A SAR Image Despeckling Method Based on an Extended Adaptive Wiener Filter and Extended Guided Filter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement of Performance
2.2. Adaptive Wiener Filter
2.3. Guided Filter
3. Proposed Algorithm
3.1. Improvement of Adaptive Wiener Filter
3.2. SAR Speckle Noise Model and Logarithmic Transformation
3.3. Extended Guided Filter
3.3.1. A New Edge-Aware Weighting
- 1.
- Coefficient of Variation
- 2.
- Difference of variances
3.3.2. The Proposed Extended Guided Filter
4. Experimental Results
5. Experiments on Real SAR Images
6. Computational Complexity
7. Discussion
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Choi:, H.; Jeong, J. Speckle Noise Reduction Technique for SAR Images Using Statistical Characteristics of Speckle Noise and Discrete Wavelet Transform. Remote Sens. 2019, 11, 1184. [Google Scholar] [CrossRef] [Green Version]
- Lopes, A.; Touzi, R.; Nezry, E. Adaptive speckle filters and scene heterogeneity. IEEE Trans. Geosci. Remote Sens. 1990, 28, 992–1000. [Google Scholar] [CrossRef]
- Lee, J.S. Refined filtering of image noise using local statistics. Comput. Graph. Image Process. 1981, 15, 380–389. [Google Scholar] [CrossRef]
- Liu, s.; Liu, T.; Gao, L.; Li, H.; Hu, Q.; Zhao, J.; Wang, C. Convolution neural network and guided filtering for sar image denoising. Remote Sens. 2019, 11, 702. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Hu, Q.; Li, P.; Zhao, J.; Zhu, Z. SAR image denoising based on patch ordering in nonsubsample shearlet domain. Turk. J. Electr. Eng. Comput. Sci. 2018, 26, 1860–1870. [Google Scholar] [CrossRef]
- Li, S.; Kang, X.D.; Fang, L.; Hu, J.; Yin, H. Pixel-level image fusion: A survey of the state of the art. Inform. Fusion. 2017, 33, 100–112. [Google Scholar] [CrossRef]
- Barash, D.A. Fundamental relationship between bilateral filtering, adaptive smoothing and the nonlinear diffusion equation. IEEE Trans. Pattern Anal. Machine Intell. 2002, 24, 844–867. [Google Scholar] [CrossRef] [Green Version]
- Tomasi, C.; Manduchi, R. Bilateral Filtering for Gray and Color Images. In Proceedings of the Sixth International Conference on Computer Vision, Bombay, India, 4–7 January 1998; pp. 839–846. [Google Scholar]
- Liu, G.; Zhong, H. Nonlocal Means Filter for Polarimetric SAR Data Despeckling Based on Discriminative Similarity Measure 2014; Volume: 11, Issue: 2, pp. 514 - 518. IEEE Geosci. Remote Sens. Letters 2014, 11, 514–518. [Google Scholar] [CrossRef]
- Zhang, M.; Gunturk, B.K. Multiresolution Bilateral Filtering for Image Denoising. IEEE Trans. Image Process. 2008, 17, 2324–2333. [Google Scholar] [CrossRef] [Green Version]
- Anantrasirichai, N.; Nicholson, L.; Morgan, J.E.; Erchova, I.; Mortlock, K.; North, R.V.; Albon, J.; Achim, A. Adaptive-weighted bilateral filtering and other pre-processing techniques for optical coherence tomography. Comput. Med. Imaging Graph. 2014, 38, 526–539. [Google Scholar] [CrossRef] [Green Version]
- Torres, L.; Sant’Anna, S.J.S.; Freitas, C.D.C.; Frery, C. Speckle reduction in polarimetric SAR imagery with stochastic distances and nonlocal means. Pattern Recognit. 2014, 47, 141–157. [Google Scholar] [CrossRef] [Green Version]
- Martín-de-Nicolás, J.; Jarabo-Amores, M.; Mata-Moya, D.; del-Rey-Maestre, N.; Bárcena-Humanes, J. Statistical analysis of SAR sea clutter for classification purposes. Remote Sens. 2014, 6, 9379–9411. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Tang, C.; Gu, F.; Cheng, J. Combination of oriented partial differential equation and shearlet transform for denoising in electronic speckle pattern interferometry fringe patters. Appl. Opt. 2017, 56, 2843–2850. [Google Scholar] [CrossRef] [PubMed]
- Li, J.C.; Ma, Z.H.; Peng, Y.X.; Huang, H. Speckle reduction by image entropy anisotropic diffusion. Acta Phys. Sin. 2013, 62, 099501. [Google Scholar]
- Cheng, H.; Tian, J. Speckle reduction of synthetic aperture radar images basedon fuzzy logic. In Proceedings of the First International Workshop on Education Technology and Computer Science, IEEE Computer Society, Wuhan, China, 7–8 March 2009; pp. 933–937. [Google Scholar]
- Babu, J.J.J.; Sudha, G.F. Adaptive speckle reduction in ultrasound images using fuzzy logic on Coefficient of Variation. Biomed. Signal Processing and Control. 2016, 23, 93–103. [Google Scholar] [CrossRef]
- Rezaei, H.; Karami, A. SAR image denoising using homomorphic and shearlet transforms. In Proceedings of the International Conference on Pattern Recognition & Image Analysis, Shahrekord, Iran, 19–20 April 2017; pp. 1–5. [Google Scholar]
- Min, D.; Cheng, P.; Chan, A.K.; Loguinov, D. Bayesian wavelet shrinkage with edge detection for SAR image despeckling. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1642–1648. [Google Scholar] [CrossRef] [Green Version]
- Loganayagi, T.; Kashwan, K.R.A. Robust edge preserving bilateral filter for ultrasound kidney image. Indian J Sci Technol. 2015, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Diwakar, M. CT Image Denoising Using Locally Adaptive Shrinkage Rule In Tetrolet Domain. J. King Saud Univ. – Comput. Inf. Sci. 2016, 30, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Mehta, S. Speckle noise reduction using hybrid wavelet packets-Wiener filter. Int. J. Comput. Sci. Eng. 2017, 5, 95–99. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, G.; Wu, L.; Wang, C.; Cheng, Y. Wavelet and fast bilateral filter based de-speckling method for medical ultrasound images. Biomed. signal processing and control. 2015, 18, 1–10. [Google Scholar] [CrossRef]
- Sari, S.; Al Fakkri, S.Z.H.; Roslan, H.; Tukiran, Z. Development of denoising method for digital image in low-light condition. In Proceedings of the IEEE International Conference on Control System, Computing and Engineering, Penang, Malaysia, 29 November–1 December 2013. [Google Scholar]
- Dai, L.; Yuan, M.; Tang, L.; Xie, Y.; Zhang, X.; Tang, J. Interpreting and extending the guided filter via cyclic coordinate descent. IEEE Trans. Image Process. 2019, 28, 767–778. [Google Scholar] [CrossRef] [PubMed]
- Loizou, C.P.; Pattichis, C.S. Despeckle filtering for ultrasound imaging and video, Volume I: Algorithms and Software; Second Ed. Morgan & Claypool Publishers: San Rafael, CA, USA, 2015. [Google Scholar]
- Xue, B.; Huang, Y.; Yang, J.; Shi, L.; Zhan, Y.; Cao, X. Fast nonlocal remote sensing image denoising using cosine integral images. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1309–1313. [Google Scholar] [CrossRef]
- Parrilli, S.; Poderico, M.; Angelino, C.V.; Verdoliva, L. A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage. IEEE Trans. Geosci. Remote Sens. 2012, 50, 606–616. [Google Scholar] [CrossRef]
- Buades, A.; Coll, B.; Morel, J.-M. A non-local algorithm for image denoising. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005; pp. 60–65. [Google Scholar]
- Farbman, Z.; Fattal, R.; Lischinski, D.; Szeliski, R. Edge-preserving decomposition for multi-scale tone and detail manipulation. ACM Trans. Graph. 2008, 27, 1–67. [Google Scholar] [CrossRef]
- Treece, G. The bitonic filter: Linear filtering in an edge-preserving morphological framework. IEEE Trans. Image Process. 2016, 25, 5199–5211. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Sun, J.; Tang, X. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1397–1409. [Google Scholar] [CrossRef]
- Lee, S.T. Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. Pattern Anal. Mach. Intell. 1980, 2, 165–168. [Google Scholar] [CrossRef] [Green Version]
- Frost, V.S.; Stiles, J.A.; Shanmugan, K.S.; Holtzman, J.C. A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans. Pattern Anal. Mach. Intell. 1982, 4, 66–157. [Google Scholar] [CrossRef]
- Ramos-Llordén, G.; Vegas-Sánchez-Ferrero, G.; Martin-Fernández, M.; Alberola-López, C.; Aja-Fernández, S. Anisotropic diffusion filter with memory based on speckle statistics for ultrasound images. IEEE Trans. Image Process. 2015, 24, 345–358. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Fu, C.-W.; Brown, M.S.; Heng, P.-A. A non-local low-rank framework for ultrasound speckle reduction. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5650–5658. [Google Scholar]
- Hyunho, C.; Jechang, J. Speckle noise reduction in ultrasound images using SRAD and guided filter. In Proceedings of the International Workshop on Advanced Image Technology, Chiang Mai, Thailand, 7–9 January 2018; pp. 1–4. [Google Scholar]
- Yu, Y.; Acton, S.T. Speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 2002, 11, 1260–1270. [Google Scholar]
- Dataset of Standard 512X512 Grayscale Test Images. Available online: http://decsai.ugr.es/cvg/CG/base.htm (accessed on 30 December 2018).
- Dataset of Standard Test Images. Available online: https://www.sandia.gov/RADAR/imagery/#xBand2 (accessed on 20 September 2019).
- Pan, T.; Peng, D.; Yang, W.; Li, H.-C. A Filter for SAR Image Despeckling Using Pre-Trained Convolutional Neural Network Model. Remote Sens. 2019, 11, 2379. [Google Scholar] [CrossRef] [Green Version]
- Fang, j.; Hu, S.; Ma, X. A Boosting SAR Image Despeckling Method Based on Non-Local Weighted Group Low-Rank Representation. Sensors 2018, 18, 3448. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Shree, R. A new SAR image despeckling using directional smoothing filter and method noise thresholding. Eng. Sci. Technol. Int. Journal 2018, 21, 589–610. [Google Scholar] [CrossRef]
EAWF | EGF | EGF | WLS Filter |
---|---|---|---|
Window size = (3 × 3) | NeighborhoodSize = 8 DegreeOfSmoothing = 0.2 × diff(getrangefromclass(I))2 guided by outcome of EAWF | NeighborhoodSize = 7 DegreeOfSmoothing = 0.01 × diff(getrangefromclass(I))2 guided by outcome of EAWF | Lambda = 0.1 Alpha = 1 |
EAWF + EGF + WLS | EGF + WLS | EAWF + WLS | ||||||||||||
Noise Variance | Filters | PSNR | SSIM | ENL | STD | PSNR | SSIM | ENL | STD | PSNR | SSIM | ENL | STD | |
0.04 | Noisy image | 21.117 | 0.3442 | 24.406 | 0.0943 | 21.1173 | 0.34425 | 24.405 | 0.0943 | 21.117 | 0.3442 | 24.406 | 0.0943 | |
EAWF | 28.013 | 0.7221 | 191.53 | 0.0336 | - | - | - | - | 27.986 | 0.7203 | 183.34 | 0.0345 | ||
EAWF+EGF | 29.736 | 0.8675 | 821.3 | 0.0161 | 22.4528 | 0.39538 | 37.332 | 0.0758 | - | - | - | - | ||
EAWF+2(EGF) | 29.813 | 0.8953 | 1683.6 | 0.0113 | 23.8474 | 0.50649 | 75.113 | 0.0531 | - | - | - | - | ||
EAWF+2(EGF)+WLS | 29.618 | 0.8958 | 2388.9 | 0.0095 | 25.8651 | 0.70259 | 230.84 | 0.0301 | 29.265 | 0.8338 | 429.12 | 0.0225 | ||
The rate of decline | - | - | - | - | -12.67% | -21.57% | -90.34% | -68.44% | -1.19% | -6.92% | -82.04% | -57.78% | ||
Man (512 × 512) | 0.04 | Noisy image | 21.67 | 0.5741 | 25.194 | 0.1226 | 21.67 | 0.5741 | 25.194 | 0.1226 | 21.67 | 0.5741 | 25.194 | 0.1226 |
EAWF | 27.953 | 0.7722 | 161.71 | 0.0485 | - | - | - | - | 27.953 | 0.7722 | 161.71 | 0.0485 | ||
EAWF+EGF | 28.93 | 0.8198 | 928.79 | 0.0202 | 23.8873 | 0.62597 | 60.549 | 0.0779 | - | - | - | - | ||
EAWF+2(EGF) | 28.65 | 0.809 | 1463.4 | 0.0161 | 24.6302 | 0.64974 | 96.923 | 0.0614 | - | - | - | - | ||
EAWF+2(EGF)+WLS | 28.044 | 0.782 | 1798.2 | 0.0145 | 26.5694 | 0.73599 | 221.2 | 0.0405 | 28.506 | 0.795 | 293.84 | 0.0357 | ||
The rate of decline | - | - | - | - | -5.26% | -5.89% | -87.70% | -64.20% | 1.65% | 1.66% | -83.66% | -59.38% | ||
Boat (512 × 512) | 0.04 | Noisy image | 18.892 | 0.3536 | 24.894 | 0.1256 | 18.8922 | 0.35363 | 24.894 | 0.1256 | 18.892 | 0.3536 | 24.894 | 0.1256 |
EAWF | 26.014 | 0.6072 | 162.64 | 0.0492 | - | - | - | - | 26.014 | 0.6072 | 162.64 | 0.0492 | ||
EAWF + EGF | 28.21 | 0.7562 | 678.86 | 0.024 | 20.8253 | 0.38558 | 59.827 | 0.07980 | - | - | - | - | ||
EAWF + 2(EGF) | 28.414 | 0.7902 | 1344.5 | 0.0171 | 21.4729 | 0.40022 | 95.768 | 0.06290 | - | - | - | - | ||
EAWF + 2(EGF) + WLS | 28.283 | 0.7927 | 1883.5 | 0.0144 | 23.1636 | 0.45335 | 218.56 | 0.04149 | 27.14 | 0.6697 | 324.69 | 0.0348 | ||
The rate of decline | - | - | - | - | -18.10% | -42.81% | -88.40% | -65.29% | -4.04% | -15.51% | -82.76% | -58.62% | ||
Lena (512 × 512) | 0.04 | Noisy image | 19.8 | 0.3978 | 24.038 | 0.1333 | 19.7995 | 0.39779 | 24.037 | 0.1333 | 19.8 | 0.3978 | 24.038 | 0.1333 |
EAWF | 26.873 | 0.6713 | 171.85 | 0.0499 | 26.873 | 0.6713 | 171.85 | 0.0499 | ||||||
EAWF + EGF | 28.951 | 0.8497 | 1279.7 | 0.0182 | 22.4346 | 0.46393 | 49.816 | 0.0923 | ||||||
EAWF + 2(EGF) | 29.748 | 0.8576 | 2240.6 | 0.0138 | 23.7064 | 0.52094 | 87.360 | 0.0693 | ||||||
EAWF + 2(EGF) + WLS | 30.137 | 0.8504 | 2907.6 | 0.0121 | 25.7009 | 0.65416 | 203.84 | 0.0452 | 27.914 | 0.7469 | 312.74 | 0.0371 | ||
The rate of decline | - | - | - | - | -14.72% | -23.07% | -92.99% | -73.23% | -7.38% | -12.16% | -89.24% | -67.39% | ||
Peppers (512 × 512) | 0.04 | Noisy image | 19.987 | 0.3539 | 24.356 | 0.1379 | 19.987 | 0.35385 | 24.355 | 0.1379 | 19.987 | 0.3539 | 24.356 | 0.1379 |
EAWF | 26.784 | 0.6106 | 127.21 | 0.0603 | - | - | - | - | 26.784 | 0.6106 | 127.21 | 0.0603 | ||
EAWF + EGF | 29.862 | 0.7598 | 559.2 | 0.0288 | 22.64196 | 0.430494 | 47.345 | 0.0984 | - | - | - | - | ||
EAWF + 2(EGF) | 29.965 | 0.7729 | 814.29 | 0.0238 | 23.7408 | 0.47675 | 69.794 | 0.0807 | - | - | - | - | ||
EAWF + 2(EGF) + WLS | 29.906 | 0.7742 | 930.47 | 0.0223 | 25.9545 | 0.60132 | 125.54 | 0.06 | 28.278 | 0.6835 | 169.52 | 0.0525 | ||
The rate of decline | - | - | - | - | -13.21% | -22.33% | -86.51% | -62.83% | -5.44% | -11.71% | -81.78% | -57.52% | ||
Cameraman (512 × 512) | 0.04 | Noisy image | 19.64 | 0.3972 | 24.43 | 0.1313 | 19.6395 | 0.39716 | 24.430 | 0.1313 | 19.64 | 0.3972 | 24.43 | 0.1313 |
EAWF | 26.784 | 0.6273 | 165.07 | 0.0505 | - | - | - | - | 26.784 | 0.6273 | 165.07 | 0.0505 | ||
EAWF + EGF | 29.401 | 0.8302 | 836.91 | 0.0224 | 22.4336 | 0.45352 | 52.343 | 0.0888 | - | - | - | - | ||
EAWF + 2(EGF) | 29.351 | 0.8439 | 1126.1 | 0.0193 | 23.6573 | 0.49083 | 79.734 | 0.0717 | - | - | - | - | ||
EAWF + 2(EGF) + WLS | 29.121 | 0.8378 | 1279.7 | 0.0181 | 25.859 | 0.59268 | 165.47 | 0.0496 | 28.096 | 0.7062 | 295.53 | 0.0378 | ||
The rate of decline | - | - | - | - | -11.20% | -29.25% | -87.07% | -63.51% | -3.52% | -15.70% | -76.91% | -52.12% | ||
Mean of decline rate | - | - | - | - | -12.53% | -24.15% | -88.83% | -66.25% | -3.32% | -10.06% | -82.73% | -58.80% |
Methods | Optimal Parameters |
---|---|
NLM | Mask size = 3 × 3 |
Frost | Mask size = 3 × 3 |
Lee | Mask size = 3 × 3 |
Bitonic | Mask size = 3 × 3 |
WLS | Mask size = 3 × 3, λ = 3 |
NLLR | Β = 10, H = 10 |
ADMSS | Δt = 0.5, |
SAR-BM3D | Number of rows/cols of block = 9, Maximum size of the 3rd dimension of a stack = 16, Diameter of search area = 39, Dimension of step = 3, Parameter of the 2D Kaiser window = 2, transform UDWT = daub4 |
Noisy | NLM | Guided | Frost | Lee | Bitonic | WLS | NLLR | ADMSS | SRAD | SARD-Guided | SAR-BM3D | Choi at al | Proposed | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Airplane | 16.53 | 19.12 | 19.14 | 22.06 | 23.78 | 26.18 | 24.97 | 17.39 | 23.43 | 26.97 | 26.53 | 28.10 | 27.45 | 27.91 |
Baboon | 18.49 | 21.13 | 21.09 | 21.08 | 21.91 | 21.97 | 21.97 | 19.53 | 18.28 | 23.52 | 22.07 | 22.51 | 22.92 | 23.08 |
Barbara | 19.16 | 22.40 | 22.05 | 22.34 | 23.26 | 23.68 | 23.78 | 20.39 | 20.50 | 24.99 | 23.75 | 28.32 | 24.59 | 25.94 |
Boat | 18.46 | 21.81 | 21.68 | 23.36 | 19.41 | 26.39 | 25.50 | 19.65 | 20.14 | 27.37 | 26.59 | 27.20 | 27.55 | 28.24 |
Camera-man | 18.66 | 21.65 | 21.59 | 22.41 | 22.85 | 24.43 | 25.03 | 19.75 | 17.59 | 26.73 | 24.71 | 26.35 | 26.87 | 28.43 |
Fruits | 17.08 | 19.96 | 19.98 | 22.30 | 24.08 | 26.33 | 26.31 | 18.04 | 22.07 | 27.45 | 26.93 | 27.68 | 27.45 | 27.79 |
Hill | 19.79 | 23.54 | 23.38 | 24.64 | 25.48 | 27.58 | 26.75 | 21.26 | 24.92 | 28.25 | 27.82 | 28.30 | 28.27 | 28.19 |
House | 17.93 | 21.16 | 21.02 | 23.26 | 25.06 | 27.38 | 25.93 | 19.09 | 22.46 | 27.58 | 27.81 | 29.83 | 28.58 | 28.90 |
Lena | 18.84 | 22.45 | 22.31 | 24.29 | 25.88 | 28.54 | 27.39 | 20.11 | 21.88 | 29.69 | 28.99 | 29.91 | 30.13 | 28.38 |
Man | 19.51 | 23.07 | 22.94 | 24.41 | 26.15 | 27.46 | 26.46 | 20.83 | 20.82 | 28.31 | 27.68 | 27.71 | 28.55 | 28.00 |
Monarch | 20.19 | 24.55 | 24.10 | 25.11 | 26.76 | 27.70 | 25.87 | 21.99 | 24.00 | 29.50 | 28.03 | 29.54 | 29.64 | 29.59 |
Napoli | 21.00 | 24.62 | 24.27 | 24.06 | 24.48 | 24.34 | 23.69 | 22.71 | 22.90 | 26.41 | 24.34 | 25.14 | 25.70 | 26.83 |
Peppers | 18.74 | 22.05 | 21.79 | 23.50 | 22.92 | 26.62 | 25.77 | 19.96 | 18.13 | 28.29 | 27.22 | 27.13 | 28.44 | 28.53 |
Zelda | 21.18 | 26.23 | 25.94 | 26.71 | 28.62 | 31.40 | 30.66 | 23.19 | 29.28 | 32.67 | 32.20 | 32.38 | 32.77 | 32.58 |
Noisy | NLM | Guided | Frost | Lee | Bitonic | WLS | NLLR | ADMSS | SRAD | SARD-Guided | SAR-BM3D | Choi at al | Proposed | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Airplane | 0.21 | 0.29 | 0.28 | 0.37 | 0.50 | 0.66 | 0.70 | 0.25 | 0.73 | 0.72 | 0.76 | 0.84 | 0.82 | 0.84 |
Baboon | 0.49 | 0.56 | 0.56 | 0.47 | 0.54 | 0.52 | 0.53 | 0.53 | 0.39 | 0.65 | 0.53 | 0.56 | 0.61 | 0.57 |
Barbara | 0.44 | 0.61 | 0.57 | 0.50 | 0.60 | 0.64 | 0.67 | 0.55 | 0.52 | 0.68 | 0.65 | 0.84 | 0.69 | 0.75 |
Boat | 0.33 | 0.46 | 0.44 | 0.47 | 0.60 | 0.68 | 0.67 | 0.40 | 0.39 | 0.71 | 0.70 | 0.72 | 0.73 | 0.79 |
Camera-man | 0.42 | 0.49 | 0.48 | 0.48 | 0.57 | 0.67 | 0.73 | 0.45 | 0.36 | 0.76 | 0.74 | 0.80 | 0.80 | 0.83 |
Fruits | 0.18 | 0.28 | 0.27 | 0.33 | 0.48 | 0.64 | 0.70 | 0.23 | 0.43 | 0.76 | 0.76 | 0.78 | 0.78 | 0.78 |
Hill | 0.38 | 0.56 | 0.54 | 0.53 | 0.64 | 0.69 | 0.68 | 0.49 | 0.58 | 0.73 | 0.71 | 0.73 | 0.73 | 0.72 |
House | 0.25 | 0.41 | 0.38 | 0.41 | 0.53 | 0.67 | 0.71 | 0.33 | 0.53 | 0.78 | 0.76 | 0.84 | 0.78 | 0.81 |
Lena | 0.29 | 0.45 | 0.43 | 0.45 | 0.60 | 0.73 | 0.75 | 0.38 | 0.47 | 0.81 | 0.75 | 0.84 | 0.83 | 0.85 |
Man | 0.37 | 0.56 | 0.54 | 0.54 | 0.66 | 0.72 | 0.71 | 0.50 | 0.50 | 0.76 | 0.74 | 0.76 | 0.77 | 0.78 |
Monarch | 0.31 | 0.60 | 0.55 | 0.53 | 0.69 | 0.81 | 0.83 | 0.47 | 0.80 | 0.86 | 0.88 | 0.90 | 0.89 | 0.90 |
Napoli | 0.49 | 0.72 | 0.69 | 0.61 | 0.69 | 0.70 | 0.68 | 0.67 | 0.66 | 0.77 | 0.70 | 0.73 | 0.75 | 0.80 |
Peppers | 0.36 | 0.54 | 0.52 | 0.54 | 0.65 | 0.77 | 0.77 | 0.46 | 0.36 | 0.82 | 0.82 | 0.83 | 0.84 | 0.85 |
Zelda | 0.35 | 0.61 | 0.58 | 0.55 | 0.70 | 0.80 | 0.82 | 0.51 | 0.77 | 0.86 | 0.85 | 0.87 | 0.86 | 0.86 |
Filters | Best | Second Best | Total |
---|---|---|---|
Proposed Method | 14 (41%) | 11 (34%) | 25 (38%) |
SARD-BM3D | 11 (32%) | 4 (12%) | 15 (23%) |
Choi at al | 6 (17%) | 12 (37%) | 18 (27%) |
SRAD | 3 (8%) | 4 (12%) | 6 (9%) |
SRAD-Guided | 0 (0%) | 1 (3%) | 1 (1%) |
Total | 34 | 32 | 65 |
Noisy | NLM | Guided | Frost | Lee | Bitonic | WLS | NLLR | ADMSS | SRAD | SRAD-Guided | SAR-BM3D | Choi at al | Proposed | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ROI 1 | 14.3256 | 29.53 | 16.2 | 48.8 | 62 | 99.3 | 207.6 | 21.2 | 201.6 | 146.91 | 174.02 | 186.54 | 205.89 | 370.79 |
ROI 2 | 16.6041 | 28.66 | 13.1 | 39.4 | 51 | 80.6 | 180.4 | 20.56 | 124.8 | 117.17 | 141.3 | 129.35 | 160.67 | 208.54 |
Noisy | Bilateral | Fast Bilateral | GF | WLS | DPAD | SRAD | SAR-BM3D | Proposed Method | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ENL | STD | ENL | STD | ENL | STD | ENL | STD | ENL | STD | ENL | STD | ENL | STD | ENL | STD | ENL | STD | |
ROI 1 | 7.85 | 12.75 | 48.28 | 5. 07 | 81.860 | 3.827 | 78.75 | 3.80 | 137.8 | 2.901 | 9.36 | 11.54 | 9.783 | 11.27 | 26.6 | 7.119 | 88.624 | 3.799 |
ROI 2 | 39.5 | 19.62 | 333.7 | 6.73 | 617.36 | 4.957 | 201.6 | 8.66 | 2045 | 2.675 | 165.2 | 9.586 | 179.6 | 9.171 | 597 | 5.056 | 1107.5 | 3.658 |
Methods | Parameters |
---|---|
Guide | nhoodSize = 8; smoothValue = 0.01 × diff(getrangefromclass(A))2; |
SAR-BM3D | Number of looks = 1 |
Bilateral | Windows size=3, spatial parameter = 2, Intensity parameter = 1.11. |
Fast Bilateral | spatial parameter= 3, Intensity parameter=100. |
WLS | Lambda = 0.5 |
DPAD | Noise Estimation Method = 5, The statistics for noise estimation are estimated on a 5 x 5 square window, Simplified SRAD = ’aja’ |
Filters | Noise Variance | PSNR | SNR | SSIM | MAE | Noise Variance | PSNR | SNR | SSIM | MAE |
---|---|---|---|---|---|---|---|---|---|---|
Proposed Method | 0.04 | 30.5096 | 17.8982 | 0.7288 | 0.0206 | 0.06 | 30.2008 | 17.5895 | 0.7329 | 0.0211 |
SRAD | 30.4319 | 17.8905 | 0.7117 | 0.0208 | 29.9429 | 17.3315 | 0.7768 | 0.0221 | ||
DPAD | 31.0851 | 18.4737 | 0.8074 | 0.0196 | 29.9584 | 17.3470 | 0.7779 | 0.0222 | ||
SARBM3D | 30.1945 | 17.5832 | 0.7234 | 0.0216 | 29.8910 | 17.2796 | 0.7202 | 0.0224 | ||
WLS | 25.7167 | 13.1054 | 0.6390 | 0.0306 | 25.9700 | 13.3586 | 0.6480 | 0.0297 | ||
Guided | 28.3137 | 15.702 | 0.6879 | 0.0255 | 28.0553 | 15.4440 | 0.6842 | 0.0261 | ||
Bilateral | 28.1968 | 15.5854 | 0.6923 | 0.0243 | 28.1085 | 15.4972 | 0.6886 | 0.0246 | ||
Fast Bilateral | 27.4941 | 14.8827 | 0.6603 | 0.0264 | 27.4814 | 14.8700 | 0.6633 | 0.0264 | ||
Proposed Method | 0.08 | 29.7943 | 17.1829 | 0.7353 | 0.0216 | 0.1 | 29.3930 | 16.7816 | 0.7325 | 0.0222 |
SRAD | 29.1088 | 16.4974 | 0.7530 | 0.0241 | 28.4999 | 15.8885 | 0.7309 | 0.0257 | ||
DPAD | 29.2707 | 16.6594 | 0.7560 | 0.0238 | 28.6795 | 16.0682 | 0.7347 | 0.0253 | ||
SARBM3D | 29.5661 | 16.9547 | 0.7187 | 0.0232 | 29.2430 | 16.6316 | 0.7168 | 0.0241 | ||
WLS | 26.1780 | 13.5666 | 0.6565 | 0.0291 | 26.3455 | 13.7341 | 0.6621 | 0.0286 | ||
Guided | 27.7338 | 15.1224 | 0.6769 | 0.0269 | 26.7039 | 14.0926 | 0.6646 | 0.0311 | ||
Bilateral | 28.0322 | 15.4208 | 0.6861 | 0.0249 | 27.9592 | 15.3478 | 0.6822 | 0.0252 | ||
Fast Bilateral | 27.4509 | 14.8395 | 0.6658 | 0.0263 | 27.4259 | 14.8145 | 0.6665 | 0.0264 |
Images | NLM | Guided | Frost | Lee | Bitonic | WLS | NLLR | ADMSS | SRAD | SARD-Guided | SAR-BM3D | Choi at al | Proposed |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Airplane | 0.48 | 0.16 | 1.86 | 6.41 | 0.09 | 3.51 | 1052.12 | 196.87 | 5.51 | 5.92 | 61.50 | 5.70 | 2.31 |
Baboon | 0.48 | 0.11 | 2.00 | 7.29 | 0.10 | 0.48 | 1030.23 | 173.14 | 2.45 | 2.61 | 59.84 | 2.76 | 2.24 |
Barbara | 0.50 | 0.12 | 2.05 | 7.28 | 0.08 | 1.00 | 1003.88 | 162.76 | 3.44 | 3.74 | 59.36 | 3.74 | 2.31 |
Boat | 0.48 | 0.11 | 2.01 | 7.28 | 0.09 | 0.98 | 1007.25 | 174.22 | 5.06 | 5.48 | 61.07 | 5.36 | 2.32 |
Camera-man | 0.12 | 0.08 | 0.52 | 1.88 | 0.03 | 0.46 | 211.28 | 21.64 | 1.55 | 1.21 | 14.45 | 1.91 | 0.40 |
Fruits | 0.48 | 0.11 | 2.03 | 7.31 | 0.09 | 0.97 | 1012.13 | 181.41 | 7.40 | 7.85 | 62.17 | 7.84 | 2.31 |
Hill | 0.48 | 0.11 | 1.98 | 7.25 | 0.09 | 0.99 | 1061.75 | 162.39 | 4.98 | 5.62 | 61.38 | 5.28 | 2.19 |
House | 0.12 | 0.09 | 0.53 | 1.92 | 0.03 | 0.49 | 231.46 | 28.01 | 1.54 | 1.05 | 14.34 | 1.83 | 0.42 |
Lena | 0.48 | 0.16 | 1.86 | 6.47 | 0.10 | 1.00 | 1081.19 | 170.44 | 7.53 | 8.03 | 60.16 | 7.71 | 2.25 |
Man | 0.48 | 0.11 | 1.99 | 7.32 | 0.09 | 1.09 | 1057.03 | 165.61 | 5.23 | 5.70 | 60.15 | 5.40 | 2.24 |
Monarch | 0.73 | 0.13 | 2.85 | 9.77 | 0.12 | 1.51 | 1661.38 | 277.26 | 8.48 | 5.96 | 87.94 | 8.93 | 3.24 |
Napoli | 0.50 | 0.12 | 1.90 | 6.64 | 0.08 | 1.07 | 1060.22 | 168.11 | 4.02 | 4.10 | 59.55 | 4.31 | 2.28 |
Peppers | 0.12 | 0.09 | 0.50 | 1.71 | 0.03 | 0.50 | 218.14 | 26.96 | 1.04 | 1.16 | 14.49 | 1.32 | 0.40 |
Zelda | 0.48 | 0.12 | 1.88 | 6.88 | 0.09 | 0.99 | 1001.87 | 164.50 | 7.10 | 7.45 | 59.57 | 7.32 | 2.35 |
Avg. | 0.42 | 0.12 | 1.71 | 6.10 | 0.08 | 1.07 | 906.42 | 148.09 | 4.67 | 4.71 | 52.57 | 5.06 | 1.92 |
Images | EAWF | EGF(First Time) | EGF(Second Time) | WLS | Total |
---|---|---|---|---|---|
Airplane | 0.0295 | 0.1024 | 0.0866 | 2.0926 | 2.31 |
Baboon | 0.0534 | 0.2491 | 0.0798 | 1.8591 | 2.24 |
Barbara | 0.0314 | 0.1072 | 0.0969 | 2.0737 | 2.31 |
Boat | 0.0299 | 0.0998 | 0.0913 | 2.0994 | 2.32 |
Camera-man | 0.0172 | 0.1070 | 0.0169 | 0.2597 | 0.40 |
Fruits | 0.0396 | 0.2182 | 0.0790 | 1.9733 | 2.31 |
Hill | 0.0436 | 0.2432 | 0.0913 | 1.8118 | 2.19 |
House | 0.0063 | 0.0237 | 0.0219 | 0.3681 | 0.42 |
Lena | 0.0375 | 0.2024 | 0.0811 | 1.9295 | 2.25 |
Man | 0.0401 | 0.2136 | 0.0779 | 1.9077 | 2.24 |
Monarch | 0.0426 | 0.2385 | 0.1060 | 2.8538 | 3.24 |
Napoli | 0.0300 | 0.1678 | 0.0740 | 2.0083 | 2.28 |
Peppers | 0.0059 | 0.0241 | 0.0219 | 0.3505 | 0.40 |
Zelda | 0.0398 | 0.2167 | 0.0813 | 2.0123 | 2.35 |
Avg. | 0.0319 | 0.1581 | 0.0718 | 1.6857 | 1.92 |
NLM | Guided | Frost | Lee | Bitonic | WLS | NLLR | ADMSS | SRAD | SRAD-Guided | SAR-BM3D | Choi at al | Proposed | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SAR image 1 | 20.47 | 0.19 | 1.73 | 6.23 | 0.12 | 0.71 | 1071.8 | 191.19 | 7.09 | 7.48 | 62.95 | 7.45 | 2.76 |
Bilateral | Fast Bilateral | GF | WLS | DPAD | SRAD | SAR-BM3D | Fang at al | Proposed | |
---|---|---|---|---|---|---|---|---|---|
SAR image 2 | 25.18409 | 1.173549 | 0.465048 | 8.785592 | 34.505417 | 34.095685 | 1051.7271 | 198.9801 | 11.207373 |
EAWF | EGF (First Time) | EEGF (Second Time) | WLS | Total | |
---|---|---|---|---|---|
SAR image 1 | 0.0341666 | 0.10135565 | 0.09835454 | 2.52735569 | 2.76123248 |
EAWF | EGF (First time) | EEGF (Secondd titime) | WLS | Total | |
---|---|---|---|---|---|
SAR image 2 | 0.092552 | 0.682677 | 0.933745 | 9.498399 | 11.207373 |
Filters | Noise Variance | Run Time | Noise Variance | Run Time |
---|---|---|---|---|
Proposed Method | 0.04 | 3.51532 | 0.06 | 2.87514 |
SRAD | 8.55225 | 8.67667 | ||
DPAD | 9.39500 | 8.93444 | ||
SARBM3D | 286.548 | 283.948 | ||
WLS | 1.95118 | 1.69643 | ||
Guided | 0.12702 | 0.14519 | ||
Bilateral | 7.22676 | 6.94197 | ||
Fast Bilateral | 0.42709 | 0.39429 | ||
Proposed Method | 0.08 | 2.86262 | 0.1 | 3.98923 |
SRAD | 9.02507 | 8.67005 | ||
DPAD | 8.75984 | 8.21100 | ||
SARBM3D | 284.064 | 285.219 | ||
WLS | 1.71835 | 1.66355 | ||
Guided | 0.13848 | 0.15345 | ||
Bilateral | 7.38375 | 8.77612 | ||
Fast Bilateral | 0.44584 | 0.79916 |
Noise Variance | EAWF | EGF (First Time) | EGF (Second Time) | WLS | Total |
---|---|---|---|---|---|
0.04 | 0.03511 | 0.710129 | 1.078701 | 1.691 | 3.515 |
0.06 | 0.03385 | 0.443889 | 0.565306 | 1.832 | 2.875 |
0.08 | 0.03495 | 0.441253 | 0.604423 | 1.782 | 2.863 |
0.1 | 0.03799 | 1.500044 | 0.571564 | 1.871 | 3.981 |
0.03548 | 0.773828 | 0.704998 | 1.794 | 3.31 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salehi, H.; Vahidi, J.; Abdeljawad, T.; Khan, A.; Rad, S.Y.B. A SAR Image Despeckling Method Based on an Extended Adaptive Wiener Filter and Extended Guided Filter. Remote Sens. 2020, 12, 2371. https://doi.org/10.3390/rs12152371
Salehi H, Vahidi J, Abdeljawad T, Khan A, Rad SYB. A SAR Image Despeckling Method Based on an Extended Adaptive Wiener Filter and Extended Guided Filter. Remote Sensing. 2020; 12(15):2371. https://doi.org/10.3390/rs12152371
Chicago/Turabian StyleSalehi, Hadi, Javad Vahidi, Thabet Abdeljawad, Aziz Khan, and Seyed Yaser Bozorgi Rad. 2020. "A SAR Image Despeckling Method Based on an Extended Adaptive Wiener Filter and Extended Guided Filter" Remote Sensing 12, no. 15: 2371. https://doi.org/10.3390/rs12152371
APA StyleSalehi, H., Vahidi, J., Abdeljawad, T., Khan, A., & Rad, S. Y. B. (2020). A SAR Image Despeckling Method Based on an Extended Adaptive Wiener Filter and Extended Guided Filter. Remote Sensing, 12(15), 2371. https://doi.org/10.3390/rs12152371