other Fundamental Parameters
2.5. Determining the Content of Free Quercetin in Kitchen Onion
2.6. Sample Preparation for HPLC Analysis
2.7. Determination of the Bound Quercetin Content in Onion
2.8. Determination of the Total Phenolic Content in the Onion
2.9. Determination of the Total Flavonoid Content in the Experimental Onion Varieties
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ayamba, B.E.; Abaidoo, R.C.; Opoku, A.; Ewusi-Mensah, N. Mechanisms for nutrient interactions from organic amendments and mineral fertilizer inputs under cropping systems: A review. PeerJ 2023, 11, e15135. [Google Scholar] [CrossRef]
- Astolfi, S.; Celletti, S.; Vigani, G.; Mimmo, T.; Cesco, S. Interaction Between Sulphur and Iron in Plants. Front. Plant Sci. 2021, 12, 670308. [Google Scholar] [CrossRef]
- Caliskan, S.; Ozkaya, I.; Caliskan, M.E.; Arslan, M. The effects of nitrogen and iron fertilization on growth, yield and fertilizer use efficiency of soybean in a Mediterranean-type soil. Field Crops Res. 2008, 108, 126–132. [Google Scholar] [CrossRef]
- Ishfaq, M.; Wang, Y.; Xu, J. Improvement of nutritional quality of food crops with fertilizer: A global meta-analysis. Agron. Sustain. Dev. 2023, 43, 74. [Google Scholar] [CrossRef]
- Penuelas, J.; Coello, F.; Sardans, J. A better use of fertilizers is needed for global food security and environmental sustainability. Agric. Food Secur. 2023, 12, 5. [Google Scholar] [CrossRef]
- Kosyan, A.; Sytar, O.; Taran, N. Quality increasing technology of garlic bulbs growing (Allium sativum L.) owing to the use of sulphuric fertilizers. Agrochémia Agrochem. 2010, XXIII, 7–11. [Google Scholar]
- Geisseler, D.; Ortiz, S.R.; Diaz, J. Nitrogen nutrition and fertilization of onions (Allium cepa L.)—A literature review. Sci. Hortic. 2022, 291, 110591. [Google Scholar] [CrossRef]
- Barrales-Heredia, S.M.; Grimaldo-Juárez, O.; Suárez-Hernández, Á.M.; González-Vega, R.I.; Díaz-Ramírez, J.; García-López, A.M.; Soto-Ortiz, R.; González-Mendoza, D.; Iturralde-García, R.D.; Dórame-Miranda, R.F. Effects of Different Irrigation Regimes and Nitrogen Fertilization on the Physicochemical and Bioactive Characteristics of onion (Allium cepa L.). Horticulturae 2023, 9, 344. [Google Scholar] [CrossRef]
- Al-Fraihat, A.H. Effect of Different Nitrogen and Sulphur Fertilizer Levels on Growth, Yield and Quality of Onion (Allium cepa L.). Jordan J. Agric. Sci. 2010, 5, 155. [Google Scholar]
- Dobermann, A.; Bruulsema, T.; Cakmak, I.; Gerard, B.; Majumdar, K.; McLaughlin, M.; Reidsma, P.; Vanlauwe, B.; Wollenberg, L.; Zhang, F.; et al. Responsible plant nutrition: A new paradigm to support food system transformation. Glob. Food Secur. 2022, 33, 100636. [Google Scholar] [CrossRef]
- Kumar, M.; Barbhai, M.D.; Hasan, M.; Punia, S.; Dhumal, S.; Radha; Rais, N.; Chandran, D.; Pandiselvam, R.; Kothakota, A.; et al. Onion (Allium cepa L.) peels: A review on bioactive compounds and biomedical activities. Biomed. Pharmacother. 2022, 146, 112498. [Google Scholar] [CrossRef]
- Ren, F.; Zhou, S. Phenolic Components and Health Beneficial Properties of Onions. Agriculture 2021, 11, 872. [Google Scholar] [CrossRef]
- Cozzolino, R.; Malorni, L.; Martignetti, A.; Picariello, G.; Siano, F.; Forte, G.; De Giulio, B. Comparative analysis of volatile profiles and phenolic compounds of Four Southern Italian onion (Allium cepa L.) Landraces. J. Food Compos. Anal. 2021, 101, 103990. [Google Scholar] [CrossRef]
- Jian, S.F.; Huang, X.J.; Yang, X.N.; Zhong, C.; Miao, J.H. Sulphur Regulates the Trade-Off Between Growth and Andrographolide Accumulation via Nitrogen Metabolism in Andrographis paniculata. Front. Plant Sci. 2021, 12, 687954. [Google Scholar] [CrossRef]
- Takahashi, H.; Marsolais, F.; Cuypers, A.; Kopriva, S. Sulphur metabolism: Actions for plant resilience and environmental adaptation. J. Exp. Bot. 2023, 74, 3271–3275. [Google Scholar] [CrossRef]
- Vojnović, Đ.; Maksimović, I.; Tepić Horecki, A.; Karadžić Banjac, M.; Kovačević, S.; Daničić, T.; Podunavac-Kuzmanović, S.; Ilin, Ž. Onion (Allium cepa L.) Yield and Quality Depending on Biostimulants and Nitrogen Fertilization—A Chemometric Perspective. Processes 2023, 11, 684. [Google Scholar] [CrossRef]
- Matrella, M.L.; Valletti, A.; Marra, F.; Mallamaci, C.; Cocco, T.; Muscolo, A. Phytochemicals from Red Onion, Grown with Eco-Sustainable Fertilizers, Protect Mammalian Cells from Oxidative Stress, Increasing Their Viability. Molecules 2022, 27, 6365. [Google Scholar] [CrossRef]
- Bertino, N.M.F.; Grangeiro, L.C.; da Costa, J.P.N.; Costa, R.M.C.; de Lacerda, R.R.A.; Gomes, V.E. Growth, nutrient accumulation and yield of onion as a function of micronutrient fertilization. Rev. Bras. Eng. Agrícola Ambient. 2022, 26, 126–134. [Google Scholar] [CrossRef]
- Therby-Vale, R.; Lacombe, B.; Rhee, S.Y.; Nussaume, L.; Rouached, H. Mineral nutrient signaling controls photosynthesis: Focus on iron deficiency-induced chlorosis. Trends Plant Sci. 2022, 27, 502–509. [Google Scholar] [CrossRef]
- Fróna, D.; Szenderák, J.; Harangi-Rákos, M. The Challenge of Feeding the World. Sustainability 2019, 11, 5816. [Google Scholar] [CrossRef]
- Pawlak, K.; Kołodziejczak, M. The Role of Agriculture in Ensuring Food Security in Developing Countries: Considerations in the Context of the Problem of Sustainable Food Production. Sustainability 2020, 12, 5488. [Google Scholar] [CrossRef]
- Patil, B.S.; Pike, L.M.; Yoo, K.S. Variation in the Quercetin Content in Different Colored Onions (Allium cepa L.). J. Am. Soc. Hortic. Sci. 1995, 120, 909–913. [Google Scholar] [CrossRef]
- Hertog, M.G.L.; Hollman, P.C.H.; Katan, M.B. Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands. J. Agric. Food Chem. 1992, 40, 2379–2383. [Google Scholar] [CrossRef]
- Ragazzi, E.; Veronese, G. Quantitative analysis of phenolic compounds after thin-layer chromatographic separation. J. Chromatogr. 1973, 77, 369–375. [Google Scholar] [CrossRef]
- Bergamini, C.M.; Gambetti, S.; Dondi, A.; Cervellati, C. Oxygen, Reactive Oxygen Species and Tissue Damage. Curr. Pharm. Des. 2004, 10, 1611–1626. [Google Scholar] [CrossRef]
- Shanmugavel, D.; Rusyn, I.; Solorza-Feria, O.; Kamaraj, S.K. Sustainable SMART fertilizers in agriculture systems: A review on fundamentals to in-field applications. Sci. Total Environ. 2023, 904, 166729. [Google Scholar] [CrossRef]
- Sharma, G.P.; Dhaka, R.S.; Shankar, U.T.; Meena, V.S. Effect of nitrogen and sulphur levels on growth and yield of Rabi onion (Allium cepa L.). Pharma Innov. J. 2022, 11, 5697–5701. [Google Scholar]
- Narayan, O.P.; Kumar, P.; Yadav, B.; Dua, M.; Kumar Johri, A. Sulphur nutrition and its role in plant growth and development. Plant Signal. Behav. 2023, 18, 2030082. [Google Scholar] [CrossRef]
- Sharma, R.K.; Cox, M.S.; Oglesby, C.; Dhillon, J.S. Revisiting the role of sulphur in crop production: A narrative review. J. Agric. Food Res. 2024, 15, 101013. [Google Scholar] [CrossRef]
- Dhaker, S.C.; Mundra, S.L.; Nepalia, V. Effect of weed management and sulphur nutrition on productivity of soybean [Glycine max (L.) Merrill]. Indian J. Weed Sci. 2010, 42, 232–234. [Google Scholar]
- Głowacka, A.; Jariene, E.; Flis-Olszewska, E.; Kiełtyka-Dadasiewicz, A. The Effect of Nitrogen and Sulphur Application on Soybean Productivity Traits in Temperate Climates Conditions. Agronomy 2023, 13, 780. [Google Scholar] [CrossRef]
- Bisht, N.; Singh Chauhan, P. Excessive and Disproportionate Use of Chemicals Cause Soil Contamination and Nutritional Stress. In Soil Contamination—Threats and Sustainable Solutions; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, J.; Cai, W.; Li, G.; Mei, Y.; Yang, S. Different Amounts of Nitrogen Fertilizer Applications Alter the Bacterial Diversity and Community Structure in the Rhizosphere Soil of Sugarcane. Front. Microbiol. 2021, 12, 721441. [Google Scholar] [CrossRef]
- Stoica, F.; Rațu, R.N.; Veleșcu, I.D.; Stănciuc, N.; Râpeanu, G. A comprehensive review on bioactive compounds, health benefits, and potential food applications of onion (Allium cepa L.) skin waste. Trends Food Sci. Technol. 2023, 141, 104173. [Google Scholar] [CrossRef]
- Samota, M.K.; Sharma, M.; Kaur, K.; Sarita; Yadav, D.K.; Pandey, A.K.; Tak, Y.; Rawat, M.; Thakur, J.; Rani, H. Onion anthocyanins: Extraction, stability, bioavailability, dietary effect, and health implications. Front. Nutr. 2022, 9, 917617. [Google Scholar] [CrossRef]
- Benítez, V.; Mollá, E.; Martín-Cabrejas, M.A.; Javier López-Andréu, F.; Downes, K.; Terry, L.A.; Esteba, R.M. Study of bioactive compound content in different onion sections. Plant Food Hum. Nutr. 2011, 66, 48–57. [Google Scholar] [CrossRef]
- Sagar, N.A.; Pareek, S.; Gonzalez-Aguilar, G.A. Quantification of flavonoids, total phenols and antioxidant properties of onion skin: A comparative study of fifteen Indian cultivars. J. Food Sci. Technol. 2020, 57, 2423–2432. [Google Scholar] [CrossRef]
- Moreno-Ortega, A.; Ordóñez, J.L.; Moreno-Rojas, R.; Moreno-Rojas, J.M.; Pereira-Caro, G. Changes in the Organosulphur and Polyphenol Compound Profiles of Black and Fresh Onion during Simulated Gastrointestinal Digestion. Foods 2021, 10, 337. [Google Scholar] [CrossRef]
- Simelane, M.P.Z.; Soundy, P.; Maboko, M.M. Effect of Calcium Cyanamide as an Alternative Nitrogen Source on Growth, Yield, and Nitrogen Use Efficiency of Short-Day Onion. Agronomy 2023, 13, 2746. [Google Scholar] [CrossRef]
- Ning, X.; Lin, M.; Huang, G.; Mao, J.; Gao, Z.; Wang, X. Research progress on iron absorption, transport, and molecular regulation strategy in plants. Front. Plant Sci. 2023, 14, 1190768. [Google Scholar] [CrossRef]
- Li, M.; Watanabe, S.; Gao, F.; Dubos, C. Iron Nutrition in Plants: Towards a New Paradigm? Plants 2023, 12, 384. [Google Scholar] [CrossRef] [PubMed]
- Gülser, F.; Yavuz, H.I.; Gökkaya, T.H.; Sedef, M. Effects of iron sources and doses on plant growth criteria in soybean seedlings. Eurasian J. Soil. Sci. 2019, 8, 298–303. [Google Scholar] [CrossRef]
- Cui, X.; Hou, D.; Tang, Y.; Liu, M.; Qie, H.; Qian, T.; Xu, R.; Lin, A.; Xu, X. Effects of the application of nanoscale zero-valent iron on plants: Meta analysis, mechanism, and prospects. Sci. Total Environ. 2023, 900, 165873. [Google Scholar] [CrossRef] [PubMed]
- Tóth, T.; Bystrická, J.; Tomáš, J.; Siekel, P.; Kovarovič, J.; Lenková, M. Effect of sulphur fertilization on contents of phenolic and sulphuric compounds in onion (Allium cepa L.). J. Food Nutr. Res. 2018, 57, 170–178. [Google Scholar]
- Malhi, S.S.; Schoenau, J.J.; Grant, C.A. A review of sulphur fertilizer management for optimum yield and quality of canola in the Canadian Great Plains. Can. J. Plant Sci. 2005, 85, 297–307. [Google Scholar] [CrossRef]
- Wick, K.; Heumesser, C.; Schmid, E. Groundwater nitrate contamination: Factors and indicators. J. Environ. Manag. 2012, 111, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, M.R.; Sepaskhah, A.R. Nitrogen leaching and groundwater N contamination risk in saffron/wheat intercropping under different irrigation and soil fertilizers regimes. Sci. Rep. 2023, 13, 6587. [Google Scholar] [CrossRef]
- Hinckley, E.L.S.; Driscoll, C.T. Sulphur fertiliser use in the Midwestern US increases as atmospheric sulphur deposition declines with improved air quality. Commun. Earth Environ. 2022, 3, 324. [Google Scholar] [CrossRef]
Year | pH | Humus (%) | Nutrient Content (mg kg−1 of Soil) | ||||||
---|---|---|---|---|---|---|---|---|---|
Nan | S | Fe | P | K | Ca | Mg | |||
1 year | 5.96 | 2.82 | 7.2 | 18.0 | 19.68 | 35 | 260 | 4200 | 830 |
2 year | 6.90 | 4.16 | 13.5 | 27.5 | 14.13 | 17.5 | 242.5 | 5600 | 935.0 |
Variant | Yield (t ha−1) | Dry Matter Content (%) | Dry Matter Yield (t ha−1) | Average Weight of One Onion (g) |
---|---|---|---|---|
Cultivar Mundo | ||||
1 (0) | 26.12 a | 12.01 a | 3.13 a | 59.66 a |
2 (N) | 29.04 b | 11.93 a | 3.45 b | 68.99 b |
3 (N+S) | 30.57 b | 12.32 a | 3.69 c | 65.55 ab |
4 (N+S+Fe) | 29.92 b | 12.41 a | 3.79 bc | 77.05 c |
LSD 0.05 | 2.35 | 0.74 | 0.30 | 7.82 |
Cultivar Robin | ||||
1 (0) | 23.72 a | 13.28 b | 3.06 a | 61.64 a |
2 (N) | 31.57 b | 12.71 a | 3.99 b | 84.83 c |
3 (N+S) | 33.50 b | 13.24 b | 4.40 b | 81.72 c |
4 (N+S+Fe) | 32.76 b | 13.05 b | 4.22 b | 73.64 b |
LSD 0.05 | 3.35 | 0.33 | 0.44 | 7.67 |
Cultivar Kamal | ||||
1 (0) | 23.68 a | 14.53 ab | 3.37 a | 39.96 a |
2 (N) | 26.62 b | 14.14 a | 3.67 ab | 45.67 bc |
3 (N+S) | 28.93 c | 14.61 b | 4.23 c | 48.61 c |
4 (N+S+Fe) | 27.82 bc | 14.54 b | 3.94 bc | 42.94 ab |
LSD 0.05 | 2.03 | 0.38 | 0.35 | 5.44 |
Cultivar Pueblo | ||||
1 (0) | 22.86 a | 19.05 b | 4.17 a | 62.25 a |
2 (N) | 25.78 b | 18.61 b | 4.77 b | 73.51 c |
3 (N+S) | 28.60 c | 17.93 a | 5.00 b | 69.42 bc |
4 (N+S+Fe) | 28.37 c | 18.59 b | 5.11 b | 65.50 ab |
LSD 0.05 | 2.35 | 0.53 | 0.37 | 5.47 |
Variant | Cultivar | |||
---|---|---|---|---|
Kamal | Robin | Pueblo | Mundo | |
Phenolics (mg gallic acid equivalents per g FW) | ||||
1 (0) | 0.808 a | 0.776 a | 0.395 a | 0.752 a |
2 (N) | 0.929 b | 0.865 a | 0.458 b | 0.858 b |
3 (N+S) | 0.861 ab | 0.842 a | 0.453 b | 0.858 b |
4 (N+S+Fe) | 0.856 ab | 0.849 a | 0.500 c | 0.921 b |
LSD 0.05 | 0.089 | 0.098 | 0.036 | 0.093 |
Flavonoids (mg g−1 FW) | ||||
1 (0) | 0.273 b | 0.278 a | 0.104 a | 0.160 a |
2 (N) | 0.282 b | 0.353 b | 0.105 a | 0.158 a |
3 (N+S) | 0.286 b | 0.279 a | 0.105 a | 0.154 a |
4 (N+S+Fe) | 0.238 a | 0.299 a | 0.116 a | 0.158 a |
LSD 0.05 | 0.033 | 0.030 | 0.018 | 0.013 |
Variant | Free Quercetin | % of Total Quercetin | Bound Quercetin | % of Total Quercetin | Total Quercetin | Rel. % |
---|---|---|---|---|---|---|
Cultivar Mundo | ||||||
1 (0) | 0.065 ab | 20 | 0.265 ab | 80 | 0.329 a | 100 |
2 (N) | 0.063 ab | 19 | 0.263 ab | 81 | 0.327 a | 100 |
3 (N+S) | 0.072 b | 22 | 0.262 a | 78 | 0.334 a | 100 |
4 (N+S+Fe) | 0.053 a | 15 | 0.308 b | 85 | 0.360 a | 100 |
LSD 0.05 | 0.013 | - | 0.044 | - | 0.048 | - |
Cultivar Robin | ||||||
1 (0) | 0.052 c | 17 | 0.255 a | 83 | 0.307 a | 100 |
2 (N) | 0.040 ab | 12 | 0.286 ab | 88 | 0.326 ab | 100 |
3 (N+S) | 0.048 bc | 14 | 0.306 b | 86 | 0.354 b | 100 |
4 (N+S+Fe) | 0.038 a | 12 | 0.265 a | 88 | 0.303 a | 100 |
LSD 0.05 | 0.007 | - | 0.003 | - | 0.028 | |
Cultivar Kamal | ||||||
1 (0) | 0.030 a | 6 | 0.434 a | 94 | 0.464 a | 100 |
2 (N) | 0.043 b | 8 | 0.477 b | 92 | 0.520 bc | 100 |
3 (N+S) | 0.034 ab | 6 | 0.514 c | 94 | 0.547 c | 100 |
4 (N+S+Fe) | 0.032 a | 6 | 0.471 b | 94 | 0.503 b | 100 |
LSD 0.05 | 0.010 | - | 0.031 | - | 0.033 | |
Cultivar Pueblo | ||||||
1 (0) | 0.008 b | 15 | 0.005 b | 85 | 0.006 | 100 |
2 (N) | 0.005 a | 14 | 0.003 a | 86 | 0.004 | 100 |
3 (N+S) | 0.004 a | 14 | 0.002 a | 86 | 0.003 | 100 |
4 (N+S+Fe) | 0.004 a | 15 | 0.002 ab | 85 | 0.003 | 100 |
LSD 0.05 | 0.0002 | - | 0.0001 | - | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olsovska, K.; Golisova, A.; Sytar, O. Optimizing Nitrogen Nutrient Management for the Sustainable Enhancement of Secondary Metabolites and Yield in Onion Cultivation. Sustainability 2024, 16, 4396. https://doi.org/10.3390/su16114396
Olsovska K, Golisova A, Sytar O. Optimizing Nitrogen Nutrient Management for the Sustainable Enhancement of Secondary Metabolites and Yield in Onion Cultivation. Sustainability. 2024; 16(11):4396. https://doi.org/10.3390/su16114396
Chicago/Turabian StyleOlsovska, Katarina, Andrea Golisova, and Oksana Sytar. 2024. "Optimizing Nitrogen Nutrient Management for the Sustainable Enhancement of Secondary Metabolites and Yield in Onion Cultivation" Sustainability 16, no. 11: 4396. https://doi.org/10.3390/su16114396
APA StyleOlsovska, K., Golisova, A., & Sytar, O. (2024). Optimizing Nitrogen Nutrient Management for the Sustainable Enhancement of Secondary Metabolites and Yield in Onion Cultivation. Sustainability, 16(11), 4396. https://doi.org/10.3390/su16114396