Self-Supervised Despeckling Algorithm with an Enhanced U-Net for Synthetic Aperture Radar Images
Abstract
:1. Introduction
- Due to the poor feature extraction and fusion capabilities of U-Net [37], we design a novel deep CNN by enhancing U-Net. The novel deep CNN is called enhanced U-Net (EUNet).
- In order to address the difference of target pixel values between neighbors on the original noisy image, a self-supervised training loss function with a regularization loss is put forward.
- Visual and quantitative experiments conducted on simulated and real-world SAR images show that the proposed algorithm notably reduces speckle noise with better preserving features, which outputform several state-of-art despeckling methods.
2. Related Work
2.1. Noisy-Clean Despeckling Methods
2.2. Noisy-Noisy Despeckling Methods
3. Proposed Method
3.1. Overview of Proposed SSEUNet
3.2. Proposed GTP Module
3.3. Enhanced U-Net
3.4. Loss Function of SSEUNet
4. Experiments and Analysis
4.1. Implementation Details
4.2. Datasets
4.3. Evaluation Metrics
4.4. Results and Discussion
4.4.1. Experiments on Simulated SAR Images
4.4.2. Experiments on Real-World SAR Images
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Wei, J.; Deng, J.; Gao, Y.; Zhao, S.; He, Z. Mapping Outburst Floods Using a Collaborative Learning Method Based on Temporally Dense Optical and SAR Data: A Case Study with the Baige Landslide Dam on the Jinsha River, Tibet. Remote Sens. 2021, 13, 2205. [Google Scholar] [CrossRef]
- Qin, Y.; Xiao, X.; Wang, J.; Dong, J.; Ewing, K.; Hoagland, B.; Hough, D.J.; Fagin, T.D.; Zou, Z.; Geissler, G.L.; et al. Mapping Annual Forest Cover in Sub-Humid and Semi-Arid Regions through Analysis of Landsat and PALSAR Imagery. Remote Sens. 2016, 8, 933. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Zhang, X.; Ke, X.; Zhan, X.; Shi, J.; Wei, S.; Pan, D.; Li, J.; Su, H.; Zhou, Y.; et al. LS-SSDD-v1.0: A Deep Learning Dataset Dedicated to Small Ship Detection from Large-Scale Sentinel-1 SAR Images. Remote Sens. 2020, 12, 2997. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, X.; Ke, X.; Liu, C.; Xu, X.; Zhan, X.; Wang, C.; Ahmad, I.; Zhou, Y.; Pan, D.; et al. HOG-ShipCLSNet: A Novel Deep Learning Network with HOG Feature Fusion for SAR Ship Classification. IEEE Trans. Geosci. Remote Sens. 2021. [Google Scholar] [CrossRef]
- Herzfeld, U.C.; Williams, S.; Heinrichs, J.; Maslanik, J.; Sucht, S. Geostatistical and Statistical Classification of Sea-Ice Properties and Provinces from SAR Data. Remote Sens. 2016, 8, 616. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Diwakar, M.; Shankar, A.; Shree, R.; Kumar, M. A Review on SAR Image and its Despeckling. Arch. Comput. Methods Eng. 2021. [Google Scholar] [CrossRef]
- Argenti, F.; Lapini, A.; Bianchi, T.; Alparone, L. A Tutorial on Speckle Reduction in Synthetic Aperture Radar Images. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–35. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Zhang, X.; Shi, J.; Wei, S.; Wang, J.; Li, J.; Su, H.; Zhou, Y. Balance Scene Learning Mechanism for Offshore and Inshore Ship Detection in SAR Images. IEEE Geosci. Remote Sens. Lett. 2020, 1–5. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, X. ShipDeNet-20: An Only 20 Convolution Layers and <1-MB Lightweight SAR Ship Detector. IEEE Geosci. Remote Sens. Lett. 2021, 18, 1234–1238. [Google Scholar]
- Zhang, T.; Zhang, X. A Polarization Fusion Network with Geometric Feature Embedding for SAR Ship Classification. Pattern Recognit. 2021, 123, 108365. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, X. Squeeze-and-Excitation Laplacian Pyramid Network with Dual-Polarization Feature Fusion for Ship Classification in SAR Images. IEEE Geosci. Remote Sens. Lett. 2021, 1. [Google Scholar] [CrossRef]
- Wei, Y.; Li, Y.; Ding, Z.; Wang, Y.; Zeng, T.; Long, T. SAR Parametric Super-Resolution Image Reconstruction Methods Based on ADMM and Deep Neural Network. IEEE Trans. Geosci. Remote Sens. 2021. [Google Scholar] [CrossRef]
- Lee, J.S. Speckle analysis and smoothing of synthetic aperture radar images. Comput. Graph. Image Process. 1981, 17, 24–32. [Google Scholar] [CrossRef]
- Frost, V.S.; Stiles, J.A.; Shanmugan, K.S.; Holtzman, J.C. A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise. IEEE Trans. Pattern Anal. Mach. Intell. 1982, 4, 157–166. [Google Scholar] [CrossRef]
- Kuan, D.T.; Sawchuk, A.A.; Strand, T.C.; Chavel, P. Adaptive Noise Smoothing Filter for Images with Signal-Dependent Noise. IEEE Trans. Pattern Anal. Mach. Intell. 1985, 7, 165–177. [Google Scholar] [CrossRef]
- Deledalle, C.; Denis, L.; Tupin, F. Iterative Weighted Maximum Likelihood Denoising with Probabilistic Patch-Based Weights. IEEE Signal Process. 2009, 18, 2661–2672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parrilli, S.; Poderico, M.; Angelino, C.V.; Verdoliva, L. A Nonlocal SAR Image Denoising Algorithm Based on LLMMSE Wavelet Shrinkage. IEEE Geosci. Remote Sens. 2012, 50, 606–616. [Google Scholar] [CrossRef]
- Deledalle, C.A.; Denis, L.; Tupin, F.; Reigber, A.; Jager, M. NL-SAR: A unified nonlocal framework for resolution-preserving (Pol)(In)SAR denoising. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2021–2038. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Zhang, X.; Li, J.; Xu, X.; Wang, B.; Zhan, X.; Xu, Y.; Ke, X.; Zeng, T.; Su, H.; et al. SAR Ship Detection Dataset (SSDD): Official Release and Comprehensive Data Analysis. Remote Sens. 2021, 13, 3690. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, X.; Shi, J.; Wei, S. HyperLi-Net: A hyper-light deep learning network for high-accurate and high-speed ship detection from synthetic aperture radar imagery. ISPRS J. Photogramm. Remote Sens. 2020, 167, 123–153. [Google Scholar] [CrossRef]
- Chierchia, G.; Cozzolino, D.; Poggi, G.; Verdoliva, L. SAR image despeckling through convolutional neural networks. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, TX, USA, 23–28 July 2017; pp. 5438–5441. [Google Scholar]
- Cozzolino, D.; Verdoliva, L.; Scarpa, G.; Poggi, G. Nonlocal CNN SAR Image Despeckling. Remote Sens. 2020, 12, 1006. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Yuan, Q.; Li, J.; Zhen, Y.; Zhang, L. Learning a Dilated Residual Network for SAR Image Despeckling. Remote Sens. 2018, 10, 196. [Google Scholar] [CrossRef] [Green Version]
- Gui, Y.; Xue, L.; Li, X. SAR image despeckling using a dilated densely connected network. Remote Sens. Lett. 2018, 9, 857–866. [Google Scholar] [CrossRef]
- Shen, H.; Zhou, C.; Li, J.; Yuan, Q. SAR Image Despeckling Employing a Recursive Deep CNN Prior. IEEE Geosci. Remote Sens. 2021, 59, 273–286. [Google Scholar] [CrossRef]
- Dalsasso, E.; Denis, L.; Tupin, F. SAR2SAR: A Semi-Supervised Despeckling Algorithm for SAR Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4321–4329. [Google Scholar] [CrossRef]
- Yuan, Y.; Sun, J.; Guan, J. Blind SAR Image Despeckling Using Self-Supervised Dense Dilated Convolutional Neural Network. arXiv 2019, arXiv:1908.01608. [Google Scholar]
- Molini, A.B.; Valsesia, D.; Fracastoro, G.; Magli, E. Speckle2Void: Deep Self-Supervised SAR Despeckling with Blind-Spot Convolutional Neural Networks. IEEE Geosci. Remote Sens. 2021. [Google Scholar] [CrossRef]
- Yuan, Y.; Guan, J.; Feng, P.; Wu, Y. A Practical Solution for SAR Despeckling with Adversarial Learning Generated Speckled-to-Speckled Images. IEEE Geosci. Remote Sens. Lett. 2020. [Google Scholar] [CrossRef]
- Ma, X.; Wang, C.; Yin, Z.; Wu, P. SAR Image Despeckling by Noisy Reference-Based Deep Learning Method. IEEE Geosci. Remote Sens. 2020, 58, 8807–8818. [Google Scholar] [CrossRef]
- Pan, T.; Peng, D.; Yang, W.; Li, H.C. A Filter for SAR Image Despeckling Using Pre-Trained Convolutional Neural Network Model. Remote Sens. 2019, 11, 2379. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Li, Y.; Xiao, Y.; Bai, Y. HDRANet: Hybrid Dilated Residual Attention Network for SAR Image Despeckling. Remote Sens. 2019, 11, 2921. [Google Scholar] [CrossRef] [Green Version]
- Lehtinen, J.; Munkberg, J.; Hasselgren, J.; Laine, S.; Karras, T.; Aittala, M.; Aila, T. Noise2Noise: Learning Image Restoration without Clean Data. arXiv 2018, arXiv:1803.04189. [Google Scholar]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.C.; Bengio, Y. Generative Adversarial Networks. arXiv 2014, arXiv:1406.2661. [Google Scholar] [CrossRef]
- Mullissa, A.G.; Marcos, D.; Tuia, D.; Herold, M.; Reiche, J. deSpeckNet: Generalizing Deep Learning-Based SAR Image Despeckling. IEEE Geosci. Remote Sens. 2020. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Volume 9351. [Google Scholar]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE Signal Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Li, W.; Li, Y. SAR Image Despeckling Using Multiconnection Network Incorporating Wavelet Features. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1363–1367. [Google Scholar] [CrossRef]
- Vitale, S.; Ferraioli, G.; Pascazio, V. Multi-Objective CNN-Based Algorithm for SAR Despeckling. IEEE Geosci. Remote Sens. 2020. [Google Scholar] [CrossRef]
- Martino, G.D.; Poderico, M.; Poggi, G.; Riccio, D.; Verdoliva, L. Benchmarking framework for SAR despeckling. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1596–1615. [Google Scholar] [CrossRef]
- Laine, S.; Karras, T.; Lehtinen, J.; Aila, T. High-quality self-supervised deep image denoising. In Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), 8–14 December 2019; pp. 6968–6978. [Google Scholar]
- Heinrich, M.; Stille, M.; Buzug, T. Residual U-Net Convolutional Neural Network Architecture for Low-Dose CT Denoising. Curr. Dir. Biomed. Eng. 2018, 4, 297–300. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, J.; Wang, J.; Chen, Q.; Cao, J.; Deng, Z.; Xu, Y.; Tan, M. Closed-Loop Matters: Dual Regression Networks for Single Image Super-Resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 14–19 June 2020; pp. 5406–5415. [Google Scholar]
- Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Springer: Cham, Switzerland, 2018; pp. 3–11. [Google Scholar]
- Li, X.; Chen, H.; Qi, X.; Dou, Q.; Fu, C.W.; Heng, P.A. H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation From CT Volumes. IEEE Trans. Med Imaging 2018, 37, 2663–2674. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Chakraborty, M.; Fenner, D.; Faber, J.; Zhou, K.; Ruempker, G.; Stoecker, H.; Srivastava, N. EPick: Multi-Class Attention-based U-shaped Neural Network for Earthquake Detection and Seismic Phase Picking. arXiv 2021, arXiv:2109.02567. [Google Scholar]
- Cheng, S.; Wang, Y.; Huang, H.; Liu, D.; Fan, H.; Liu, S. NBNet: Noise Basis Learning for Image Denoising with Subspace Projection. arXiv 2020, arXiv:2012.15028. [Google Scholar]
- Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Loy, C.C.; Qiao, Y.; Tang, X. ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks. Eur. Conf. Comput. Vis. 2018, 11133, 63–79. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing-human level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 11–18 December 2015; pp. 1026–1034. [Google Scholar]
- Diederik, P.K.; Jimmy, L.B. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Yi, Y.; Shawn, N. Bag-Of-Visual-Words and Spatial Extensions for Land-Use Classification. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, CA, USA, 2–5 November 2010; pp. 270–279. [Google Scholar]
- Liu, C.; Tupin, F.; Gousseau, Y. Training CNNs on speckled optical dataset for edge detection in SAR images. ISPRS J. Photogramm. Remote Sens. 2020, 170, 88–102. [Google Scholar] [CrossRef]
- Stringham, C.; Farquharson, G.; Castelletti, D.; Quist, E.; Riggi, L.; Eddy, D.; Soenen, S. The Capella X-band SAR Constellation for Rapid Imaging. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 9248–9251. [Google Scholar]
- Lattari, F.; Gonzalez Leon, B.; Asaro, F.; Rucci, A.; Prati, C.; Matteucci, M. Deep Learning for SAR Image Despeckling. Remote Sens. 2019, 11, 1532. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Feng, H.; Hou, B.; Gong, M. SAR image despeckling based on local homogeneous-region segmentation by using pixel-relativity measurement. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2724–2737. [Google Scholar] [CrossRef]
- Deledalle, C.A.; Denis, L.; Tabti, S.; Tupin, F. MuLoG, or How to apply Gaussian denoisers to multi-channel SAR speckle reduction. IEEE Trans. Image Process. 2017, 26, 4389–4403. [Google Scholar] [CrossRef] [Green Version]
- Anfinsen, S.N.; Doulgeris, A.P.; Eltoft, T. Estimation of the equivalent number of looks in polarimetric synthetic aperture radar imagery. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3795–3809. [Google Scholar] [CrossRef]
Images | Sensor | Pol. | Level | Mode | Angle | Oribit | Pixels | Loc. | Data |
---|---|---|---|---|---|---|---|---|---|
Image1 | X7 | VV | SLC | SL | 19.87 | Asc. | 4096 × 3840 | Airport | 23 December 2021 |
Image2 | X7 | VV | SLC | SL | 27.22 | Asc. | 4096 × 3840 | Oman | 23 December 2021 |
Image3 | X4 | VV | SLC | SM | 23.61 | Des. | 4096 × 2560 | Brawley | 22 December 2021 |
Image4 | X4 | VV | SLC | SM | 25.46 | Des. | 4096 × 2560 | Copeland | 2 January 2021 |
Image5 | X4 | VV | SLC | SM | 27.00 | Des. | 4096 × 2560 | Corpus | 9 August 2020 |
Image6 | X4 | VV | SLC | SM | 25.50 | Des. | 4096 × 4096 | Mississippi | 3 September 2020 |
Image7 | X4 | VV | SLC | SM | 21.66 | Asc. | 3072 × 4096 | Strait | 19 February 2021 |
Method | MSE | PSNR | SSIM | Times(s) | Param. | GFLOPS |
---|---|---|---|---|---|---|
Noisy | 0.0512 | 13.1933 | 0.1961 | - | - | - |
Lee | 0.0135 | 19.2929 | 0.4892 | 0.0237 | 1 | - |
Frost | 0.0119 | 19.7729 | 0.5402 | 0.0862 | 1 | - |
PPB | 0.0117 | 19.8064 | 0.5445 | 9.0554 | 5 | - |
SAR-BM3D | 0.0118 | 20.2733 | 0.6156 | 15.5699 | 1 | - |
MuLoG | 0.0138 | 20.1007 | 0.6119 | 7.8607 | 1 | - |
SAR-CNN | 0.0104 | 20.4939 | 0.6170 | 0.0165 | 557,057 | 36.51 |
SAR-DRN | 0.0153 | 19.9947 | 0.6238 | 0.0150 | 185,857 | 12.18 |
SSUNet (Ours) | 0.0097 | 20.7164 | 0.6369 | 0.0166 | 698,017 | 4.62 |
SSEUNet (Ours) | 0.0087 | 21.1912 | 0.6692 | 0.0996 | 84,390,753 | 156.28 |
Method | R1 | R2 | R3 | R4 | Average |
---|---|---|---|---|---|
Noisy | 16.82 | 48.74 | 78.66 | 225.81 | 92.51 |
Lee | 159.19 | 169.99 | 245.66 | 1542.82 | 529.42 |
Frost | 145.10 | 169.42 | 246.17 | 1539.16 | 524.96 |
PPB | 136.27 | 171.74 | 253.36 | 1515.63 | 519.25 |
SAR-BM3D | 155.51 | 190.93 | 238.98 | 1995.89 | 645.33 |
MuLoG | 160.39 | 202.61 | 236.39 | 1561.18 | 540.14 |
SAR-CNN | 165.13 | 175.43 | 232.72 | 1820.80 | 598.52 |
SAR-DRN | 163.46 | 167.19 | 233.23 | 1597.36 | 540.31 |
SSUNet (Ours) | 170.60 | 198.84 | 254.92 | 1999.08 | 655.86 |
SSEUNet (Ours) | 180.70 | 209.07 | 261.34 | 2070.20 | 680.33 |
Method | R5 | R6 | R7 | R8 | ||||
---|---|---|---|---|---|---|---|---|
V | H | V | H | V | H | V | H | |
Lee | 0.9430 | 0.9478 | 0.9876 | 0.9490 | 0.9487 | 0.9563 | 0.9051 | 0.9038 |
Frost | 0.9501 | 0.9544 | 0.9877 | 0.9490 | 0.9587 | 0.9563 | 0.9052 | 0.9117 |
PPB | 0.9565 | 0.9612 | 0.9874 | 0.9688 | 0.9590 | 0.9563 | 0.9054 | 0.9139 |
SAR-BM3D | 0.9586 | 0.9613 | 0.9879 | 0.9893 | 0.9579 | 0.9560 | 0.9062 | 0.9043 |
MuLoG | 0.9585 | 0.9603 | 0.9879 | 0.9881 | 0.9585 | 0.9557 | 0.9048 | 0.9041 |
SAR-CNN | 0.9707 | 0.9618 | 0.9706 | 0.9611 | 0.9549 | 0.9578 | 0.9061 | 0.9132 |
SAR-DRN | 0.9627 | 0.9631 | 0.9707 | 0.9611 | 0.9531 | 0.9575 | 0.9062 | 0.9133 |
SSUNet (Ours) | 0.9567 | 0.9709 | 0.9876 | 0.9883 | 0.9584 | 0.9592 | 0.9043 | 0.9136 |
SSEUNet (Ours) | 0.9923 | 0.9941 | 0.9910 | 0.9912 | 0.9609 | 0.9588 | 0.9086 | 0.9176 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Li, Z.; Li, X.; Liu, S. Self-Supervised Despeckling Algorithm with an Enhanced U-Net for Synthetic Aperture Radar Images. Remote Sens. 2021, 13, 4383. https://doi.org/10.3390/rs13214383
Zhang G, Li Z, Li X, Liu S. Self-Supervised Despeckling Algorithm with an Enhanced U-Net for Synthetic Aperture Radar Images. Remote Sensing. 2021; 13(21):4383. https://doi.org/10.3390/rs13214383
Chicago/Turabian StyleZhang, Gang, Zhi Li, Xuewei Li, and Sitong Liu. 2021. "Self-Supervised Despeckling Algorithm with an Enhanced U-Net for Synthetic Aperture Radar Images" Remote Sensing 13, no. 21: 4383. https://doi.org/10.3390/rs13214383
APA StyleZhang, G., Li, Z., Li, X., & Liu, S. (2021). Self-Supervised Despeckling Algorithm with an Enhanced U-Net for Synthetic Aperture Radar Images. Remote Sensing, 13(21), 4383. https://doi.org/10.3390/rs13214383