Combining Fuzzy Logic and Genetic Algorithms to Optimize Cost, Time and Quality in Modern Agriculture
Abstract
:1. Introduction
1.1. Complexity in Agriculture
1.2. Cost, Time, and Quality Management in Agriculture
- Cost: This refers to expenses related to labor, machinery, fertilizers, and energy. Minimizing costs without sacrificing productivity or quality is a primary goal for agricultural enterprises [16,17]. Cost management involves analyzing both fixed and variable costs to identify areas for potential savings. For instance, the adoption of renewable energy sources, such as solar-powered irrigation systems, can reduce long-term energy costs, although the initial investment might be high. Furthermore, implementing crop rotation and integrated pest management strategies can help reduce the need for expensive chemical inputs, leading to cost savings [18].
- Time: Time management pertains to the duration of various processes, from planting to harvesting. Efficiently managing time is essential to synchronize operations with seasonal cycles and market demands [19]. Automation, such as the use of drones for crop monitoring and automated harvesters, can significantly cut down on labor hours, improving efficiency. Furthermore, technology-driven solutions like predictive analytics can assist in anticipating optimal harvest times, minimizing the risk of spoilage, and ensuring that crops are delivered to market at peak freshness [20]. However, the challenge remains in aligning the timing of these operations with unpredictable environmental factors, such as sudden weather changes, which can disrupt well-planned schedules [21].
- Quality: Quality encompasses attributes like nutritional value, appearance, and shelf life, all of which influence market pricing and consumer satisfaction. Effective quality management is crucial for ensuring product consistency and meeting consumer expectations [22,23]. Quality management systems, such as ISO certifications and Good Agricultural Practices (GAP), guide farmers in maintaining high standards of production. Additionally, innovations in genetic modification and selective breeding are allowing for crops that are not only more resistant to pests and diseases but also better suited to environmental conditions, thereby improving overall product quality [24]. However, these advancements must be balanced with consumer preferences for organic and sustainably produced goods, which may require additional effort and resources but offer higher returns [25].
1.3. Computational Methods in Decision Making
1.3.1. Fuzzy Logic
1.3.2. Genetic Algorithms (GAs)
1.4. Integrating Fuzzy Logic and Genetic Algorithms
- Handling uncertainty: Fuzzy logic effectively manages the inherent variability and uncertainty within agricultural systems, providing a flexible framework for decision making.
- Optimization: Genetic algorithms identify efficient or near-optimal solutions for complex issues, such as resource distribution and planning, thereby improving overall system efficiency.
- Adaptability: This hybrid approach allows for dynamic adjustments to changing factors, such as weather conditions and market fluctuations. For instance, in irrigation management, fuzzy logic can evaluate water requirements based on factors like soil moisture and temperature [48]. Meanwhile, genetic algorithms can optimize irrigation schedules to reduce operational costs while improving crop yield quality.
1.5. MATLAB Integration
2. Literature Review
2.1. Fuzzy Logic for Managing Uncertainty in Agriculture
2.2. Genetic Algorithms for Multi-Objective Optimization
2.3. Case Studies and Model Validation
2.4. Alignment with Sustainability Goals
3. Theoretical Background
3.1. Introduction to Fuzzy Logic
3.1.1. Fuzzy Sets and Membership Functions
3.1.2. Fuzzy Rules and Inference Systems
- Fuzzification: Converting precise input values into fuzzy sets.
- Rule evaluation: Applying fuzzy rules to determine the corresponding outputs.
- Aggregation: Combining multiple output fuzzy sets into a single set.
- Defuzzification: Converting the aggregated fuzzy set back into a precise value.
3.1.3. Fuzzy Logic Applications in Agriculture
3.2. Introduction to Genetic Algorithms
3.2.1. Working Principles of Genetic Algorithms
- Initialization: Generate an initial population of candidate solutions.
- Selection: Choose solutions based on their fitness, which reflects how well they perform relative to the problem’s objectives.
- Crossover: Combine selected solutions to produce offspring with traits from both parents.
- Mutation: Introduce random changes to some solutions, ensuring diversity in the population.
- Evaluation: Assess the fitness of each solution using a fitness function.
- Termination: The process ends when a predefined stopping condition is met, such as reaching a certain number of generations or achieving a satisfactory solution.
3.2.2. Fitness Function
3.2.3. GAs Applications in Agriculture
3.2.4. Combining Fuzzy Logic and Genetic Algorithms
3.2.5. Hybrid Optimization Model
- Fuzzy logic component: This component defines the problem parameters and associates linguistic variables with fuzzy sets. For example, it can represent concepts such as “low cost” or “high quality”, using membership functions that capture degrees of truth.
- Genetic algorithm component: The genetic algorithm optimizes the parameters of the fuzzy system or directly addresses the problem by considering fuzzy objectives, providing a means to fine-tune decision making.
- Integration: The genetic algorithm evolves the fuzzy rules or membership functions to enhance decision making. For instance, it can adjust parameters like the sharpness (α) or the centers (c) of membership functions to improve outcomes [128].
3.3. Problem Definition and Modeling
3.3.1. Problem Definition and Modeling
3.3.2. Symbols and Variables of the Proposed Model
3.3.3. Mathematical Model of the Problem
4. Proposed Algorithm for Solving the Problem
4.1. Determining the Initial Solution Set to Start the Solution Process
4.2. Evaluation of the Suitability of the Solution Set Based on Objective Functions
4.3. Determining the Pareto Solution Set of the Problem
4.4. Determining the Fitness Function and Calculating the Probability of Selecting Each of the Parent Chromosomes
4.5. Checking the Convergence Condition of the Algorithm
4.6. Generation of a New Generation
4.7. Transferring Archive Responses to the New Generation
4.8. Determining the Overall Optimal Solution Set for the Problem
5. Data Analysis
- Feed Grains Database by the USDA Economic Research Service [141]: This database provides comprehensive statistics on feed grains such as corn and barley, which are essential for understanding agricultural economics across various regions.
- Global Yield Gap Atlas [142]: This source offers yield gap data for crops such as wheat, barley, rice, and corn across different global regions, facilitating a comprehensive analysis of agricultural productivity and highlighting areas where optimization can be achieved.
- World Bank Commodity Price Data [143]: Historical monthly prices for key commodities such as rice, barley, maize (corn), and wheat are crucial for understanding market fluctuations, which play a significant role in optimizing cost and quality in agricultural projects.
- Enterprise budgets by The Ohio State University [144]: This dataset provides comprehensive production budgets for crops such as corn, soybeans, and wheat, offering essential information for evaluating the costs associated with agricultural production.
5.1. Sample Problem and Algorithm Parameter Setting
5.2. Analysis of the Output Results and Figures
6. Discussion and Conclusions
7. Limitations and Future Studies
7.1. Regional and Crop-Specific Optimization Models
7.2. Socioeconomic and Policy Analysis
7.3. Optimization of Post-Harvest Operations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Itoh, T.; Ishii, H.; Nanseki, T. A model of crop planning under uncertainty in agricultural management. Int. J. Prod. Econ. 2003, 81, 555–558. [Google Scholar] [CrossRef]
- Gao, Y.; Li, W.; Zhang, S. Sustainable agricultural practices through machine learning and fuzzy logic-based decision support systems. Sustainability 2021, 13, 5071. [Google Scholar] [CrossRef]
- Kaur, S.; Thakur, M.; Padda, A. Fuzzy-genetic algorithm integration for optimizing pest management strategies in agriculture. Comput. Electron. Agric. 2019, 162, 328–338. [Google Scholar] [CrossRef]
- Getahun, S.; Kefale, H.; Gelaye, Y. Application of precision agriculture technologies for sustainable crop production and environmental sustainability: A systematic review. Sci. World J. 2024, 2024, 2126734. [Google Scholar] [CrossRef]
- Padhiary, M.; Saha, D.; Kumar, R.; Sethi, L.N.; Kumar, A. Enhancing precision agriculture: A comprehensive review of machine learning and AI vision applications in all-terrain vehicle for farm automation. Smart Agric. Technol. 2024, 8, 100483. [Google Scholar] [CrossRef]
- Pourjafar, M.; Mazloomzadeh, M. Application of Fuzzy Logic in Agricultural Systems: A Review. IRA-Int. J. Appl. Sci. 2017, 8, 73. [Google Scholar] [CrossRef]
- Song, X. Research on genetic algorithm optimization for agricultural machinery operation path planning. Appl. Math. Nonlinear Sci. 2024, 9, 1–17. [Google Scholar] [CrossRef]
- Lampridi, M.G.; Sørensen, C.G.; Bochtis, D. Agricultural Sustainability: A Review of Concepts and Methods. Sustainability 2019, 11, 5120. [Google Scholar] [CrossRef]
- Elbasi, E.; Mostafa, N.; Zaki, C.; AlArnaout, Z.; Topcu, A.E.; Saker, L. Optimizing agricultural data analysis techniques through AI-powered decision-making processes. Appl. Sci. 2024, 14, 8018. [Google Scholar] [CrossRef]
- Neranjan, N.T.; Yassin, H.; Saifullah, M.A.B.; Abas, P.E. Internet of Things in Smart Agriculture: Challenges, Opportunities and Future Directions. In Proceedings of the IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE), Brisbane, Australia, 8–10 December 2021. [Google Scholar] [CrossRef]
- Kutyauripo, I.; Rushambwa, M.; Chiwazi, L. Artificial intelligence applications in the agrifood sectors. J. Agric. Food Res. 2023, 11, 100502. [Google Scholar] [CrossRef]
- Osinga, S.A.; Paudel, D.; Mouzakitis, S.A.; Athanasiadis, I.N. Big data in agriculture: Between opportunity and solution. Agric. Syst. 2022, 195, 103298. [Google Scholar] [CrossRef]
- Ge, F.; Zhu, S.; Luo, H.; Zhi, X.; Wang, H. Future changes in precipitation extremes over Southeast Asia: Insights from CMIP6 multi-model ensemble. Environ. Res. Lett. 2021, 16, 024013. [Google Scholar] [CrossRef]
- Caicedo Solano, N.E.; García Llinás, G.A.; Montoya-Torres, J.R. Operational model for minimizing costs in agricultural production systems. Comput. Electron. Agric. 2022, 197, 106932. [Google Scholar] [CrossRef]
- Prykina, L.; Belyantseva, O.; Serebryakova, E. Assessing construction costs for agricultural facilities: Organizational and technological strategies. BIO Web Conf. 2024, 93, 03025. [Google Scholar] [CrossRef]
- Schimmelpfennig, D.; Ebel, R. Sequential Adoption and Cost Savings from Precision Agriculture. J. Agric. Resour. Econ. 2016, 41, 97–115. [Google Scholar] [CrossRef]
- Medici, M.; Pedersen, S.M.; Canavari, M.; Anken, T.; Stamatelopoulos, P.; Tsiropoulos, Z.; Zotos, A.; Tohidloo, G. A web-tool for calculating the economic performance of precision agriculture technology. Comput. Electron. Agric. 2021, 181, 105930. [Google Scholar] [CrossRef]
- Okpala, C.O.R.; Korzeniowska, M. Understanding the relevance of quality management in agro-food product industry: From ethical considerations to assuring food hygiene quality safety standards and its associated processes. Food Rev. Int. 2021, 39, 1879–1952. [Google Scholar] [CrossRef]
- Shaari, S.A.; Asyikin, N.; Radzi, M.; Shaaya, S.A.; Azmi, K.H.M.; Azhar, N.A.; Shahruddin, S.A. Recent Trends in Precision Agriculture: Applications & Challenges in Precision Farming. Int. Trans. J. Eng. Manag. Appl. Sci. Technol. 2024, 15, 1–24. [Google Scholar] [CrossRef]
- Rane, J.; Kaya, Ö.; Mallick, S.K.; Rane, N. Smart farming using artificial intelligence, machine learning, deep learning, and ChatGPT: Applications, opportunities, challenges, and future directions. In Generative Artificial Intelligence in Agriculture, Education, and Business; Deep Science Publishing: San Francisco, CA, USA, 2024; pp. 218–272. [Google Scholar] [CrossRef]
- Assimakopoulos, F.; Vassilakis, C.; Margaris, D.; Kotis, K.; Spiliotopoulos, D. Artificial intelligence tools for the agriculture value chain: Status and prospects. Electronics 2024, 13, 4362. [Google Scholar] [CrossRef]
- Babenko, V.A.; Onegina, V.; Kravchenko, Y.; Vitkovskyi, Y.; Anisimova, O. Management of Product Quality and competitiveness of Agricultural Enterprises in the Context of International Integration. Int. J. Inf. Technol. Proj. Manag. 2022, 13, 1–14. [Google Scholar] [CrossRef]
- Tian, H.; Lu, C.; Pan, S.; Yang, J.; Miao, R.; Ren, W.; Yu, Q.; Fu, B.; Jin, F.-F.; Lu, Y.; et al. Optimizing resource use efficiencies in the food–energy–water nexus for sustainable agriculture: From conceptual model to decision support system. Curr. Opin. Environ. Sustain. 2018, 33, 104–113. [Google Scholar] [CrossRef]
- Petrescu, D.C.; Vermeir, I.; Petrescu-Mag, R.M. Consumer understanding of food quality, healthiness, and environmental impact: A cross-national perspective. Int. J. Environ. Res. Public Health 2019, 17, 169. [Google Scholar] [CrossRef]
- Theuvsen, L.; Spiller, A. Determinants and methods of quality management in agriculture and food processing. In Quality Management in Food Chains; Theuvsen, L., Spiller, A., Peupert, M., Jahn, G., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2007; pp. 13–19. [Google Scholar] [CrossRef]
- Manos, B.; Chatzinikolaou, P.; Kiomourtzi, F. Sustainable Optimization of Agricultural Production. APCBEE Procedia 2013, 5, 410–415. [Google Scholar] [CrossRef]
- Pan, X.; Chen, J. The optimization path of agricultural industry structure and intelligent transformation by deep learning. Sci. Rep. 2024, 14, 29548. [Google Scholar] [CrossRef]
- Banerjee, K.; Dutta, S.; Das, S.; Sadhukhan, R. Crop simulation models as decision tools to enhance agricultural system productivity and sustainability: A critical review. Technol. Agron. 2025, 5, e002. [Google Scholar] [CrossRef]
- Bagavathiannan, M.V.; Beckie, H.J.; Chantre, G.R.; Gonzalez-Andujar, J.L.; Leon, R.G.; Neve, P.; Poggio, S.L.; Schutte, B.J.; Somerville, G.J.; Werle, R.; et al. Simulation models on the ecology and management of arable weeds: Structure, quantitative insights, and applications. Agronomy 2020, 10, 1611. [Google Scholar] [CrossRef]
- Saiz-Rubio, V.; Rovira-Más, F. From smart farming towards agriculture 5.0: A review on crop data management. Agronomy 2020, 10, 207. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Thomopoulos, V.; Tolis, F.; Blounas, T.-F.; Tsipianitis, D.; Kavga, A. Application of fuzzy logic and IoT in a small-scale smart greenhouse system. Smart Agric. Technol. 2024, 8, 100446. [Google Scholar] [CrossRef]
- Bin, L.; Shahzad, M.; Khan, H.; Bashir, M.M.; Ullah, A.; Siddique, M. Sustainable smart agriculture farming for cotton crop: A fuzzy logic rule-based methodology. Sustainability 2023, 15, 13874. [Google Scholar] [CrossRef]
- Prabakaran, G.; Vaithiyanathan, D.; Ganesan, M. Fuzzy decision support system for improving the crop productivity and efficient use of fertilizers. Comput. Electron. Agric. 2018, 150, 88–97. [Google Scholar] [CrossRef]
- Abdullah, N.; Durani, N.A.B.; Shari, M.F.B.; Soon, S.K. Towards smart agriculture monitoring using fuzzy systems. IEEE Access 2020, 9, 4097–4111. [Google Scholar] [CrossRef]
- Amalia, A.F.; Rahayu, H.S.P.; Rahardjo, Y.P.; Hutahaean, L.; Rohaeni, E.S.; Indrawanto, C.; Saptati, R.A.; Siagian, V.; Waris, A. Artificial intelligence for small hydroponics farms employing fuzzy logic systems and economic analysis. Rev. Bras. Eng. Agrícola Ambient. 2023, 27, 690–697. [Google Scholar] [CrossRef]
- Kumar, A.; Bewerwal, A.; Vikas; Srivastava, D.; Jain, S. An intelligent yield prediction of crops in smart agriculture management using enhanced fuzzy based AI framework. In Proceedings of the 2024 2nd International Conference on Disruptive Technologies (ICDT), Greater Noida, India, 15–16 March 2024; IEEE: New York, NY, USA, 2024. [Google Scholar] [CrossRef]
- Kurniasih, D.; Jasmi, K.A.; Basiron, B.; Huda, M.; Maseleno, A. The uses of fuzzy logic method for finding agriculture and livestock value of potential village. Int. J. Eng. Technol. 2018, 7, 1091–1095. [Google Scholar] [CrossRef]
- Kaida, A.; El Afou, Y.; Ait Msaad, A.; Ait Dada, A. Development of a fuzzy logic controller for microclimate regulation under an agricultural greenhouse based on a state-space model approach. SSRN 2025. [CrossRef]
- Goldberg, D.E.; Holland, J.H. Genetic Algorithms and Machine Learning: Editorial commentary. Mach. Learn. 1988, 3, 95–99. Available online: https://link.springer.com/article/10.1023/A:1022602019183 (accessed on 30 January 2025). [CrossRef]
- Mahmud, T.; Datta, N.; Chakma, R.; Das, U.K.; Aziz, M.T.; Islam, M.; Salimullah, A.H.M.; Hossain, M.S.; Andersson, K. An approach for crop prediction in agriculture: Integrating genetic algorithms and machine learning. IEEE Access 2024, 12, 12345–12358. [Google Scholar] [CrossRef]
- Barzola, P.D.; Baños, E.H.; Baños, L.H.; Moreira, W.M. Review of genetic algorithms applied to agriculture. In Proceedings of the 2024 International Conference on Electrical, Computer and Energy Technologies (ICECET), Sydney, Australia, 25–27 July 2024; IEEE: New York, NY, USA, 2024. [Google Scholar] [CrossRef]
- Inceyol, Y.; Cay, T. Comparison of traditional method and genetic algorithm optimization in the land reallocation stage of land consolidation. Land Use Policy 2022, 115, 105989. [Google Scholar] [CrossRef]
- Sun, J.; Jiang, T.; Song, Y.; Guo, H.; Zhang, Y. Research on the optimization of fresh agricultural products trade distribution path based on genetic algorithm. Agriculture 2022, 12, 1669. [Google Scholar] [CrossRef]
- Dai, C.; Yao, M.; Xie, Z.; Chen, C.; Liu, J. Parameter optimization for growth model of greenhouse crop using genetic algorithms. Appl. Soft Comput. 2009, 9, 13–19. [Google Scholar] [CrossRef]
- Drachal, K.; Pawłowski, M. A review of the applications of genetic algorithms to forecasting prices of commodities. Economies 2021, 9, 6. [Google Scholar] [CrossRef]
- Bayrakdaroglu, A.; Yalcin, N. A fuzzy multi-criteria evaluation of the operational risk factors for the state-owned and privately-owned commercial banks in Turkey. Hum. Ecol. Risk Assess. 2013, 19, 443–461. [Google Scholar] [CrossRef]
- Huang, Y.; Lan, Y.; Thomson, S.J.; Fang, A.; Hoffmann, W.C.; Lacey, R.E. Development of soft computing and applications in agricultural and biological engineering. Comput. Electron. Agric. 2010, 71, 107–127. [Google Scholar] [CrossRef]
- Saridakis, K.M.; Dentsoras, A.J. Integration of fuzzy logic, genetic algorithms, and neural networks in collaborative parametric design. Adv. Eng. Inform. 2006, 20, 379–399. [Google Scholar] [CrossRef]
- Chin, T.C.; Qi, X.M. Genetic algorithms for learning the rule base of fuzzy logic controller. Fuzzy Sets Syst. 1998, 97, 1–7. [Google Scholar] [CrossRef]
- Lee, I.; Koochakzadeh, N.; Kianmehr, K.; Alhajj, R. Integrating genetic algorithms and fuzzy logic for web structure optimization. In Data Mining for Social Network Data; Memon, N., Xu, J., Hicks, D., Chen, H., Eds.; Springer: Berlin/Heidelberg, Germany; pp. 201–215. [CrossRef]
- McClintock, S.; Lunney, T.; Hashim, A. Using fuzzy logic to optimize genetic algorithm performance. In Proceedings of the IEEE International Conference on Intelligent Engineering Systems, Budapest, Hungary, 15–17 September 1997; IEEE: New York, NY, USA, 1997. [Google Scholar] [CrossRef]
- Ganji, F. Evaluating influence of financial statements correspondence with national standards in auditors’ performance and reliability of reports. SSRN Electron. J. 2024. [Google Scholar] [CrossRef]
- Wang, C.-H.; Hong, T.-P.; Tseng, S.-S. Integrating fuzzy knowledge by genetic algorithms. IEEE Trans. Evol. Comput. 1998, 2, 138–149. [Google Scholar] [CrossRef]
- Ganji, F. Sustainable and ethical AI in finance: Developing green shark algorithms for eco-friendly trading. UJRRA 2024, 3, 232–246. [Google Scholar] [CrossRef]
- Wilke, P.; Billing, G.; Mansfeld, C.; Nilson, J. Integration of genetic algorithms and fuzzy logic into a neural network simulation environment. In MASCOTS ‘95: Proceedings of the Third International Workshop on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Durham, NC, USA, 18–20 January 1995; IEEE: New York, NY, USA, 1995. [Google Scholar] [CrossRef]
- Begum, M.; Mann, G.K.I.; Gosine, R.G. Integrated fuzzy logic and genetic algorithmic approach for simultaneous localization and mapping of mobile robots. Appl. Soft Comput. 2008, 8, 150–165. [Google Scholar] [CrossRef]
- MATLAB. Fuzzy Logic Toolbox™ User’s Guide. MathWorks. 2024. Available online: https://www.mathworks.com/help/fuzzy/index.html (accessed on 10 January 2025).
- MATLAB. Global Optimization Toolbox™ User’s Guide. MathWorks. 2024. Available online: https://www.mathworks.com/help/gads/index.html (accessed on 10 January 2025).
- Cho, S.-B.; Lee, S.-I. Hybrid Evolutionary Learning of Fuzzy Logic and Genetic Algorithm. In Proceedings of the Simulated Evolution and Learning, First Asia-Pacific Conference, SEAL’96, Taejon, Korea, 9–12 November 1996. [Google Scholar] [CrossRef]
- Muhamediyeva, D.T.; Safarova, L.U.; Umarov, D.I. Application of a genetic algorithm in solving problems of environmental protection in agro-industrial production. In Proceedings of the II International Scientific and Practical Conference “Energy, Ecology and Technology in Agriculture” (EEA2023), Dushanbe, Tajikistan, 11–13 December 2023. [Google Scholar] [CrossRef]
- Barons, M.J.; Walsh, L.E.; Salakpi, E.E.; Nichols, L. A Decision Support System for Sustainable Agriculture and Food Loss Reduction under Uncertain Agricultural Policy Frameworks. Agriculture 2024, 14, 458. [Google Scholar] [CrossRef]
- Syzonov, O.; Tomasiello, S.; Capuano, N. New Insights into Fuzzy Genetic Algorithms for Optimization Problems. Algorithms 2024, 17, 549. [Google Scholar] [CrossRef]
- Dubois, J.D.; Prade, H. Fuzzy Sets and Systems: Theory and Applications; Academic Press: New York, NY, USA, 1997. [Google Scholar]
- Tamir, D.E.; Rishe, N.D.; Kandel, A. Fifty Years of Fuzzy Logic and Its Applications; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Bekri, E.; Disse, M.; Yannopoulos, P. Optimizing Water Allocation under Uncertain System Conditions for Water and Agriculture Future Scenarios in Alfeios River Basin (Greece)—Part B: Fuzzy-Boundary Intervals Combined with Multi-Stage Stochastic Programming Model. Water 2015, 7, 6427–6466. [Google Scholar] [CrossRef]
- Hasan, I.; Srivastava, A.; Khan, Z.R.; Rizvi, S.A.M. A Novel Fuzzy Inference-based decision support system for crop water optimization. Oper. Res. Forum 2023, 4, 38. Available online: https://link.springer.com/article/10.1007/s43069-023-00199-3 (accessed on 1 February 2025).
- Tuncel, G.; Gunturk, B. A Fuzzy Multi-Criteria Decision-Making Approach for Agricultural Land Selection. Sustainability 2024, 16, 10509. [Google Scholar] [CrossRef]
- Ross, T.J. Fuzzy Logic with Engineering Applications; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Negnevitsky, M. Artificial Intelligence: A Guide to Intelligent Systems; Addison-Wesley: Boston, MA, USA, 2005. [Google Scholar]
- Zandi, P.; Rahmani, M.; Khanian, M.; Mosavi, A. Agricultural Risk Management Using Fuzzy TOPSIS Analytical Hierarchy Process (AHP) and Failure Mode and Effects Analysis (FMEA). Agriculture 2020, 10, 504. [Google Scholar] [CrossRef]
- Osuch, A.; Osuch, E.; Rybacki, P.; Przygodziński, P.; Kozłowski, R.; Przybylak, A. A Decision Support Method for Choosing an Agricultural Machinery Service Workshop Based on Fuzzy Logic. Agriculture 2020, 10, 76. [Google Scholar] [CrossRef]
- Hernandez-Julio, Y.F.; Ferraz, P.F.P.; Junior, T.Y.; Ferraz, G.A.e.S.; Barbari, M.; Nieto-Bernal, W. Fuzzy-genetic approaches to knowledge discovery and decision making: Estimation of the cloacal temperature of chicks exposed to different thermal conditions. Biosyst. Eng. 2020, 199, 109–120. [Google Scholar] [CrossRef]
- Sher, A.; Amir, I. Optimization with fuzzy constraints in agricultural production planning. Agric. Syst. 1994, 4, 421–441. [Google Scholar] [CrossRef]
- Li, J.; Jiao, X.; Jiang, H.; Song, J.; Chen, L. Optimization of Irrigation Scheduling for Maize in an Arid Oasis Based on Simulation–Optimization Model. Agronomy 2020, 10, 935. [Google Scholar] [CrossRef]
- Xiao, D.; Bai, H.; Liu, D.L. Impact of Future Climate Change on Wheat Production: A Simulated Case for China’s Wheat System. Sustainability 2018, 10, 1277. [Google Scholar] [CrossRef]
- Rosa, J.M.D.L.; Conesa, M.R.; Domingo, R.; Aguayo, E.; Falagan, N.; Perez-Pastar, A. Combined effects of deficit irrigation and crop level on early nectarine trees. Agric. Water Manag. 2016, 170, 120–132. [Google Scholar] [CrossRef]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, J.; Singh, O.P.; Seema. A fuzzy logic based decision support system for evaluation of suppliers in supply chain management practices. Math. Comput. Model. 2013, 58, 1679–1695. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; University of Michigan Press: Ann Arbor, MI, USA, 1975. [Google Scholar] [CrossRef]
- Jose, S.; Vijayalakshmi, C. Design and analysis of multi-objective optimization problem using evolutionary algorithms. Procedia Comput. Sci. 2020, 172, 869–899. [Google Scholar] [CrossRef]
- Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar] [CrossRef]
- Sivanandam, S.N.; Deepa, S.N. Introduction to Genetic Algorithms; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Wiegmann, M.; Maurer, A.; Pham, A.; March, T.J.; Al-Abdallat, A.; Thomas, W.T.B.; Bull, H.J.; Shahid, M.; Eglinton, J.; Baum, M.; et al. Barley yield formation under abiotic stress depends on the interplay between flowering time genes and environmental cues. Sci. Rep. 2019, 9, 6397. [Google Scholar] [CrossRef]
- Balderacchi, A.M.; Barzon, V.; Ottaviani, S.; Corino, A.; Zorzetto, M.; Wencker, M.; Corsico, A.G.; Ferrarotti, I. Comparison of different algorithms in laboratory diagnosis of Alpha1-antitrpsin deficiency. Clin. Chem. Lab. Med. 2021, 59, 1281–1289. [Google Scholar] [CrossRef]
- González Perea, R.; Moreno, M.A.; Buono da Silva Baptista, V.; Córcoles, J.I. Decision support system based on genetic algorithms to optimize the daily management of water abstraction from multiple groundwater supply sources. Water Resour. Manag. 2020, 35, 4739–4755. [Google Scholar] [CrossRef]
- Konak, A.; Coit, D.W.; Smith, A. Multi-objective optimization using genetic algorithms: A tutorial. Reliab. Eng. Syst. Saf. 2006, 91, 992–1007. [Google Scholar] [CrossRef]
- Mousapour Mamoudan, M.; Jafari, A.; Mohammadnazari, Z.; Nasiri, M.M.; Yazdani, M. Hybrid machine learning-metaheuristic model for sustainable agri-food production and supply chain planning under water scarcity. Resour. Environ. Sustain. 2023, 14, 100133. [Google Scholar] [CrossRef]
- Du, J.; Liu, R.; Cheng, D.; Wang, X.; Zhang, T.; Yu, F. Enhancing NSGA-II algorithm through hybrid strategy for optimizing maize water and fertilizer irrigation simulation. Symmetry 2024, 16, 1062. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture 2019: Moving Forward on Food Loss and Waste Reduction; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019; Available online: https://www.fao.org/family-farming/detail/en/c/1245425/ (accessed on 10 February 2025).
- Grassini, P.; Bussel, L.G.V.; Wart, J.V.; Wolf, J.; Claessens, L.; Yang, H.; Boogaard, H.; Groot, H.d.; Ittersum, M.K.v.; Cassman, K.G. How good is good enough? Data requirements for reliable crop yield simulations and yield-gap analysis. Field Crops Res. 2015, 177, 49–63. [Google Scholar] [CrossRef]
- Sharafi, S.; Kazemi, A.; Amiri, Z. Estimating energy consumption and GHG emissions in crop production: A machine learning approach. J. Clean. Prod. 2023, 408, 137242. [Google Scholar] [CrossRef]
- Wu, Q.; Nie, Y.; Wang, S.; Zhang, S.; Wang, T.; Huang, Y. Real-time optimization improved model predictive control trajectory tracking for a surface and underwater joint observation system based on genetic algorithm–fuzzy control. Remote Sens. 2025, 17, 925. [Google Scholar] [CrossRef]
- Hassna, B.; Mahmood, F.; Namany, S.; Elomri, A.; Al-Ansari, T. Optimizing Qatar’s food import resilience: A multi-objective framework integrating water requirement variability for key crops. Sustainability 2025, 17, 2025. [Google Scholar] [CrossRef]
- Soni, P.D.; Hartman, H.E.; Dess, R.T.; Abugharib, A.; Allen, S.G.; Feng, F.Y.; Zietman, A.L.; Jagsi, R.; Schipper, M.J.; Spratt, D.E. Comparison of Population-Based Observational Studies with Randomized Trials in Oncology. J. Clin. Oncol. 2019, 37, 1209–1216. [Google Scholar] [CrossRef]
- Tao, F.; Yokozawa, M. Modelling the impacts of weather and climate variability on crop productivity over a large area: A new process-based model development, optimization, and uncertainties analysis. Agric. For. Meteorol. 2009, 149, 831–850. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K.Y.; Chung, S.T.; Costa, E.; Courville, A.; Darcey, V.; et al. Ultra-processed diets cause excess calorie intake and weight gain: An inpatient randomized controlled trial of ad libitum food intake. Cell Metab. 2019, 30, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.; Luo, S.; Xu, Y.; Zhang, P.; Sun, Z.; Hu, K.; Li, M. Optimization of irrigation and fertilization in maize–soybean system based on coupled water–carbon–nitrogen interactions. Agronomy 2025, 15, 41. [Google Scholar] [CrossRef]
- Liu, D.; Huang, O.; Yang, Y.; Liu, D.; Wei, X. Bi-objective algorithm based on NSGA-II framework to optimize reservoirs operation. J. Hydrol. 2020, 585, 124830. [Google Scholar] [CrossRef]
- Baron, L.; Achiche, S.; Balazinski, M. Fuzzy decision support system knowledge base generation using a genetic algorithm. Int. J. Approx. Reason. 2001, 28, 125–148. [Google Scholar] [CrossRef]
- Botero-Valencia, J.; García-Pineda, V.; Valencia-Arias, A.; Valencia, J.; Reyes-Vera, E.; Mejia-Herrera, M.; Hernández-García, R. Machine learning in sustainable agriculture: Systematic review and research perspectives. Agriculture 2025, 15, 377. [Google Scholar] [CrossRef]
- Vats, T.; Mehra, S.; Madan, U.; Chhabra, A.; Sharma, A.; Chhabra, K.; Singh, S.; Chauhan, U. Neuro RF FarmSense: IoT-fueled precision agriculture transformed for superior crop care. Int. J. Cogn. Comput. Eng. 2024, 5, 425–435. [Google Scholar] [CrossRef]
- United Nations. Sustainable Development Goals; United Nations: Rome, Italy, 2015; Available online: https://sdgs.un.org/goals (accessed on 10 January 2025).
- Rockström, J.; Steffen, W.; Noone, K.J.; Persson, Å. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Tilman, A.R.; Plotkin, J.B.; Akçay, E. Evolutionary games with environmental feedbacks. Nat. Commun. 2020, 11, 915. [Google Scholar] [CrossRef]
- Farhan, S.M.; Yin, J.; Chen, Z.; Memon, M.S. A comprehensive review of LiDAR applications in crop management for precision agriculture. Sensors 2024, 24, 5409. [Google Scholar] [CrossRef]
- Sanyaolu, M.; Sadowski, A. The role of precision agriculture technologies in enhancing sustainable agriculture. Sustainability 2024, 16, 6668. [Google Scholar] [CrossRef]
- Lobell, D.B. The use of satellite data for crop yield gap analysis. Field Crops Res. 2013, 143, 56–64. [Google Scholar] [CrossRef]
- Yuan, X.; Li, S.; Chen, J.; Yu, H. Impacts of global climate change on agricultural production: A comprehensive review. Agronomy 2024, 14, 1360. [Google Scholar] [CrossRef]
- Yun, N.Y.; Ülkü, M.A. Sustainable supply chain risk management in a climate-changed world: Review of extant literature, trend analysis, and guiding framework for future research. Sustainability 2023, 15, 13199. [Google Scholar] [CrossRef]
- Khalili-Fard, A.; Parsaee, S.; Bakhshi, A.; Yazdani, M.; Aghsami, A.; Rabbani, M. Multi-objective optimization of closed-loop supply chains to achieve sustainable development goals in uncertain environments. Eng. Appl. Artif. Intell. 2024, 133, 108052. [Google Scholar] [CrossRef]
- Kucuk, E.; Camgöz-Akdağ, H. Fuzzy integration into sustainability review. World Rev. Entrep. Manag. Sustain. Dev. 2024, 20, 716–754. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; Adaptive Computation and Machine Learning Series; MIT Press: Cambridge, MA, USA, 2016; p. 196. [Google Scholar]
- Xing, Y.; Wang, X. Impact of agricultural activities on climate change: A review of greenhouse gas emission patterns in field crop systems. Plants 2024, 13, 2285. [Google Scholar] [CrossRef]
- Müller, M.; Rios, A.; Sennrich, R. Domain Robustness in Neural Machine Translation. In Proceedings of the 14th Conference of the Association for Machine Translation in the Americas, Association for Machine Translation in the Americas, Online, 6–9 October 2020; pp. 151–164. Available online: https://aclanthology.org/2020.amta-research.14/ (accessed on 10 January 2025).
- Gholizadeh, H.; Fazlollahtabar, H.; Khalilzadeh, M. A robust fuzzy stochastic programming for sustainable procurement and logistics under hybrid uncertainty using big data. J. Clean. Prod. 2020, 258, 120640. [Google Scholar] [CrossRef]
- Qu, C.; Kim, E. Reviewing the roles of AI-integrated technologies in sustainable supply chain management: Research propositions and a framework for future directions. Sustainability 2024, 16, 6186. [Google Scholar] [CrossRef]
- Chen, W.; Men, Y.; Fuster, N.; Osorio, C.; Juan, A.A. Artificial intelligence in logistics optimization with sustainable criteria: A review. Sustainability 2024, 16, 9145. [Google Scholar] [CrossRef]
- Ukoba, K.U.; Olatunji, K.O.; Madyira, D.M. Optimizing renewable energy systems through artificial intelligence: Review and future prospects. Proc. Inst. Mech. Eng. Part A J. Power Energy 2024, 35, 3833–3879. [Google Scholar] [CrossRef]
- Foroutan, E.; Delavar, M.R.; Nadjar Araabi, B. Integration of genetic algorithms and fuzzy logic for urban growth modeling. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, I-2, 69–74. [Google Scholar] [CrossRef]
- Azizan, F.L.; Sathasivam, S.; Ali, M.K.M.; Roslan, N.; Feng, C. Hybridised network of fuzzy logic and a genetic algorithm in solving 3-satisfiability Hopfield neural networks. Axioms 2023, 12, 250. [Google Scholar] [CrossRef]
- Kacprzyk, J.; Pedrycz, W. Springer Handbook of Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2015; Available online: https://link.springer.com/book/10.1007/978-3-662-43505-2 (accessed on 2 February 2025).
- Lee, T.Y.; Reza, M.N.; Chung, S.-O.; Kim, D.U. Application of fuzzy logics for smart agriculture: A review. Precis. Agric. Sci. Technol. 2023, 5, 1–14. [Google Scholar] [CrossRef]
- Fuzzy Inference System. In Renewable and Sustainable Energy Reviews. Available online: https://www.sciencedirect.com/topics/engineering/fuzzy-inference-system (accessed on 1 January 2025).
- Bodenhofer, U. Genetic Algorithms: Theory and Applications; Technical Report SCCH-TR-0019; Software Competence Center: Hagenberg, Austria, 2008; Available online: https://www.researchgate.net/profile/Ulrich-Bodenhofer/publication/200048792_Genetic_Algorithms_Theory_and_Applications/links/09e4150bde4941a0e4000000/Genetic-Algorithms-Theory-and-Applications.pdf (accessed on 3 February 2025).
- Wikipedia, Fitness Function. Available online: https://en.wikipedia.org/wiki/Fitness_function (accessed on 10 January 2025).
- Azevedo, B.F.; Rocha, A.M.A.C.; Pereira, A.I. Hybrid Approaches to Optimization and Machine Learning Methods: A Systematic Literature Review; Springer Nature: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Pareto Solutions Set 2014. Available online: https://www.sciencedirect.com/topics/engineering/pareto-set (accessed on 10 January 2025).
- Sharma, A. Fuzzy multi-objective genetic algorithm based resource constrained time-cost trade-off model under uncertain environment. Int. J. Res. Appl. Sci. Eng. Technol. 2021, 9, 1126–1133. [Google Scholar] [CrossRef]
- Wang, H.; Lin, D.; Li, M. A genetic algorithm for solving fuzzy resource-constrained project scheduling. In Advances in Natural Computation; Springer: Berlin/Heidelberg, Germany, 2005; pp. 171–180. [Google Scholar] [CrossRef]
- Nixon, J.B.; Dandy, G.C.; Simpson, A.R. A genetic algorithm for optimizing off–farm irrigation scheduling. J. Hydroinformatics 2001, 3, 11–22. [Google Scholar] [CrossRef]
- Liang, X. Linear programming approach in agricultural production-land allocation. In Proceedings of the 6th International Conference on Economic Management and Green Development, Online, 6–12 August 2022; Springer: Berlin/Heidelberg, Germany, 2023; pp. 697–705. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Pratap, A.; Agarwal, S.; Meyarivan, T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Orujov, F.; Maskeliūnas, R.; Damaševičius, R.; Wei, W.; Li, Y. Smartphone based intelligent indoor positioning using fuzzy logic. Future Gener. Comput. Syst. 2018, 89, 335–348. [Google Scholar] [CrossRef]
- Non-Dominate Solution. Available online: https://www.sciencedirect.com/topics/engineering/nondominated-solution#:~:text=A%20nondominated%20solution%20is%20one,other%20objectives%20of%20the%20VMP (accessed on 1 February 2025).
- Akbari, M.; Asadi, P.; Besharati Givi, M.K.; Khodabandehlouie, G. Artificial neural network and optimization. In Advances in Friction-Stir Welding and Processing; Woodhead Publishing: Cambridge, UK, 2014; pp. 543–599. Available online: https://www.sciencedirect.com/science/article/abs/pii/B9780857094544500136?via%3Dihub (accessed on 9 February 2025).
- Haque, K.M.A.; Hasin, M.A.A. Genetic algorithm for project time-cost optimization in fuzzy environment. J. Ind. Eng. Manag. 2012, 5, 364–381. [Google Scholar] [CrossRef]
- Luan, C.; Liu, R.; Zhang, Q.; Sun, J.; Liu, J. Multi-objective land use optimization based on integrated NSGA–II–PLUS model: Comprehensive consideration of economic development and ecosystem services value enhancement. J. Clean. Prod. 2024, 434, 140306. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, Y.; Yang, J.; Li, D.; Wang, Y.; Zhao, R. Many-objective evolutionary algorithm based agricultural mobile robot route planning. Comput. Electron. Agric. 2022, 200, 107274. [Google Scholar] [CrossRef]
- ERS. Available online: https://www.ers.usda.gov/data-products/feed-grains-database/feed-grains-yearbook-tables/ (accessed on 10 January 2025).
- GYGA. Available online: https://www.yieldgap.org/coverage-and-data-download (accessed on 10 January 2025).
- WBCPD. Available online: https://www.worldbank.org/en/research/commodity-markets (accessed on 10 January 2025).
- CFAES. Available online: https://farmoffice.osu.edu/farm-management/enterprise-budgets (accessed on 10 January 2025).
- Taghipoorreyneh, M. Mixed Method Sand the Delphi Method. Available online: https://www.sciencedirect.com/topics/social-sciences/delphi-method (accessed on 10 January 2025).
- Forest, T.; Portalier, S.; Steux, C.; Sackton, T.B.; Achaz, G. PopSize, a snpArcher module for 2 population size change inference. Hal Open Sci. 2024, Hal Id, hal-04599797. Available online: https://hal.science/hal-04599797v1 (accessed on 20 January 2025).
- Francisco, S.M.; Knutsen, H.; Jorde, P.E.; Robalo, J.I.; Pereira, A.M. POPSIZE—Estimating Effective Population Size in Populations of Marine Fish: An Approach Using Interannual Fluctuations of the Genetic Composition. Final Report ICES Science Fund. 2016. Available online: https://www.ices.dk/about-ICES/projects/Documents/Science%20Fund/07%20POPSIZE%20-%20final%20report%20Nov2016.pdf (accessed on 10 January 2025).
- Li, G.; Zhang, C.; Huo, Z. Reconciling crop production and ecological conservation under uncertainty: A fuzzy credibility-based multi-objective simulation-optimization model. Sci. Total Environ. 2023, 873, 162340. [Google Scholar] [CrossRef]
- Huang, F.; Mo, X.; Hu, S.; Li, L. Agricultural water optimization coupling with a distributed ecohydrological model in a mountain-plain basin. J. Hydrol. 2020, 590, 125336. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, J.; Chen, D.; Luo, Z.; Bi, B.; Lin, L.; Du, X.; Liu, Y.; Xia, Q. Optimizing terminal water management in irrigation district using water balance and genetic algorithm. Agronomy 2024, 14, 2987. [Google Scholar] [CrossRef]
- Saraswat, A.; Ram, S.; AbdelRahman, M.A.E.; Raza, M.B.; Golui, D.; HC, H.; Lawate, P.; Sharma, S.; Dash, A.K.; Scopa, A.; et al. Combining fuzzy, multicriteria and mapping techniques to assess soil fertility for agricultural development: A case study of Firozabad District, Uttar Pradesh, India. Land 2023, 12, 860. [Google Scholar] [CrossRef]
- Gong, L.; Yu, M.; Kollias, S. Optimizing crop yield and reducing energy consumption in greenhouse control using PSO-MPC algorithm. Algorithms 2023, 16, 243. [Google Scholar] [CrossRef]
- Gao, M.; Wei, C.; Zhao, X.; Huang, R.; Li, B.; Yang, J.; Gao, Y.; Liu, S.; Xiong, L. Intelligent optimization of gas flooding based on multi-objective approach for efficient reservoir management. Processes 2023, 11, 2226. [Google Scholar] [CrossRef]
- Sachithra, V.; Subhashini, L.D.C.S. How artificial intelligence is used to achieve agricultural sustainability: A systematic review. Artif. Intell. Agric. 2023, 8, 46–59. [Google Scholar] [CrossRef]
- Mondejar, M.E.; Avtar, R.; Baños Diaz, H.L.; Dubey, R.K.; Esteban, J.; Gómez-Morales, A.; Hallam, B.; Mbungu, N.T.; Okolo, C.C.; Prasad, K.A.; et al. Digitalization to achieve sustainable development goals: Steps towards a Smart Green Planet. Sci. Total Environ. 2021, 794, 148539. [Google Scholar] [CrossRef]
Fuzzy Logic System Formulas: | |
Membership Function for a Fuzzy Set: | sigmoid membership function defines the degree of membership of a variable in a fuzzy set : |
where : Membership degree of in fuzzy set . α: Sharpness parameter controlling the steepness of the curve. c: Center of the membership function where | |
Fuzzy Rules: | Rules in fuzzy systems are written as follows: |
An example in irrigation scheduling is as follows: If soil moisture is low and temperature is high, then irrigation need is high.
| |
where
|
Genetic Algorithm Formulas: | |
---|---|
| The fitness function evaluates a solution’s quality, considering the cost , time , and quality , as follows: |
where
| |
| The probability of selecting a solution based on its fitness is expressed as follows: |
where is the total number of solutions. | |
| For two parent solutions and , the offspring and are generated by single-point crossover at position , as follows: |
) | |
| For a gene in a solution, mutation introduces a small random change, expressed as follows: |
where is a random value sampled from a predefined range. |
Hybrid Optimization Model: | |
---|---|
Objective Function Combining Fuzzy Logic and GA | |
subject to constraints derived from fuzzy rules, e.g., | |
NO | Activity | Method | Activity Time | Activity Cost | Activity Quality | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Preliminary Study | 1 | 14 | 15 | 16 | 150,907,500 | 167,675,000 | 176,500,000 | 0.2 | 0.4 | 0.5 | 0.002 |
2 | 14 | 15 | 16 | 135,816,750 | 150,907,500 | 158,850,000 | 0.3 | 0.5 | 0.7 | |||
3 | 13 | 14 | 15 | 158,850,000 | 176,500,000 | 185,325,000 | 0.2 | 0.4 | 0.5 | |||
4 | 13 | 14 | 15 | 150,907,500 | 167,675,000 | 176,500,000 | 0.7 | 0.8 | 1 | |||
5 | 13 | 14 | 15 | 135,816,750 | 150,907,500 | 158,850,000 | 0.5 | 0.7 | 0.9 | |||
6 | 12 | 13 | 14 | 158,850,000 | 176,500,000 | 185,325,000 | 0.3 | 0.5 | 0.7 | |||
7 | 12 | 13 | 14 | 150,907,500 | 167,675,000 | 176,500,000 | 0.5 | 0.7 | 0.9 | |||
2 | Basic Engineering | 1 | 54 | 60 | 63 | 754,537,500 | 838,375,000 | 882,500,000 | 0.2 | 0.4 | 0.5 | 0.012 |
2 | 54 | 60 | 63 | 679,083,750 | 754,537,500 | 794,250,000 | 0.3 | 0.5 | 0.7 | |||
3 | 51 | 57 | 60 | 794,250,000 | 882,500,000 | 926,625,000 | 0.3 | 0.5 | 0.7 | |||
4 | 51 | 57 | 60 | 754,537,500 | 838,375,000 | 882,500,000 | 0.3 | 0.5 | 0.7 | |||
5 | 51 | 57 | 60 | 679,083,750 | 754,537,500 | 794,250,000 | 0.5 | 0.7 | 0.9 | |||
6 | 46 | 51 | 54 | 794,250,000 | 882,500,000 | 926,625,000 | 0.5 | 0.7 | 0.9 | |||
7 | 46 | 51 | 54 | 754,537,500 | 838,375,000 | 882,500,000 | 0.5 | 0.7 | 0.9 | |||
3 | Detail Engineering | 1 | 81 | 90 | 95 | 1,810,890,000 | 2,012,100,000 | 2,118,000,000 | 0.2 | 0.4 | 0.5 | 0.027 |
2 | 81 | 90 | 95 | 1,629,801,000 | 1,810,890,000 | 1,906,200,000 | 0.3 | 0.5 | 0.7 | |||
3 | 77 | 86 | 90 | 1,906,200,000 | 2,118,000,000 | 2,223,900,000 | 0.2 | 0.4 | 0.5 | |||
4 | 77 | 86 | 90 | 1,810,890,000 | 2,012,100,000 | 2,118,000,000 | 0.7 | 0.8 | 1 | |||
5 | 77 | 86 | 90 | 1,629,801,000 | 1,810,890,000 | 1,906,200,000 | 0.5 | 0.7 | 0.9 | |||
6 | 69 | 77 | 81 | 1,906,200,000 | 2,118,000,000 | 2,223,900,000 | 0.3 | 0.5 | 0.7 | |||
7 | 69 | 77 | 81 | 1,810,890,000 | 2,012,100,000 | 2,118,000,000 | 0.5 | 0.7 | 0.9 | |||
4 | PRQ. Eng. | 1 | 41 | 45 | 47 | 301,815,000 | 335,350,000 | 353,000,000 | 0.3 | 0.5 | 0.7 | 0.004 |
2 | 41 | 45 | 47 | 271,633,500 | 301,815,000 | 317,700,000 | 0.5 | 0.7 | 0.9 | |||
3 | 38 | 43 | 45 | 317,700,000 | 353,000,000 | 370,650,000 | 0.3 | 0.5 | 0.7 | |||
4 | 38 | 43 | 45 | 301,815,000 | 335,350,000 | 353,000,000 | 0.7 | 0.8 | 1 | |||
5 | 38 | 43 | 45 | 271,633,500 | 301,815,000 | 317,700,000 | 0.3 | 0.5 | 0.7 | |||
6 | 35 | 38 | 41 | 317,700,000 | 353,000,000 | 370,650,000 | 0.2 | 0.4 | 0.5 | |||
7 | 35 | 38 | 41 | 301,815,000 | 335,350,000 | 353,000,000 | 0.3 | 0.5 | 0.7 | |||
5 | PRQ. 1 | 1 | 41 | 45 | 47 | 804,768,750 | 894,187,500 | 941,250,000 | 0.3 | 0.5 | 0.7 | 0.008 |
2 | 41 | 45 | 47 | 724,291,875 | 804,768,750 | 847,125,000 | 0.3 | 0.5 | 0.7 | |||
3 | 38 | 43 | 45 | 847,125,000 | 941,250,000 | 988,312,500 | 0.2 | 0.4 | 0.5 | |||
4 | 38 | 43 | 45 | 804,768,750 | 894,187,500 | 941,250,000 | 0.7 | 0.8 | 1 | |||
5 | 38 | 43 | 45 | 724,291,875 | 804,768,750 | 847,125,000 | 0.5 | 0.7 | 0.9 | |||
6 | 35 | 38 | 41 | 847,125,000 | 941,250,000 | 988,312,500 | 0.2 | 0.4 | 0.5 | |||
7 | 35 | 38 | 41 | 804,768,750 | 894,187,500 | 941,250,000 | 0.5 | 0.7 | 0.9 | |||
6 | PRQ. 2 | 1 | 122 | 135 | 142 | 26,020,856,250 | 28,912,062,500 | 30,433,750,000 | 0.3 | 0.5 | 0.7 | 0.272 |
2 | 122 | 135 | 142 | 23,418,770,625 | 26,020,856,250 | 27,390,375,000 | 0.5 | 0.7 | 0.9 | |||
3 | 115 | 128 | 135 | 27,390,375,000 | 30,433,750,000 | 31,955,437,500 | 0.3 | 0.5 | 0.7 | |||
4 | 115 | 128 | 135 | 26,020,856,250 | 28,912,062,500 | 30,433,750,000 | 0.3 | 0.5 | 0.7 | |||
5 | 115 | 128 | 135 | 23,418,770,625 | 26,020,856,250 | 27,390,375,000 | 0.7 | 0.8 | 1 | |||
6 | 104 | 115 | 122 | 27,390,375,000 | 30,433,750,000 | 31,955,437,500 | 0.5 | 0.7 | 0.9 | |||
7 | 104 | 115 | 122 | 26,020,856,250 | 28,912,062,500 | 30,433,750,000 | 0.7 | 0.8 | 1 | |||
7 | PRQ. 3 | 1 | 90 | 100 | 105 | 11,266,762,500 | 12,518,625,000 | 13,177,500,000 | 0.3 | 0.5 | 0.7 | 0.118 |
2 | 90 | 100 | 105 | 10,140,086,250 | 11,266,762,500 | 11,859,750,000 | 0.5 | 0.7 | 0.9 | |||
3 | 86 | 95 | 100 | 11,859,750,000 | 13,177,500,000 | 13,836,375,000 | 0.3 | 0.5 | 0.7 | |||
4 | 86 | 95 | 100 | 11,266,762,500 | 12,518,625,000 | 13,177,500,000 | 0.5 | 0.7 | 0.9 | |||
5 | 86 | 95 | 100 | 10,140,086,250 | 11,266,762,500 | 11,859,750,000 | 0.3 | 0.5 | 0.7 | |||
6 | 77 | 86 | 90 | 11,859,750,000 | 13,177,500,000 | 13,836,375,000 | 0.3 | 0.5 | 0.7 | |||
7 | 77 | 86 | 90 | 11,266,762,500 | 12,518,625,000 | 13,177,500,000 | 0.3 | 0.5 | 0.7 | |||
8 | PRQ. 4 | 1 | 108 | 120 | 126 | 7,511,175,000 | 8,345,750,000 | 8,785,000,000 | 0.2 | 0.4 | 0.5 | 0.079 |
2 | 108 | 120 | 126 | 6,760,057,500 | 7,511,175,000 | 7,906,500,000 | 0.5 | 0.7 | 0.9 | |||
3 | 103 | 114 | 120 | 7,906,500,000 | 8,785,000,000 | 9,224,250,000 | 0.2 | 0.4 | 0.5 | |||
4 | 103 | 114 | 120 | 7,511,175,000 | 8,345,750,000 | 8,785,000,000 | 0.7 | 0.8 | 1 | |||
5 | 103 | 114 | 120 | 6,760,057,500 | 7,511,175,000 | 7,906,500,000 | 0.3 | 0.5 | 0.7 | |||
6 | 92 | 103 | 108 | 7,906,500,000 | 8,785,000,000 | 9,224,250,000 | 0.5 | 0.7 | 0.9 | |||
7 | 92 | 103 | 108 | 7,511,175,000 | 8,345,750,000 | 8,785,000,000 | 0.3 | 0.5 | 0.7 | |||
9 | PRQ. 5 | 1 | 108 | 120 | 126 | 7,511,175,000 | 8,345,750,000 | 8,785,000,000 | 0.2 | 0.4 | 0.5 | 0.73 |
2 | 108 | 120 | 126 | 6,760,057,500 | 7,511,175,000 | 7,906,500,000 | 0.5 | 0.7 | 0.9 | |||
3 | 103 | 114 | 120 | 7,906,500,000 | 8,785,000,000 | 9,224,250,000 | 0.2 | 0.4 | 0.5 | |||
4 | 103 | 114 | 120 | 7,511,175,000 | 8,345,750,000 | 8,785,000,000 | 0.7 | 0.8 | 1 | |||
5 | 103 | 114 | 120 | 6,760,057,500 | 7,511,175,000 | 7,906,500,000 | 0.3 | 0.5 | 0.7 | |||
6 | 92 | 103 | 108 | 7,906,500,000 | 8,785,000,000 | 9,224,250,000 | 0.5 | 0.7 | 0.9 | |||
7 | 92 | 103 | 108 | 7,511,175,000 | 8,345,750,000 | 8,785,000,000 | 0.3 | 0.5 | 0.7 | |||
10 | PRQ. 6 | 1 | 135 | 150 | 158 | 6,974,662,500 | 7,749,625,000 | 8,157,500,000 | 0.2 | 0.4 | 0.5 | 0.01 |
2 | 135 | 150 | 158 | 6,277,196,250 | 6,974,662,500 | 7,341,750,000 | 0.3 | 0.5 | 0.7 | |||
3 | 128 | 143 | 150 | 7,341,750,000 | 8,157,500,000 | 8,565,375,000 | 0.3 | 0.5 | 0.7 | |||
4 | 128 | 143 | 150 | 6,974,662,500 | 7,749,625,000 | 8,157,500,000 | 0.3 | 0.5 | 0.7 | |||
5 | 128 | 143 | 150 | 6,277,196,250 | 6,974,662,500 | 7,341,750,000 | 0.5 | 0.7 | 0.9 | |||
6 | 115 | 128 | 135 | 7,341,750,000 | 8,157,500,000 | 8,565,375,000 | 0.5 | 0.7 | 0.9 | |||
7 | 115 | 128 | 135 | 6,974,662,500 | 7,749,625,000 | 8,157,500,000 | 0.5 | 0.7 | 0.9 | |||
11 | CONST. 1 | 1 | 54 | 60 | 63 | 1,073,025,000 | 1,192,250,000 | 1,255,000,000 | 0.3 | 0.5 | 0.7 | 0.075 |
2 | 54 | 60 | 63 | 965,722,500 | 1,073,025,000 | 1,129,500,000 | 0.5 | 0.7 | 0.9 | |||
3 | 51 | 57 | 60 | 1,129,500,000 | 1,255,000,000 | 1,317,750,000 | 0.3 | 0.5 | 0.7 | |||
4 | 51 | 57 | 60 | 1,073,025,000 | 1,192,250,000 | 1,255,000,000 | 0.7 | 0.8 | 1 | |||
5 | 51 | 57 | 60 | 965,722,500 | 1,073,025,000 | 1,129,500,000 | 0.5 | 0.7 | 0.9 | |||
6 | 46 | 51 | 54 | 1,129,500,000 | 1,255,000,000 | 1,317,750,000 | 0.2 | 0.4 | 0.5 | |||
7 | 46 | 51 | 54 | 1,073,025,000 | 1,192,250,000 | 1,255,000,000 | 0.5 | 0.7 | 0.9 | |||
12 | CONST. 2 | 1 | 135 | 150 | 158 | 6,728,508,000 | 7,476,120,000 | 7,869,600,000 | 0.2 | 0.4 | 0.5 | 0.209 |
2 | 135 | 150 | 158 | 6,055,657,200 | 6,728,508,000 | 7,082,640,000 | 0.3 | 0.5 | 0.7 | |||
3 | 128 | 143 | 150 | 7,082,640,000 | 7,869,600,000 | 8,263,080,000 | 0.2 | 0.4 | 0.5 | |||
4 | 128 | 143 | 150 | 6,728,508,000 | 7,476,120,000 | 7,869,600,000 | 0.7 | 0.8 | 1 | |||
5 | 128 | 143 | 150 | 6,055,657,200 | 6,728,508,000 | 7,082,640,000 | 0.5 | 0.7 | 0.9 | |||
6 | 115 | 128 | 135 | 7,082,640,000 | 7,869,600,000 | 8,263,080,000 | 0.3 | 0.5 | 0.7 | |||
7 | 115 | 128 | 135 | 6,728,508,000 | 7,476,120,000 | 7,869,600,000 | 0.5 | 0.7 | 0.9 | |||
13 | CONST. 3 | 1 | 162 | 180 | 189 | 19,811,718,000 | 22,013,020,000 | 23,171,600,000 | 0.2 | 0.4 | 0.5 | 0.031 |
2 | 162 | 180 | 189 | 17,830,546,200 | 19,811,718,000 | 20,854,440,000 | 0.3 | 0.5 | 0.7 | |||
3 | 154 | 171 | 180 | 20,854,440,000 | 23,171,600,000 | 24,330,180,000 | 0.2 | 0.4 | 0.5 | |||
4 | 154 | 171 | 180 | 19,811,718,000 | 22,013,020,000 | 23,171,600,000 | 0.7 | 0.8 | 1 | |||
5 | 154 | 171 | 180 | 17,830,546,200 | 19,811,718,000 | 20,854,440,000 | 0.5 | 0.7 | 0.9 | |||
6 | 139 | 154 | 162 | 20,854,440,000 | 23,171,600,000 | 24,330,180,000 | 0.3 | 0.5 | 0.7 | |||
7 | 139 | 154 | 162 | 19,811,718,000 | 22,013,020,000 | 23,171,600,000 | 0.5 | 0.7 | 0.9 | |||
14 | CONST. 4 | 1 | 108 | 120 | 126 | 3,738,060,000 | 4,153,400,000 | 4,372,000,000 | 0.2 | 0.4 | 0.5 | 0.016 |
2 | 108 | 120 | 126 | 3,364,254,000 | 3,738,060,000 | 3,934,800,000 | 0.5 | 0.7 | 0.9 | |||
3 | 103 | 114 | 120 | 3,934,800,000 | 4,372,000,000 | 4,590,600,000 | 0.2 | 0.4 | 0.5 | |||
4 | 103 | 114 | 120 | 3,738,060,000 | 4,153,400,000 | 4,372,000,000 | 0.7 | 0.8 | 1 | |||
5 | 103 | 114 | 120 | 3,364,254,000 | 3,738,060,000 | 3,934,800,000 | 0.3 | 0.5 | 0.7 | |||
6 | 92 | 103 | 108 | 3,934,800,000 | 4,372,000,000 | 4,590,600,000 | 0.5 | 0.7 | 0.9 | |||
7 | 92 | 103 | 108 | 3,738,060,000 | 4,153,400,000 | 4,372,000,000 | 0.3 | 0.5 | 0.7 | |||
15 | CONST. 5 | 1 | 68 | 75 | 79 | 1,644,746,400 | 1,827,496,000 | 1,923,680,000 | 0.3 | 0.5 | 0.7 | 0.018 |
2 | 68 | 75 | 79 | 1,480,271,760 | 1,644,746,400 | 1,731,312,000 | 0.5 | 0.7 | 0.9 | |||
3 | 64 | 71 | 75 | 1,731,312,000 | 1,923,680,000 | 2,019,864,000 | 0.3 | 0.5 | 0.7 | |||
4 | 64 | 71 | 75 | 1,644,746,400 | 1,827,496,000 | 1,923,680,000 | 0.3 | 0.5 | 0.7 | |||
5 | 64 | 71 | 75 | 1,480,271,760 | 1,644,746,400 | 1,731,312,000 | 0.7 | 0.8 | 1 | |||
6 | 58 | 64 | 68 | 1,731,312,000 | 1,923,680,000 | 2,019,864,000 | 0.5 | 0.7 | 0.9 | |||
7 | 58 | 64 | 68 | 1,644,746,400 | 1,827,496,000 | 1,923,680,000 | 0.7 | 0.8 | 1 | |||
16 | CONST. 6 | 1 | 68 | 75 | 79 | 1,682,127,000 | 1,869,030,000 | 1,967,400,000 | 0.3 | 0.5 | 0.7 | 0.016 |
2 | 68 | 75 | 79 | 1,513,914,300 | 1,682,127,000 | 1,770,660,000 | 0.5 | 0.7 | 0.9 | |||
3 | 64 | 71 | 75 | 1,770,660,000 | 1,967,400,000 | 2,065,770,000 | 0.3 | 0.5 | 0.7 | |||
4 | 64 | 71 | 75 | 1,682,127,000 | 1,869,030,000 | 1,967,400,000 | 0.7 | 0.8 | 1 | |||
5 | 64 | 71 | 75 | 1,513,914,300 | 1,682,127,000 | 1,770,660,000 | 0.3 | 0.5 | 0.7 | |||
6 | 58 | 64 | 68 | 1,770,660,000 | 1,967,400,000 | 2,065,770,000 | 0.2 | 0.4 | 0.5 | |||
7 | 58 | 64 | 68 | 1,682,127,000 | 1,869,030,000 | 1,967,400,000 | 0.3 | 0.5 | 0.7 | |||
17 | Test and Inspection | 1 | 68 | 75 | 79 | 1,532,604,600 | 1,702,894,000 | 1,792,520,000 | 0.3 | 0.5 | 0.7 | 0.014 |
2 | 68 | 75 | 79 | 1,379,344,140 | 1,532,604,600 | 1,613,268,000 | 0.3 | 0.5 | 0.7 | |||
3 | 64 | 71 | 75 | 1,613,268,000 | 1,792,520,000 | 1,882,146,000 | 0.2 | 0.4 | 0.5 | |||
4 | 64 | 71 | 75 | 1,532,604,600 | 1,702,894,000 | 1,792,520,000 | 0.7 | 0.8 | 1 | |||
5 | 64 | 71 | 75 | 1,379,344,140 | 1,532,604,600 | 1,613,268,000 | 0.5 | 0.7 | 0.9 | |||
6 | 58 | 64 | 68 | 1,613,268,000 | 1,792,520,000 | 1,882,146,000 | 0.2 | 0.4 | 0.5 | |||
7 | 58 | 64 | 68 | 1,532,604,600 | 1,702,894,000 | 1,792,520,000 | 0.5 | 0.7 | 0.9 | |||
18 | Pre-Commissioning and Commissioning | 1 | 14 | 15 | 16 | 1,270,940,400 | 1,412,156,000 | 1,486,480,000 | 0.3 | 0.5 | 0.7 | 0.016 |
2 | 14 | 15 | 16 | 1,143,846,360 | 1,270,940,400 | 1,337,832,000 | 0.5 | 0.7 | 0.9 | |||
3 | 13 | 14 | 15 | 1,337,832,000 | 1,486,480,000 | 1,560,804,000 | 0.3 | 0.5 | 0.7 | |||
4 | 13 | 14 | 15 | 1,270,940,400 | 1,412,156,000 | 1,486,480,000 | 0.5 | 0.7 | 0.9 | |||
5 | 13 | 14 | 15 | 1,143,846,360 | 1,270,940,400 | 1,337,832,000 | 0.3 | 0.5 | 0.7 | |||
6 | 12 | 13 | 14 | 1,337,832,000 | 1,486,480,000 | 1,560,804,000 | 0.3 | 0.5 | 0.7 | |||
7 | 12 | 13 | 14 | 1,270,940,400 | 1,412,156,000 | 1,486,480,000 | 0.3 | 0.5 | 0.7 |
Parameters | Values |
---|---|
Population Size (pop size) | 100 |
Maximum Total Number of Iterations | 60–65 |
Crossover Probability | 0.80 |
Mutation Probability | 0.42 |
Activity Mode | Time (T1) | Cost (C1) | Quality (Q1) | Activity Mode | Fuzzy Time | Fuzzy Cost | Fuzzy Quality | Activity Mode | Average Time (α) | Average Cost (α) | Average Quality (α) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 610 | 94,631,573,925 | 0.300 | 1 | 636 | 90,794,810,925 | 0.365 | 1 | 666.333 | 103,444,281,225 | 0.489 |
2 | 676 | 105,146,193,250 | 0.500 | 2 | 705 | 100,883,123,250 | 0.558 | 2 | 694.333 | 99,272,256,392 | 0.548 |
3 | 713 | 110,555,076,500 | 0.665 | 3 | 742 | 106,138,835,000 | 0.721 | 3 | 703.667 | 100,200,218,825 | 0.630 |
4 | 613 | 96,127,607,830 | 0.313 | 4 | 680 | 95,773,481,415 | 0.265 | 4 | 700.400 | 103,868,416,294 | 0.447 |
5 | 681 | 104,486,530,250 | 0.472 | 5 | 718 | 111,895,035,500 | 0.612 | 5 | 670.667 | 104,694,498,768 | 0.447 |
6 | 648.8 | 93,806,526,628 | 0.331 | 6 | 704 | 101,963,615,900 | 0.525 | 6 | 703.400 | 101,357,095,000 | 0.511 |
7 | 661 | 93,192,569,780 | 0.356 | 7 | 717 | 101,296,271,500 | 0.726 | 7 | 713.533 | 100,724,663,609 | 0.532 |
Description | Values |
---|---|
Optimal Solution | (2,2,6,1,7,5,7,1,2,5,2,6,1,1,2,2,7,1) |
Optimal Fuzzy Project | (643.6, 698,741.2) Duration ( |
Optimal Fuzzy Project | (93.739.101.852,101.890.328.100,108.305.011.980) Cost ( |
Optimal Fuzzy Project | (0.365, 0.525, 0.739) Quality ( |
Optimal Project | 694.267 |
Optimal Project | 101311480648 |
Optimal Project | 0.543 |
Quality (Q) | |
344.459 × 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erdoğdu, A.; Dayi, F.; Yildiz, F.; Yanik, A.; Ganji, F. Combining Fuzzy Logic and Genetic Algorithms to Optimize Cost, Time and Quality in Modern Agriculture. Sustainability 2025, 17, 2829. https://doi.org/10.3390/su17072829
Erdoğdu A, Dayi F, Yildiz F, Yanik A, Ganji F. Combining Fuzzy Logic and Genetic Algorithms to Optimize Cost, Time and Quality in Modern Agriculture. Sustainability. 2025; 17(7):2829. https://doi.org/10.3390/su17072829
Chicago/Turabian StyleErdoğdu, Aylin, Faruk Dayi, Ferah Yildiz, Ahmet Yanik, and Farshad Ganji. 2025. "Combining Fuzzy Logic and Genetic Algorithms to Optimize Cost, Time and Quality in Modern Agriculture" Sustainability 17, no. 7: 2829. https://doi.org/10.3390/su17072829
APA StyleErdoğdu, A., Dayi, F., Yildiz, F., Yanik, A., & Ganji, F. (2025). Combining Fuzzy Logic and Genetic Algorithms to Optimize Cost, Time and Quality in Modern Agriculture. Sustainability, 17(7), 2829. https://doi.org/10.3390/su17072829