Nutritional Variations Among Amaranth Accessions Under Diverse Environmental Conditions in Malawi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material Selection
2.2. Study Sites and Experimental Design
2.3. Soil Preparation and Fertilization
2.4. Sample Preparation
2.5. Proximate Analysis
2.6. Mineral Content
2.7. Statistical Analysis
3. Results
3.1. The Chemical Composition of Amaranth Leaves
3.2. Cluster Analysis of Nutrient Profiles
3.3. Chemical Composition of Amaranth Leaves Across Different Locations and Accessions
3.4. Additive Main Effects and Multiplicative Interaction (AMMI) Analysis
3.5. Farmer Preferences and Ranking of Amaranth Accessions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malik, M.; Sindhu, R.; Dhull, S.B.; Bou-Mitri, C.; Singh, Y.; Panwar, S.; Khatkar, B.S. Nutritional Composition, Functionality, and Processing Technologies for Amaranth. J. Food Process. Preserv. 2023, 2023, 1753029. [Google Scholar] [CrossRef]
- Singh, N.; Samarth, R.M.; Vashishth, A.; Pareek, A. Amaranthus as a potential dietary supplement in sports nutrition. CYTA-J. Food 2024, 22, 2375253. [Google Scholar] [CrossRef]
- Jan, N.; Hussain, S.Z.; Naseer, B.; Bhat, T.A. Amaranth and quinoa as potential nutraceuticals: A review of anti-nutritional factors, health benefits and their applications in food, medicinal and cosmetic sectors. Food Chem. X 2023, 18, 100687. [Google Scholar] [CrossRef]
- Skwaryło-Bednarz, B.; Stępniak, P.M.; Jamiołkowska, A.; Kopacki, M.; Krzepiłko, A.; Klikocka, H. Amaranth seeds as a source of nutrients and bioactive substances in human diet. Acta Sci. Pol. Hortorum Cultus 2020, 19, 153–164. [Google Scholar] [CrossRef]
- Kumar, H.; Guleria, S.; Kimta, N.; Dhalaria, R.; Nepovimova, E.; Dhanjal, D.S.; Alomar, S.Y.; Kuca, K. Amaranth and buckwheat grains: Nutritional profile, development of functional foods, their pre-clinical cum clinical aspects and enrichment in feed. Curr. Res. Food Sci. 2024, 9, 100836. [Google Scholar] [CrossRef] [PubMed]
- Baraniak, J.; Kania-Dobrowolska, M. The Dual Nature of Amaranth—Functional Food and Potential Medicine. Foods 2022, 11, 618. [Google Scholar] [CrossRef] [PubMed]
- Procopet, O.; Oroian, M. Amaranth Seed Polyphenol, Fatty Acid and Amino Acid Profile. Appl. Sci. 2022, 12, 2181. [Google Scholar] [CrossRef]
- Kachiguma, N.A.; Mwase, W.; Maliro, M.; Damaliphetsa, A. Chemical and Mineral Composition of Amaranth (Amaranthus L.) Species Chemical and Mineral Composition of Amaranth (Amaranthus L.) Species Collected From Central Malawi. J. Food Res. 2015, 4, 95–100. [Google Scholar] [CrossRef]
- Hricová, A.; Fejér, J.; Libiaková, G.; Szabová, M.; Gažo, J.; Gajdošová, A. Characterization of phenotypic and nutritional properties ofvaluable Amaranthus cruentus L. mutants. Turkish J. Agric. For. 2016, 40, 761–771. [Google Scholar] [CrossRef]
- Sarker, U.; Hossain, M.M.; Oba, S. Nutritional and antioxidant components and antioxidant capacity in green morph Amaranthus leafy vegetable. Sci. Rep. 2020, 10, 1336. [Google Scholar] [CrossRef]
- Jahan, N.; Sarker, U.; Hasan Saikat, M.M.; Hossain, M.M.; Azam, M.G.; Ali, D.; Ercisli, S.; Golokhvast, K.S. Evaluation of yield attributes and bioactive phytochemicals of twenty amaranth genotypes of Bengal floodplain. Heliyon 2023, 9, e19644. [Google Scholar] [CrossRef]
- Ejieji, C.J.; Adeniran, K. Effects of Water and Fertilizer Stress on the Yield, Fresh and Dry Matter Production of Grain Amaranth (‘Amaranthus cruentus’). Aust. J. Agric. Eng. 2010, 1, 18–23. [Google Scholar]
- Cechin, I.; da Silva, L.P.; Ferreira, E.T.; Barrochelo, S.C.; de Melo, F.P.d.S.R.; Dokkedal, A.L.; Saldanha, L.L. Physiological responses of Amaranthus cruentus L. to drought stress under sufficient- and deficient-nitrogen conditions. PLoS ONE 2022, 17, e0270849. [Google Scholar] [CrossRef]
- Nyasulu, M.; Chimzinga, S.Z.; Maliro, M.; Kamanga, R.M.; Medison, R.G.; Sefasi, A. Stability analysis and identification of high-yielding Amaranth accessions for varietal development under various agroecologies of Malawi. Plant Genet. Resour. 2024, 22, 333–341. [Google Scholar] [CrossRef]
- Sithole, D.; Maliro, M.F.A.; Masamba, K.; Nalivata, P.C. Nutrient Composition of Chia Genotypes Cultivated in Different Environments of Central Malawi. J. Food Nutr. Res. 2023, 11, 678–682. [Google Scholar] [CrossRef]
- Nyasulu, M.; Sefasi, A.; Chimzinga, S.; Maliro, M. Agromophological Characterisation of Amaranth Accessions from Malawi. Am. J. Plant Sci. 2021, 12, 1528–1542. [Google Scholar] [CrossRef]
- Chadha, K.L.; Samra, J.S.; Thakur, R.S. Standardization of leaf-sampling technique for mineral composition of leaves of mango cultivar ‘Chausa’. Sci. Hortic. 1980, 13, 323–329. [Google Scholar] [CrossRef]
- Sharma, M.K.; Rehman, H.U. Standardization of leaf sampling technique for macro-and micro-nutrient elements in plum under temperate conditions. Indian J. Hortic. 2012, 69, 507–511. [Google Scholar]
- Moore, J.C.; DeVries, J.W.; Lipp, M.; Griffiths, J.C.; Abernethy, D.R. Total Protein Methods and Their Potential Utility to Reduce the Risk of Food Protein Adulteration. Compr. Rev. food Sci. food Saf. 2010, 9, 330–357. [Google Scholar] [CrossRef]
- Jimoh, M.O.; Afolayan, A.J.; Lewu, F.B. Nutrients and antinutrient constituents of Amaranthus caudatus L. Cultivated on different soils. Saudi J. Biol. Sci. 2020, 27, 3570–3580. [Google Scholar] [CrossRef]
- Frei, J.; Wiesenberg, G.L.B.; Hirte, J. The impact of climate and potassium nutrition on crop yields: Insights from a 30-year Swiss long-term fertilization experiment. Agric. Ecosyst. Environ. 2024, 372, 109100. [Google Scholar] [CrossRef]
- Reyes-Rosales, A.; Cabrales-Orona, G.; Martínez-Gallardo, N.A.; Sánchez-Segura, L.; Padilla-Escamilla, J.P.; Palmeros-Suárez, P.A.; Délano-Frier, J.P. Identification of genetic and biochemical mechanisms associated with heat shock and heat stress adaptation in grain amaranths. Front. Plant Sci. 2023, 14, 1101375. [Google Scholar] [CrossRef] [PubMed]
- Kandel, M.; Rijal, T.R.; Kandel, B.P. Evaluation and identification of stable and high yielding genotypes for varietal development in amaranthus (Amaranthus hypochondriacus L.) under hilly region of Nepal. J. Agric. Food Res. 2021, 5, 100158. [Google Scholar] [CrossRef]
- Oduwaye, O.A.; Porbeni, J.B.O.; Adetiloye, I.S. Genetic variability and associations between grain yield and related traits in a maranthus cruentus and A maranthus hypochondriacus grown at two locations. J. Hortic. Res. 2016, 24, 91–99. [Google Scholar] [CrossRef]
- Stoilova, T.; Dinssa, F.F.; Ebert, A.W.; Tenkouano, A. The diversity of African leafy vegetables: Agromorphological characterization of subsets of AVRDC’s germplasm collection. Acta Hortic. 2015, 1102, 67–74. [Google Scholar] [CrossRef]
- Coelho, L.M.; Silva, P.M.; Martins, J.T.; Pinheiro, A.C.; Vicente, A.A. Emerging opportunities in exploring the nutritional/functional value of amaranth. Food Funct. 2018, 9, 5499–5512. [Google Scholar] [CrossRef] [PubMed]
- Förster, N.; Dilling, S.; Ulrichs, C.; Huyskens-Keil, S. Nutritional diversity in leaves of various amaranth (Amaranthus spp.) genotypes and its resilience to drought stress. J. Appl. Bot. Food Qual. 2023, 96, 1–10. [Google Scholar] [CrossRef]
- Toungos, M.; Babayola, M.; Shehu, H.; Kwaga, Y.; Bamai, N. Effects of Nitrogen Fertilizer on the Growth of Vegetable Amaranths (Amaranthus cruensis L.) in Mubi, Adamawa State Nigeria. Asian J. Adv. Agric. Res. 2018, 6, 1–12. [Google Scholar] [CrossRef]
- Ojo, O.D.; Akinrinde, E.A.; Akoroda, M.O. Phosphorus use efficiency in amaranth (Amaranthus cruentus L.). Int. J. AgriSci. 2011, 1, 115–129. [Google Scholar]
Parameter | Thyolo Research | Mzimba-Champhira | Kasungu-Chulu | Salima-Chipoka |
---|---|---|---|---|
Agroecological Zone | Humid High-Altitude Zone | Humid High-Altitude Zone | Transitional Middle-Altitude Zone | Semi-Arid Low-Altitude Zone |
Coordinates | 16.0691° S, 35.1420° E | 12.3320° S, 33.5964° E | 12.8090° S, 33.3110° E | 13.9920° S, 34.5096° E |
Altitude (m) | 1200–1400 | 1100–1300 | 800–1000 | 500–700 |
Temperature (°C) | 15–20 | 15–20 | 18–26 | 27–35 |
Rainfall (mm/year) | >1000 | >1000 | 500–1000 | <500 |
Humidity (%) | 70–85 | 65–80 | 50–65 | 40–55 |
Light Intensity | Moderate (cloud cover) | Moderate (cloud cover) | High (clear skies) | Very High (strong sunlight) |
Soil Type | Clay loam, fertile | Sandy loam, moderate fertility | Sandy, well-draining | Sandy, low fertility |
Site | Time | pH | EC (µS/cm) | OM (%) | N (%) | P (ppm) | K (ppm) |
---|---|---|---|---|---|---|---|
Thyolo-Research | Before | 5.71 | 313.22 | 2.01 | 0.11 | 55.31 | 41.80 |
After | 6.01 | 360.74 | 1.90 | 0.13 | 68.62 | 127.61 | |
Mzimba-Champhira | Before | 6.22 | 391.15 | 0.61 | 0.03 | 18.73 | 57.53 |
After | 6.31 | 375.42 | 0.84 | 0.08 | 35.68 | 160.01 | |
Salima-Chipoka | Before | 6.32 | 378.03 | 0.67 | 0.04 | 25.40 | 65.53 |
After | 6.63 | 443.51 | 0.22 | 0.06 | 32.32 | 159.91 | |
Kasungu-Chulu | Before | 6.40 | 418.52 | 0.43 | 0.03 | 22.50 | 56.54 |
After | 6.42 | 434.31 | 0.74 | 0.07 | 42.50 | 169.16 |
Accession | Moisture Content (%) | Ash (%) | Crude Protein (%) | Iron Content (mg/100 g) | Zinc (mg/100 g) | Calcium Content (mg/100 g) | Potassium (mg/g) |
---|---|---|---|---|---|---|---|
CK-BH-01 | 85.82 c | 15.07 c | 41.03 d | 57.10 b | 14.36 b | 7.92 bc | 18.03 b |
LL-BH-04 | 85.89 c | 14.49 b | 41.78 e | 57.89 b | 13.13 a | 6.74 a | 17.98 b |
MN-BH-01 | 85.07 a | 14.56 b | 43.18 f | 68.21 c | 15.12 c | 8.00 c | 19.47 d |
NU-BH-01 | 85.43 b | 15.64 d | 38.91 b | 75.94 d | 13.12 a | 7.07 a | 17.20 a |
PE-LO-BH-01 | 85.37 b | 12.93 a | 40.53 c | 50.04 a | 14.45 b | 6.97 a | 18.65 c |
PE-UP-BH-01 | 85.71 c | 15.36 cd | 40.53 c | 77.16 e | 14.61 b | 7.55 b | 19.73 d |
Grand Mean | 85.55 | 14.67 | 40.8 | 64.39 | 14.13 | 7.38 | 18.51 |
p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
LSD0.05 | 0.172 | 0.234 | 0.307 | 0.794 | 0.270 | 0.264 | 0.284 |
Location | Accession | Moisture Content (%) | Ash (%) | Crude Protein (%) | Iron Content (mg/100 g) | Zinc (mg/100 g) | Calcium Content (mg/100 g) | Potassium (mg/g) |
---|---|---|---|---|---|---|---|---|
Thyolo Research | PE-UP-BH-01 | 82.18 bc | 12.40 b | 40.14 h | 47.63 c | 18.49 i | 9.26 jk | 22.19 mn |
PE-LO-BH-01 | 82.45 cd | 11.67 ab | 40.32 h | 51.11 de | 18.95 i | 9.29 jk | 23.37 o | |
CK-BH-01 | 83.48 e | 17.47 j | 31.42 a | 65.62 gh | 18.26 i | 10.55 l | 22.72 no | |
NU-BH-01 | 84.57 f | 13.90 cdef | 43.26 ij | 93.29 m | 18.09 i | 9.81 kl | 22.69 no | |
LL-BH-04 | 83.34 e | 15.64 i | 33.67 bc | 69.61 ij | 12.73 ef | 6.70 def | 16.93 gh | |
MN-BH-01 | 83.38 e | 12.46 b | 43.24 i | 65.88 | 18.20 i | 9.12 ijk | 21.14 lm | |
Mean | 83.23 b | 13.92 b | 38.68 a | 65.52 c | 17.46 d | 9.12 d | 21.50 c | |
Mzimba-Champhira | PE-UP-BH-01 | 83.37 e | 14.59 defg | 36.21 d | 83.05 l | 13.89 g | 7.40 fgh | 19.24 i |
PE-LO-BH-01 | 85.13 g | 13.72 cd | 39.39 gh | 76.54 k | 12.55 ef | 6.16 bcde | 16.61 fg | |
CK-BH-01 | 81.75 b | 11.39 a | 57.57 l | 50.93 d | 16.74 h | 9.20 jk | 17.97 h | |
NU-BH-01 | 82.91 de | 13.40 c | 40.28 h | 49.02 cd | 12.00 de | 6.18 bcde | 16.28 efg | |
LL-BH-04 | 82.93 de | 14.83 ghi | 32.50 ab | 68.07 hi | 17.97 i | 9.06 ijk | 22.07 mn | |
MN-BH-01 | 80.50 a | 11.54 ab | 38.35 fg | 41.52 b | 16.39 h | 8.41 hij | 20.78 jkl | |
Mean | 82.77 a | 13.25 a | 40.72 b | 61.52 b | 14.92 c | 7.74 c | 18.83 b | |
Kasungu-Chulu | PE-UP-BH-01 | 89.28 jk | 15.55 hi | 39.20 gh | 42.13 b | 10.00 b | 5.25 b | 14.02 b |
PE-LO-BH-01 | 89.59 k | 14.72 fghi | 33.39 bc | 30.66 a | 10.52 bc | 5.35 bc | 14.86 bcd | |
CK-BH-01 | 90.38 l | 14.69 efgh | 36.57 de | 39.18 b | 11.41 cd | 5.75 bcd | 15.62 cdef | |
NU-BH-01 | 89.93 kl | 16.86 j | 34.54 c | 56.14 f | 10.91 bc | 6.03 bcd | 15.18 cde | |
LL-BH-04 | 88.64 ij | 13.78 cde | 56.50 l | 31.39 a | 8.20 a | 4.03 a | 12.02 a | |
MN-BH-01 | 88.59 i | 16.68 j | 47.57 k | 54.21 ef | 11.38 cd | 6.39 cdef | 16.03 efg | |
Mean | 89.40 d | 15.38 c | 41.29 c | 42.29 a | 10.40 a | 5.47 a | 14.62 a | |
Salima-Chipoka | PE-UP-BH-01 | 88.00 hi | 18.89 l | 46.58 k | 135.85 p | 16.06 h | 8.29 hij | 23.460 |
PE-LO-BH-01 | 84.30 f | 11.59 ab | 34.60 c | 41.83 b | 15.76 h | 7.08 efg | 19.74 ij | |
CK-BH-01 | 87.67 h | 16.72 j | 38.57 fg | 72.66 j | 11.03 bcd | 6.19 bcde | 15.80 def | |
NU-BH-01 | 84.32 f | 18.41 kl | 37.56 ef | 105.31 n | 11.46 cd | 6.26 bcde | 14.66 bc | |
LL-BH-04 | 88.66 ij | 13.72 cd | 44.47 j | 62.50 g | 13.62 fg | 7.19 efg | 20.88 kl | |
MN-BH-01 | 87.80 h | 17.56 jk | 43.58 ij | 111.24 o | 14.48 g | 8.09 ghi | 19.95 ijk | |
Mean | 86.79 c | 16.15 d | 40.89 b | 88.23 d | 13.73 b | 7.18 b | 19.08 b | |
p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Accession | Rank | Reasons |
---|---|---|
PE-UP-BH-01 | 4 |
|
PE-LO-BH-01 | 3 |
|
CK-BH-01 | 2 |
|
NU-BH-01 | 1 |
|
LL-BH-04 | 5 |
|
MN-BH-01 | 6 |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sefasi, A.; Masamba, K.; Nyasulu, M.; Monjerezi, M.; Sithole, D.E.; Kamanga, R.M.; Katengeza, S.; Malidadi, C. Nutritional Variations Among Amaranth Accessions Under Diverse Environmental Conditions in Malawi. Sustainability 2025, 17, 3771. https://doi.org/10.3390/su17093771
Sefasi A, Masamba K, Nyasulu M, Monjerezi M, Sithole DE, Kamanga RM, Katengeza S, Malidadi C. Nutritional Variations Among Amaranth Accessions Under Diverse Environmental Conditions in Malawi. Sustainability. 2025; 17(9):3771. https://doi.org/10.3390/su17093771
Chicago/Turabian StyleSefasi, Abel, Kingsley Masamba, Mvuyeni Nyasulu, Maurice Monjerezi, Dickson Edwin Sithole, Rowland Maganizo Kamanga, Samson Katengeza, and Charles Malidadi. 2025. "Nutritional Variations Among Amaranth Accessions Under Diverse Environmental Conditions in Malawi" Sustainability 17, no. 9: 3771. https://doi.org/10.3390/su17093771
APA StyleSefasi, A., Masamba, K., Nyasulu, M., Monjerezi, M., Sithole, D. E., Kamanga, R. M., Katengeza, S., & Malidadi, C. (2025). Nutritional Variations Among Amaranth Accessions Under Diverse Environmental Conditions in Malawi. Sustainability, 17(9), 3771. https://doi.org/10.3390/su17093771