Tree Species Diversity Mapping—Success Stories and Possible Ways Forward
Abstract
:1. Introduction
2. Overview of Contributions
- biodiversity of forests, with respect to classical species diversity;
- the mapping of changes in diversity;
- the floristic composition of forests;
- invasive species;
- the functional diversity of forests.
3. Summary of Main Outputs and Findings
- Between several tree species, often only very small inter-class differences in leaf biochemical and structural properties exist, leading to very similar leaf optical properties (Figure 2a).
- Most species exhibit a relatively large intra-class variability of canopy properties [34,36]. Intra-class variability exist, for example in terms of differences in tree age, stem density, growth form, and crown closure [37,38,39]. Additional intra-class variability results from changes in weather and growth conditions.
- Even for relatively closed forests, the canopy reflectance is heavily impacted by the optical properties of the forest floor, specifically, the type and amount of understory vegetation [38,40,41]. This induces a large range of “background noise”, thus “widening” the spectral signature recorded by the sensor [42,43,44].
4. A More Fundamental View Going Forward: Use of Physically-Based Approaches
Biochemical Properties | Structural Properties | ||
---|---|---|---|
Micro-Scale | Macro-Scale | Meso-Scale | |
Chlorophyll A + B content | Leaf structure | Leaf Area Index | Crown size |
Leaf water thickness | Leaf hairing | Leaf angle distribution | Gap size distribution/gap fraction |
Protein content | Waxing | Leaf clumping/ arrangement | Crown shape |
Dry matter content/specific leaf area | Tree branching | Stem density | |
Other photosynthetic pigment content | Leaf size | ||
Non-photosynthetic pigment content | Leaf form |
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPBES Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2019.
- UNEP UN Biodiversity Conference (COP 15). Available online: http://www.unep.org/un-biodiversity-conference-cop-15 (accessed on 26 March 2023).
- Pettorelli, N.; Safi, K.; Turner, W. Satellite Remote Sensing, Biodiversity Research and Conservation of the Future. Phil. Trans. R Soc. B 2014, 369, 20130190. [Google Scholar] [CrossRef] [PubMed]
- Skidmore, A.K.; Pettorelli, N.; Coops, N.C.; Geller, G.N.; Hansen, M.; Lucas, R.; Mücher, C.A.; O’Connor, B.; Paganini, M.; Pereira, H.M.; et al. Agree on Biodiversity Metrics to Track from Space. Nature 2015, 523, 403–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dash, J.; Ogutu, B.O. Recent Advances in Space-Borne Optical Remote Sensing Systems for Monitoring Global Terrestrial Ecosystems. Prog. Phys. Geogr. Earth Environ. 2016, 40, 322–351. [Google Scholar] [CrossRef]
- Pettorelli, N.; Wegmann, M.; Skidmore, A.; Mücher, S.; Dawson, T.P.; Fernandez, M.; Lucas, R.; Schaepman, M.E.; Wang, T.; O’Connor, B.; et al. Framing the Concept of Satellite Remote Sensing Essential Biodiversity Variables: Challenges and Future Directions. Remote Sens. Ecol. Conserv. 2016, 2, 122–131. [Google Scholar] [CrossRef]
- Vihervaara, P.; Auvinen, A.-P.; Mononen, L.; Törmä, M.; Ahlroth, P.; Anttila, S.; Böttcher, K.; Forsius, M.; Heino, J.; Heliölä, J.; et al. How Essential Biodiversity Variables and Remote Sensing Can Help National Biodiversity Monitoring. Glob. Ecol. Conserv. 2017, 10, 43–59. [Google Scholar] [CrossRef]
- Michałowska, M.; Rapiński, J. A Review of Tree Species Classification Based on Airborne LiDAR Data and Applied Classifiers. Remote Sens. 2021, 13, 353. [Google Scholar] [CrossRef]
- Lu, T.; Brandt, M.; Tong, X.; Hiernaux, P.; Leroux, L.; Ndao, B.; Fensholt, R. Mapping the Abundance of Multipurpose Agroforestry Faidherbia Albida Trees in Senegal. Remote Sens. 2022, 14, 662. [Google Scholar] [CrossRef]
- Pearse, G.D.; Watt, M.S.; Soewarto, J.; Tan, A.Y.S. Deep Learning and Phenology Enhance Large-Scale Tree Species Classification in Aerial Imagery during a Biosecurity Response. Remote Sens. 2021, 13, 1789. [Google Scholar] [CrossRef]
- Tian, L.; Fu, W. Bi-Temporal Analysis of Spatial Changes of Boreal Forest Cover and Species in Siberia for the Years 1985 and 2015. Remote Sens. 2020, 12, 4116. [Google Scholar] [CrossRef]
- Krzystek, P.; Serebryanyk, A.; Schnörr, C.; Červenka, J.; Heurich, M. Large-Scale Mapping of Tree Species and Dead Trees in Šumava National Park and Bavarian Forest National Park Using Lidar and Multispectral Imagery. Remote Sens. 2020, 12, 661. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; Zhao, G.; Meng, Y.; Li, B.; Peng, B. The Effect of Topographic Correction on Forest Tree Species Classification Accuracy. Remote Sens. 2020, 12, 787. [Google Scholar] [CrossRef] [Green Version]
- Egli, S.; Höpke, M. CNN-Based Tree Species Classification Using High Resolution RGB Image Data from Automated UAV Observations. Remote Sens. 2020, 12, 3892. [Google Scholar] [CrossRef]
- Xu, K.; Zhang, Z.; Yu, W.; Zhao, P.; Yue, J.; Deng, Y.; Geng, J. How Spatial Resolution Affects Forest Phenology and Tree-Species Classification Based on Satellite and Up-Scaled Time-Series Images. Remote Sens. 2021, 13, 2716. [Google Scholar] [CrossRef]
- Yan, S.; Jing, L.; Wang, H. A New Individual Tree Species Recognition Method Based on a Convolutional Neural Network and High-Spatial Resolution Remote Sensing Imagery. Remote Sens. 2021, 13, 479. [Google Scholar] [CrossRef]
- Kovačević, J.; Cvijetinović, Ž.; Lakušić, D.; Kuzmanović, N.; Šinžar-Sekulić, J.; Mitrović, M.; Stančić, N.; Brodić, N.; Mihajlović, D. Spatio-Temporal Classification Framework for Mapping Woody Vegetation from Multi-Temporal Sentinel-2 Imagery. Remote Sens. 2020, 12, 2845. [Google Scholar] [CrossRef]
- Takahashi Miyoshi, G.; Imai, N.N.; Garcia Tommaselli, A.M.; Antunes de Moraes, M.V.; Honkavaara, E. Evaluation of Hyperspectral Multitemporal Information to Improve Tree Species Identification in the Highly Diverse Atlantic Forest. Remote Sens. 2020, 12, 244. [Google Scholar] [CrossRef] [Green Version]
- Jackson, C.M.; Adam, E. Machine Learning Classification of Endangered Tree Species in a Tropical Submontane Forest Using WorldView-2 Multispectral Satellite Imagery and Imbalanced Dataset. Remote Sens. 2021, 13, 4970. [Google Scholar] [CrossRef]
- Varin, M.; Chalghaf, B.; Joanisse, G. Object-Based Approach Using Very High Spatial Resolution 16-Band WorldView-3 and LiDAR Data for Tree Species Classification in a Broadleaf Forest in Quebec, Canada. Remote Sens. 2020, 12, 3092. [Google Scholar] [CrossRef]
- Wan, H.; Tang, Y.; Jing, L.; Li, H.; Qiu, F.; Wu, W. Tree Species Classification of Forest Stands Using Multisource Remote Sensing Data. Remote Sens. 2021, 13, 144. [Google Scholar] [CrossRef]
- Lechner, M.; Dostálová, A.; Hollaus, M.; Atzberger, C.; Immitzer, M. Combination of Sentinel-1 and Sentinel-2 Data for Tree Species Classification in a Central European Biosphere Reserve. Remote Sens. 2022, 14, 2687. [Google Scholar] [CrossRef]
- Immitzer, M.; Neuwirth, M.; Böck, S.; Brenner, H.; Vuolo, F.; Atzberger, C. Optimal Input Features for Tree Species Classification in Central Europe Based on Multi-Temporal Sentinel-2 Data. Remote Sens. 2019, 11, 2599. [Google Scholar] [CrossRef] [Green Version]
- Karasiak, N.; Dejoux, J.-F.; Fauvel, M.; Willm, J.; Monteil, C.; Sheeren, D. Statistical Stability and Spatial Instability in Mapping Forest Tree Species by Comparing 9 Years of Satellite Image Time Series. Remote Sens. 2019, 11, 2512. [Google Scholar] [CrossRef] [Green Version]
- Chaurasia, A.N.; Dave, M.G.; Parmar, R.M.; Bhattacharya, B.; Marpu, P.R.; Singh, A.; Krishnayya, N.S.R. Inferring Species Diversity and Variability over Climatic Gradient with Spectral Diversity Metrics. Remote Sens. 2020, 12, 2130. [Google Scholar] [CrossRef]
- Immitzer, M.; Atzberger, C.; Koukal, T. Tree Species Classification with Random Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data. Remote Sens. 2012, 4, 2661–2693. [Google Scholar] [CrossRef] [Green Version]
- Waser, L.T.; Rüetschi, M.; Psomas, A.; Small, D.; Rehush, N. Mapping Dominant Leaf Type Based on Combined Sentinel-1/-2 Data—Challenges for Mountainous Countries. ISPRS J. Photogramm. Remote Sens. 2021, 180, 209–226. [Google Scholar] [CrossRef]
- Maschler, J.; Atzberger, C.; Immitzer, M. Individual Tree Crown Segmentation and Classification of 13 Tree Species Using Airborne Hyperspectral Data. Remote Sens. 2018, 10, 1218. [Google Scholar] [CrossRef] [Green Version]
- Lukeš, P.; Stenberg, P.; Rautiainen, M.; Mõttus, M.; Vanhatalo, K.M. Optical Properties of Leaves and Needles for Boreal Tree Species in Europe. Remote Sens. Lett. 2013, 4, 667–676. [Google Scholar] [CrossRef]
- Hosgood, B.; Jacquemoud, S.; Andreoli, G.; Verdebout, J.; Pedrini, G.; Schmuck, G. Leaf Optical Properties Experiment 93 (LOPEX93); Report EUR 16095 EN; European Commission Joint Research Center: Brussels, Belgium, 1994; pp. 1–46. [Google Scholar]
- Widlowski, J.-L.; Mio, C.; Disney, M.; Adams, J.; Andredakis, I.; Atzberger, C.; Brennan, J.; Busetto, L.; Chelle, M.; Ceccherini, G.; et al. The Fourth Phase of the Radiative Transfer Model Intercomparison (RAMI) Exercise: Actual Canopy Scenarios and Conformity Testing. Remote Sens. Environ. 2015, 169, 418–437. [Google Scholar] [CrossRef]
- Atzberger, C. Development of an Invertible Forest Reflectance Model: The INFOR-Model. Decade Trans-Eur. Remote Sens. Coop. 2000, 14, 39–44. [Google Scholar]
- Schlerf, M.; Atzberger, C. Inversion of a Forest Reflectance Model to Estimate Structural Canopy Variables from Hyperspectral Remote Sensing Data. Remote Sens. Environ. 2006, 100, 281–294. [Google Scholar] [CrossRef]
- Modzelewska, A.; Kamińska, A.; Fassnacht, F.E.; Stereńczak, K. Multitemporal Hyperspectral Tree Species Classification in the Białowieża Forest World Heritage Site. For. Int. J. For. Res. 2021, 94, 464–476. [Google Scholar] [CrossRef]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- Hovi, A.; Raitio, P.; Rautiainen, M. A Spectral Analysis of 25 Boreal Tree Species. Silva Fenn. 2017, 51, 7753. [Google Scholar] [CrossRef] [Green Version]
- Leckie, D.G.; Walsworth, N.; Gougeon, F.A. Identifying Tree Crown Delineation Shapes and Need for Remediation on High Resolution Imagery Using an Evidence Based Approach. ISPRS J. Photogramm. Remote Sens. 2016, 114, 206–227. [Google Scholar] [CrossRef]
- Rautiainen, M.; Lukeš, P.; Homolová, L.; Hovi, A.; Pisek, J.; Mõttus, M. Spectral Properties of Coniferous Forests: A Review of In Situ and Laboratory Measurements. Remote Sens. 2018, 10, 207. [Google Scholar] [CrossRef] [Green Version]
- Rautiainen, M.; Stenberg, P.; Nilson, T.; Kuusk, A. The Effect of Crown Shape on the Reflectance of Coniferous Stands. Remote Sens. Environ. 2004, 89, 41–52. [Google Scholar] [CrossRef]
- Jensen, R.R.; Hardin, P.J.; Hardin, A.J. Classification of Urban Tree Species Using Hyperspectral Imagery. Geocarto Int. 2012, 27, 443–458. [Google Scholar] [CrossRef]
- Shang, X.; Chisholm, L.A. Classification of Australian Native Forest Species Using Hyperspectral Remote Sensing and Machine-Learning Classification Algorithms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2481–2489. [Google Scholar] [CrossRef]
- Gao, L.; Darvishzadeh, R.; Somers, B.; Johnson, B.A.; Wang, Y.; Verrelst, J.; Wang, X.; Atzberger, C. Hyperspectral Response of Agronomic Variables to Background Optical Variability: Results of a Numerical Experiment. Agric. For. Meteorol. 2022, 326, 109178. [Google Scholar] [CrossRef]
- Rautiainen, M.; Mõttus, M.; Heiskanen, J.; Akujärvi, A.; Majasalmi, T.; Stenberg, P. Seasonal Reflectance Dynamics of Common Understory Types in a Northern European Boreal Forest. Remote Sens. Environ. 2011, 115, 3020–3028. [Google Scholar] [CrossRef]
- Eriksson, H.M.; Eklundh, L.; Kuusk, A.; Nilson, T. Impact of Understory Vegetation on Forest Canopy Reflectance and Remotely Sensed LAI Estimates. Remote Sens. Environ. 2006, 103, 408–418. [Google Scholar] [CrossRef]
- Einzmann, K.; Ng, W.; Immitzer, M.; Bachmann, M.; Pinnel, N.; Atzberger, C. Method Analysis for Collecting and Processing In-Situ Hyperspectral Needle Reflectance Data for Monitoring Norway Spruce. Photogramm.-Fernerkund.-Geoinf. 2014, 2014, 351–367. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A. Review of Studies on Tree Species Classification from Remotely Sensed Data. Remote Sens. Environ. 2016, 186, 64–87. [Google Scholar] [CrossRef]
- Nasiri, V.; Beloiu, M.; Asghar Darvishsefat, A.; Griess, V.C.; Maftei, C.; Waser, L.T. Mapping Tree Species Composition in a Caspian Temperate Mixed Forest Based on Spectral-Temporal Metrics and Machine Learning. Int. J. Appl. Earth Obs. Geoinf. 2023, 116, 103154. [Google Scholar] [CrossRef]
- Dalponte, M.; Ørka, H.O.; Gobakken, T.; Gianelle, D.; Næsset, E. Tree Species Classification in Boreal Forests with Hyperspectral Data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2632–2645. [Google Scholar] [CrossRef]
- Ghosh, A.; Fassnacht, F.E.; Joshi, P.K.; Koch, B. A Framework for Mapping Tree Species Combining Hyperspectral and LiDAR Data: Role of Selected Classifiers and Sensor across Three Spatial Scales. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 49–63. [Google Scholar] [CrossRef]
- Grabska, E.; Hostert, P.; Pflugmacher, D.; Ostapowicz, K. Forest Stand Species Mapping Using the Sentinel-2 Time Series. Remote Sens. 2019, 11, 1197. [Google Scholar] [CrossRef] [Green Version]
- Pflugmacher, D.; Rabe, A.; Peters, M.; Hostert, P. Mapping Pan-European Land Cover Using Landsat Spectral-Temporal Metrics and the European LUCAS Survey. Remote Sens. Environ. 2019, 221, 583–595. [Google Scholar] [CrossRef]
- Xi, Y.; Ren, C.; Tian, Q.; Ren, Y.; Dong, X.; Zhang, Z. Exploitation of Time Series Sentinel-2 Data and Different Machine Learning Algorithms for Detailed Tree Species Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7589–7603. [Google Scholar] [CrossRef]
- Hemmerling, J.; Pflugmacher, D.; Hostert, P. Mapping Temperate Forest Tree Species Using Dense Sentinel-2 Time Series. Remote Sens. Environ. 2021, 267, 112743. [Google Scholar] [CrossRef]
- Dalponte, M.; Bruzzone, L.; Gianelle, D. Tree Species Classification in the Southern Alps Based on the Fusion of Very High Geometrical Resolution Multispectral/Hyperspectral Images and LiDAR Data. Remote Sens. Environ. 2012, 123, 258–270. [Google Scholar] [CrossRef]
- Foody, G.M.; Pal, M.; Rocchini, D.; Garzon-Lopez, C.X.; Bastin, L. The Sensitivity of Mapping Methods to Reference Data Quality: Training Supervised Image Classifications with Imperfect Reference Data. ISPRS Int. J. Geo-Inf. 2016, 5, 199. [Google Scholar] [CrossRef] [Green Version]
- Fowler, J.; Waldner, F.; Hochman, Z. All Pixels Are Useful, but Some Are More Useful: Efficient in Situ Data Collection for Crop-Type Mapping Using Sequential Exploration Methods. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102114. [Google Scholar] [CrossRef]
- Hościło, A.; Lewandowska, A. Mapping Forest Type and Tree Species on a Regional Scale Using Multi-Temporal Sentinel-2 Data. Remote Sens. 2019, 11, 929. [Google Scholar] [CrossRef] [Green Version]
- Baret, F.; Buis, S. Estimating Canopy Characteristics from Remote Sensing Observations: Review of Methods and Associated Problems. In Advances in Land Remote Sensing; Liang, S., Ed.; Springer: Dordrecht, The Netherlands, 2008; pp. 173–201. ISBN 978-1-4020-6449-4. [Google Scholar]
- Ross, J. The Radiation Regime and Architecture of Plant Stands; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1981; ISBN 978-90-6193-607-7. [Google Scholar]
- Van der Tol, C.; Verhoef, W.; Timmermans, J.; Verhoef, A.; Su, Z. An Integrated Model of Soil-Canopy Spectral Radiances, Photosynthesis, Fluorescence, Temperature and Energy Balance. Biogeosciences 2009, 6, 3109–3129. [Google Scholar] [CrossRef] [Green Version]
- Rosema, A.; Verhoef, W.; Noorbergen, H.; Borgesius, J.J. A New Forest Light Interaction Model in Support of Forest Monitoring. Remote Sens. Environ. 1992, 42, 23–41. [Google Scholar] [CrossRef]
- Schraik, D.; Varvia, P.; Korhonen, L.; Rautiainen, M. Bayesian Inversion of a Forest Reflectance Model Using Sentinel-2 and Landsat 8 Satellite Images. J. Quant. Spectrosc. Radiat. Transf. 2019, 233, 1–12. [Google Scholar] [CrossRef]
- Rautiainen, M. The Spectral Signature of Coniferous Forests: The Role of Stand Structure and Leaf Area Index. Doctroal thesis, University of Helsinki, Helsinki, Finland, 2005. [Google Scholar]
- Gastellu-Etchegorry, J.P.; Martin, E.; Gascon, F. DART: A 3D Model for Simulating Satellite Images and Studying Surface Radiation Budget. Int. J. Remote Sens. 2004, 25, 73–96. [Google Scholar] [CrossRef]
- Kimes, D.S.; Knyazikhin, Y.; Privette, J.L.; Abuelgasim, A.A.; Gao, F. Inversion Methods for Physically-Based Models. Remote Sens. Rev. 2000, 18, 381–439. [Google Scholar] [CrossRef]
Data Type | Platform | Sensor | Spectral Bands | GSD | Temporal Coverage | Location | Number of Species * | Classifier | OA (%) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
LiDAR | Review study | 60–80 | [8] | |||||||
MS | Satellite | S2 | 10 | 10 m | Multi- temporal | Senegal | 1 | ANN | 91 | [9] |
RGB | Airplane | Different aerial cameras | 3 | 0.1 cm | Bi- temporal | New Zealand | 1 | CNN & XGBoost | 83 | [10] |
MS | Satellite | LS | 6 | 30 m | Multi- temporal | Russia | 2 | RF | 90 | [11] |
MS + LiDAR | Airplane + Helicopter | Xp-w/a|DMCIII; RIEGL LMS Q 680i | 4 | 55 pts/m², 0.17/0.095 m | Mono- temporal | Germany | 2–4 | RF | 87–98 | [12] |
MS | Satellite | LS8 | 6 | 30 m | Multi- temporal | China | 4 | RF | 79 | [13] |
RGB | UAV | RGB camera | 3 | 0.003–0.5 m | Serval flights | Germany | 4 | CNN | 92 | [14] |
MS | Satellite | Gaofen-1&2, S2, LS8 | 2 (NDVI) | 4, 10, 16, 30 m | Multi- temporal | China | 4 | RF | 85 | [15] |
MS | Satellite | WV-3 | 4 | 0.4 m | Mono- temporal | China | 6 | CNN, SVM, RF | 83 | [16] |
MS | Satellite | S2 | 10 | 10 m | Multi- temporal | Serbia | 8 | RF | 83 | [17] |
HS | UAV | 25 | 0.1 m | 3 flights in 3 years | Brazil | 8 | RF | 50 | [18] | |
MS | Satellite | WV-2 | 8 | 0.5 m | Mono- temporal | Kenya | 8 | RF, SVM | 70–73 | [19] |
MS | Satellite | WV-3 | 16 | 0.3 cm | Mono- temporal | Canada | 11 | SVM, RF | 75 | [20] |
MS + LiDAR | Satellite + Airplane | S2, RGB, RIEGL LMS-Q680 | 3 + 10 | 3.6 pts/m², 0.12 m, 10 m | Mono-/multi- temporal | China | 11 | SVM, RF | 90–94 | [21] |
MS + SAR | Satellite | S2, S1 | 10 | 10 m | Multi- temporal | Austria | 12 | RF | 84 | [22] |
MS | Satellite | S2 | 10 | 10 m | Multi- temporal | Austria | 12 | RF | 89 | [23] |
MS | Satellite | Formosat-2 | 4 | 8 m | Multi- temporal | France | 13 | SVM | 48–60 | [24] |
HS | Airplane | AVIRIS | 366 | 4 m | Mono- temporal | India | 20 | SVM | 86 | [25] |
Genetics | Botany & Human Vision | Computer Vision | LiDAR | EO Current | EO Recommended |
---|---|---|---|---|---|
DNS analysis | Leaf shape & size | Crown structure | Point-cloud derived metrics | Spectral-temporal features | Biophysical variables (Table 2) extracted using RTM |
Bark structure & color | Crown shape | Crown shape | Supervised classification in spatial-spectral-temporal feature space | Learning of the temporal co-evolution of derived biochemical & structural variables | |
Fruits and flowers | Branching | Branching pattern | |||
Branching pattern | |||||
Habitus/growth form |
Individual Tree | Tree Components |
---|---|
Habitus/crown form/shape | Size, shape, color, orientation of leaves/needles |
Crown structure/branching | Structure and color of bark |
Color, shape, size, orientation of flowers | |
Color, shape, size, orientation of fruits |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Immitzer, M.; Atzberger, C. Tree Species Diversity Mapping—Success Stories and Possible Ways Forward. Remote Sens. 2023, 15, 3074. https://doi.org/10.3390/rs15123074
Immitzer M, Atzberger C. Tree Species Diversity Mapping—Success Stories and Possible Ways Forward. Remote Sensing. 2023; 15(12):3074. https://doi.org/10.3390/rs15123074
Chicago/Turabian StyleImmitzer, Markus, and Clement Atzberger. 2023. "Tree Species Diversity Mapping—Success Stories and Possible Ways Forward" Remote Sensing 15, no. 12: 3074. https://doi.org/10.3390/rs15123074
APA StyleImmitzer, M., & Atzberger, C. (2023). Tree Species Diversity Mapping—Success Stories and Possible Ways Forward. Remote Sensing, 15(12), 3074. https://doi.org/10.3390/rs15123074