Blue Color Indices as a Reference for Remote Sensing of Black Sea Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Situ Measurements of Rrs(λ)
2.1.1. In Situ MHI RAS Measurements
- a.
- Measurement system
- b.
- Observation Geometry and Observation Conditions
- c.
- Calibration
- d.
- Data Processing
- e.
- Data Insurance and uncertainties
2.1.2. AERONET-OC Measurements
2.2. Remote Sensing Measurements
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Morel, A.; Prieur, L. Analysis of Variations in Ocean Color. Limnol. Oceanogr. 1977, 22, 709–722. [Google Scholar] [CrossRef]
- Gordon, H.R. Evolution of Ocean Color Atmospheric Correction: 1970–2005. Remote Sens. 2021, 13, 5051. [Google Scholar] [CrossRef]
- Wang, M. Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: Simulations. Appl. Opt. 2007, 46, 1535–1547. [Google Scholar] [CrossRef] [PubMed]
- Gordon, H.R.; Morel, A.Y. Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review; Springer: New York, NY, USA, 1983; p. 114. [Google Scholar]
- Kuchinke, C.P.; Gordon, H.R.; Harding, L.W., Jr.; Voss, K.J. Spectral optimization for constituent retrieval in Case 2 waters II: Validation study in the Chesapeake Bay. Remote Sens. Environ. 2009, 113, 610–621. [Google Scholar] [CrossRef]
- Gross-Colzy, L.; Colzy, F.; Frouin, R.; Henry, P. A general ocean color atmospheric correction scheme based on principal component analysis-Part 1: Performance on Case 1 and Case 2 waters. In Coastal Ocean Remote Sensing; Frouin, R., Lee, Z., Eds.; SPIE: Bellingham, WA, USA, 2007. [Google Scholar]
- Wei, J.; Yu, X.; Lee, Z.; Wang, M.; Jiang, L. Improving low-quality satellite remote sensing reflectance at blue bands over coastal and inland waters. Remote Sens. Environ. 2020, 250, 112029. [Google Scholar] [CrossRef]
- Suetin, V.S.; Korolev, S.N. Estimating Specific Features of the Optical Property Variability in the Black Sea Waters Using the Data of SeaWiFS and MODIS Satellite Instruments. Phys. Oceanogr. 2018, 25, 330–340. [Google Scholar] [CrossRef] [Green Version]
- Suslin, V.; Slabakova, V.; Kalinskaya, D.; Pryakhina, S.; Golovko, N. Optical Features of the Black Sea Aerosol and the Sea Water Upper Layer Based on In Situ and Satellite Measurements. Phys. Oceanogr. 2016, 1, 20–32. [Google Scholar] [CrossRef] [Green Version]
- Kalinskaya, D.V.; Papkova, A.S. Why Is It Important to Consider Dust Aerosol in the Sevastopol and Black Sea Region during Remote Sensing Tasks? A Case Study. Remote Sens. 2022, 14, 1890. [Google Scholar] [CrossRef]
- Suetin, V.S.; Korolev, S.N. Application of Satellite Data for Retrieving the Light Absorption Characteristics in the Black Sea Waters. Phys. Oceanogr. 2021, 28, 205–214. [Google Scholar] [CrossRef]
- Shybanov, E.; Papkova, A. Differences in the Ocean Color atmospheric correction algorithms for remote sensing reflectance retrievals for different atmospheric conditions. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Iz Kosmosa 2022, 19, 9–17. [Google Scholar] [CrossRef]
- Kalinskaya, D.V.; Papkova, A.S.; Kabanov, D.M. Research of the Aerosol Optical and Microphysical Characteristics of the Atmosphere over the Black Sea Region by the FIRMS System during the Forest Fires in 2018–2019. Phys. Oceanogr. 2020, 27, 514–524. [Google Scholar] [CrossRef]
- Papkova, A.; Kalinskaya, D.; Shybanov, E. Atmospheric correction according to the MODIS and VIIRS satellite data with considering the atmospheric pollution factor by a combination of different types of aerosol. In Proceedings of the Volume 12341, 28th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Tomsk, Russia, 4–8 July 2022; p. 123414G. [Google Scholar] [CrossRef]
- Parshikov, S.V.; Li, M.E. Remote Sensing of Optically Active Impurities Using the Short-Wavelength Part of the Spectrum//Automated Systems for Monitoring the State of the Marine Environment-Sevastopol; MGI NAS of Ukraine: Sevastopol, Ukraine, 1992; pp. 65–78. [Google Scholar]
- IOCCG. Atmospheric Correction for Remotely-Sensed Ocean-Colour Products, Reports No. 10 of the International Ocean-Colour Coordinating Group; Wang, M., Ed.; IOCCG: Dartmouth, NS, Canada, 2010. [Google Scholar]
- Suetin, V.S.; Korolev, S.N.; Suslin, V.V.; Kucheryavy, A.A. Manifestation of features of the optical properties of atmospheric aerosol over the Black Sea in the interpretation of data from the SeaWiFS satellite instrument. Phys. Oceanogr. 2004, 1, 69–79. [Google Scholar]
- McClain, C. A Decade of Satellite Ocean Color Observations. Annu. Rev. Mar. Sci. 2009, 1, 19–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Reilly, J.E.; Werdell, P.J. Chlorophyll algorithms for ocean color sensors—OC4, OC5 & OC6. Remote Sens. Environ. 2019, 229, 32–47. [Google Scholar] [CrossRef] [PubMed]
- Shibanov, E.B.; Korchemkina, E.N. Retrieving of the biooptical characteristics of Black-Sea waters under the conditions of constant reflectance at a wavelength of 400 nm. Phys. Oceanogr. 2008, 18, 25–37. [Google Scholar] [CrossRef]
- Korchemkina, E.N.; Kalinskaya, D.V. Algorithm of Additional Correction of Level 2 Remote Sensing Reflectance Data Using Modelling of the Optical Properties of the Black Sea Waters. Remote Sens. 2022, 14, 831. [Google Scholar] [CrossRef]
- Hu, C.; Lee, Z.; Franz, B. Chlorophyll a Algorithms for Oligotrophic Oceans: A Novel Approach Based on Three-Band Reflectance Difference. J. Geophys. Res. Ocean. 2012, 117, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Le, C.; Zhou, X.; Hu, C.; Lee, Z.; Li, L.; Stramski, D. A Color-Index-Based Empirical Algorithm for Determining Particulate Organic Carbon Concentration in the Ocean from Satellite Observations. J. Geophys. Res. Ocean. 2018, 123, 7407–7419. [Google Scholar] [CrossRef]
- Mitchell, C.; Hu, C.; Bowler, B.; Drapeau, D.; Balch, W.M. Estimating Particulate Inorganic Carbon Concentrations of the Global Ocean from Ocean Color Measurements Using a Reflectance Difference Approach. J. Geophys. Res. Ocean. 2017, 122, 8707–8720. [Google Scholar] [CrossRef] [Green Version]
- Morel, A.; Gentili, B. A simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean color remotely sensed data. Remote Sens. Environ. 2009, 113, 998–1011. [Google Scholar] [CrossRef]
- Morel, A.; Maritorena, S. Bio-optical properties of oceanic waters: A reappraisal. J. Geophys. Res. 2001, 106, 7163–7180. [Google Scholar] [CrossRef] [Green Version]
- Morel, A.; Gentili, B. The dissolved yellow substance and the shades of blue in the Mediterranean Sea. Biogeosciences 2009, 6, 2625–2636. [Google Scholar] [CrossRef] [Green Version]
- Valente, A.; Sathyendranath, S.; Brotas, V.; Groom, S.; Grant, M.; Bracher, A. A compilation of global bio-optical in situ data for ocean-colour satellite applications–version two. Earth Syst. Sci. Data 2019, 11, 1037–1068. [Google Scholar] [CrossRef] [Green Version]
- Lee, Z.P.; Hu, C. Global distribution of Case-1 waters: An analysis from SeaWiFS measurements. Remote Sens. Environ. 2006, 101, 270–276. [Google Scholar] [CrossRef]
- Antoine, D.; Hooker, S.B.; Bélanger, S.; Matsuoka, A.; Babin, M. Apparent optical properties of the Canadian Beaufort Sea – Part 1: Observational overview and water column relationships. Biogeosciences 2013, 10, 4493–4509. [Google Scholar] [CrossRef] [Green Version]
- Brewin, R.J.W.; Raitsos, D.E.; Dall’Olmo, G.; Zarokanellos, N.; Jackson, T.; Racault, M.-F.; Boss, E.S.; Sathyendranath, S.; Jones, B.H.; Hoteit, I. Regional ocean-colour chlorophyll algorithms for the Red Sea. Remote Sens. Environ. 2015, 165, 64–85. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, Z.; Franz, B.A.; McClain, C.R.; Kwiatkowska, E.J.; Werdell, P.J.; Shettle, E.P.; Holben, B.N. New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and Open Oceans. Appl. Opt. 2010, 49, 5545–5560. [Google Scholar] [CrossRef]
- Gordon, H.R.; Wang, W. Influence of oceanic whitecaps on atmospheric correction of SeaWiFS. Appl. Opt. 1994, 33, 7754–7763. [Google Scholar] [CrossRef]
- Shybanov, E.B.; Papkova, A.S. Algorithm for Additional Correction of Remote Sensing Reflectance in the Presence of Absorbing Aerosol: Case Study. Phys. Oceanogr. 2022, 29, 688–706. [Google Scholar]
- Haltrin, V.I. Light scattering coefficient of seawater for arbitrary concentrations of hydrosols. J. Opt. Soc. Am. 1999, 16, 1715–1723. [Google Scholar] [CrossRef]
- Eisma, D.; Schuhmacher, T.; Boekel, H.; van Heerwaarden, J.; Franken, H.; Laan, M.; Vaars, A.; Eijgenraam, F.; Kalf, J. A camera and image-analysis system for in situ observation of flocs in natural waters. Neth. J. Sea Res. 1990, 27, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Kranck, K.; Milligan, T.G. Characteristics of suspended particles at an 11-hour anchor station in San Francisco Bay, California. J. Geophys. Res. 1992, 97, 11373–11382. [Google Scholar] [CrossRef]
- Courp, T.; Eisma, D.; Kalf, J. In situ observation of flocs in natural waters. Ann. Inst. Oceanogr. 1993, 69, 184–188. [Google Scholar]
- Morel, A.; Bricaud, A. Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep-Sea Res. 1981, 28, 1375–1393. [Google Scholar] [CrossRef]
- Lee, M.E.; Martynov, O.V. Measurement of water-leaving radiance for sub-satellite data of biooptical water parameters. In Ecological Safety of Coastal and Shelf Zones and Integrated Use of Shelf Resources; MGI NAS of Ukraine: Sevastopol, Ukraine, 2000; pp. 163–173. [Google Scholar]
- Lee, M.E.; Shybanov, E.B.; Korchemkina, E.N.; Martynov, O.V. Retrieval of concentrations of seawater natural components from reflectance spectrum. In Proceedings of the SPIE 22nd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Tomsk, Russia, 29 November 2016; 100352Y; p. 100352Y. [Google Scholar] [CrossRef]
- Colored Optical Glass. Specifications. Available online: https://docs.cntd.ru/document/1200023782 (accessed on 28 January 2022).
- Cox, C.; Munk, W. Measurements of the roughness of the sea surface from photographs of the sun glitter. J. Opt. Soc. Am. 1954, 44, 838–850. [Google Scholar] [CrossRef]
- Mobley, C.D. Estimation of the remote sensing reflectance from above–water methods. Appl. Opt. 1999, 38, 7442–7455. [Google Scholar] [CrossRef]
- Morel, A.; Antoine, D.; Gentili, B. Bidirectional reflectance of oceanic waters: Accounting for Raman emission and varying particle scattering phase function. Appl. Opt. 2002, 41, 6289–6306. [Google Scholar] [CrossRef]
- Mueller, J.L.; Pietras, C.; Hooker, S.B.; Austin, R.W.; Miller, M.; Knobelspiesse, K.D.; Frouin, R.; Holben, B.; Voss, K. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Volume II: Instrument Specifications, Characteri-zation and Calibration; NASA’s Goddard Space Flight Center: Greenbelt, MD, USA, 2003; pp. 1–63. [Google Scholar] [CrossRef]
- Karalli, P.G.; Kopelevich, O.V.; Sahling, I.V.; Sheberstov, S.V.; Pautova, L.V.; Silkin, V.A. Validation of remote sensing esti-mates of coccolitophore bloom parameters in the Barents Sea from field measurements. Fundam. Apll. Hydrophys 2018, 11, 55–63. [Google Scholar] [CrossRef]
- Zibordi, G.; Mélin, F.; Berthon, J.-F.; Talone, M. In situ autonomous optical radiometry measurements for satellite ocean color validation in the Western Black Sea. Ocean Sci. 2015, 11, 275–286. [Google Scholar] [CrossRef] [Green Version]
- Zibordi, G.; Holben, B.; Slutsker, I.; Giles, G.; D’Alimonte, D.; Melin, F.; Berthon, J.F.; Vandemark, D.; Feng, H.; Schuster, G.; et al. AERONET-OC: A Network for the Validation of Ocean Color Primary Products. J. Atmos. Ocean. Technol. 2009, 26, 1634–1651. [Google Scholar] [CrossRef]
- Thuillier, G.; Hersé, M.; Labs, D.; Foujols, T. The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the Atlas and Eureca missions. Sol. Phys. 2003, 214, 1–22. [Google Scholar] [CrossRef]
- Lee, S.; Meister, G. MODIS Aqua Optical Throughput Degradation Impact on Relative Spectral Response and Calibration of Ocean Color Products. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5214–5219. [Google Scholar] [CrossRef]
- Cao, C.; DeLuccia, F.; Xiong, X.; Wolfe, R.; Weng, F. Early On-orbit Performance of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (S-NPP) Satellite. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1142–1156. [Google Scholar] [CrossRef] [Green Version]
- Gobron, N.; Morgan, O.; Adams, J.; Brown, L.A.; Cappucci, F.; Dash, J.; Lanconelli, C.; Marioni, M.; Robustelli, M. Evaluation of Sentinel-3A and Sentinel-3B ocean land colour instrument green instantaneous fraction of absorbed photosynthetically active radiation. Remote Sens. Environ. 2022, 270, 112850. [Google Scholar] [CrossRef]
- The European Space Agency. Santinel-3. Available online: https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-3 (accessed on 22 December 2022).
- Werdell, P.J.; Bailey, S.W. The SeaWiFS Bio-Optical Archive and Storage System (SeaBASS): Current Architecture and Implementation. NASA/TM 2002–211617; Goddard Space Flight Center: Greenbelt, MD, USA, 2002. [Google Scholar]
- NASA Goddard Space Flight Center. Ocean Ecology Laboratory, Ocean Biology Processing Group. Ocean and Land Colour Imager (OLCI) Ocean Color Data; 2022 Reprocessing; NASA OB.DAAC: Greenbelt, MD, USA, 2022.
- NASA Goddard Space Flight Center. Ocean Ecology Laboratory, Ocean Biology Processing Group. Moderate-Resolution Imaging Spectroradiometer (MODIS) Aqua Ocean Color Data; 2022 Reprocessing; NASA OB.DAAC: Greenbelt, MD, USA, 2022. [CrossRef]
- NASA Goddard Space Flight Center. Ocean Ecology Laboratory, Ocean Biology Processing Group. Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra Ocean Color Data; 2018 Reprocessing; NASA OB.DAAC: Greenbelt, MD, USA, 2022. [CrossRef]
- Patt, F.S.; Barnes, R.A.; Eplee, R.E., Jr.; Franz, B.A.; Robinson, W.D.; Feldman, G.C.; Bailey, S.W.; Gales, J.; Werdell, P.J.; Wang, M.; et al. Algorithm Updates for the Fourth SeaWiFS Data Reprocessing, NASA Tech. Memo. 2003–206892; Hooker, S.B., Firestone, E.R., Eds.; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2003; Volume 22, 74p. [Google Scholar]
- Mankovsky, V.I.; Solovyov, M.V.; Mankovskaya, E.V. Hydrooptical Characteristics of the Black Sea, Handbook; ECOSY-Hydrophysics: Sevastopol, Ukraine, 2009; 90p. [Google Scholar]
- Kopelevich, O.V. A low-parameter model of the optical properties of sea water. Opt. Ocean 1983, 1, 208–234. [Google Scholar]
- Morel, A. Optical properties of pure water and pure seawater. In Optical Aspects of Oceanography; Jerlov, N.G., Steemann Nielson, E., Eds.; Academic: New York, NY, USA, 1974; pp. 1–24. [Google Scholar]
- Kopelevich, O.V.; Saling, I.V.; Vazyulya, S.V.; Glukhovets, D.I.; Sheberstov, S.V.; Burenkov, V.I.; Karalli, P.G.; Yushmanova, A.V. Biooptical Characteristics of the Seas Washing the Shores of the Western Half of Russia, According to Satellite Color Scanners 1998–2017; Kopelevich, O.V., Ed.; Shirshov Institute of Oceanology: Moscow, Russia, 2018; 140p, (In Russian). Available online: https://optics.ocean.ru/Atlas_2019/8_Monography_2018.pdf (accessed on 7 November 2018).
SOP Measurements | Cruise Measurements | ||||
---|---|---|---|---|---|
Year | Dates | Amount | Year | Dates | Amount |
2002 | 28 July–15 August | 18 | 2019 | 19 April–11 May | 101 |
2003 | 16–29 July | 41 | 2019 | 12–20 October | 10 |
2004 | 31 August–13 September | 41 | 2020 | 20 September 20–5 October | 7 |
2007 | 8–21 July | 70 | 2021 | 22 April–15 May | 85 |
2007 | 4–12 October | 38 | 2021 | 30 July 30–7 | 18 |
2008 | 10–13 September | 21 | 2021 | 3–18 September | 18 |
2010 | 11–16 August | 35 | |||
2010 | 23–28 September | 30 | |||
2012 | 7–16 July | 72 | |||
2014 | 11–14 August | 19 | |||
2015 | 16–24 September | 29 | |||
2016 | 20–30 September | 25 | |||
2017 | 24–31 May | 27 | |||
2017 | 4–11 October | 27 | |||
2018 | 29 September–9 October | 31 | |||
2019 | 21–27 June | 16 | |||
2021 | 25 June–8 July | 20 |
Amount of Measurements | Bands | Average ± SD | Regression Coefficient, b | ||
---|---|---|---|---|---|
AERONET-OC | |||||
1209 | 400/443 | 0.716 ± 0.127 | 0.723 | 0.957 | 0.0030 |
2620 | 412/443 | 0.77 ± 0.108 | 0.775 | 0.975 | 0.0035 |
1209 | 400/412 | 0.927± 0.096 | 0.930 | 0.990 | 0.0080 |
SPECTRUM-МHI | |||||
686 | 400/443 | 0.802 ± 0.098 | 0.785 | 0.97 | 0.0023 |
686 | 412/443 | 0.836 ± 0.078 | 0.818 | 0.983 | 0.0025 |
686 | 400/412 | 0.958 ± 0.067 | 0.959 | 0.99 | 0.0056 |
Source | Amount of Measurements | CIsat(412/443) | CIAER(412/443) |
---|---|---|---|
MODIS Aqua | 650 | 0.76 0.20 | 0.79 0.12 |
MODIS Terra | 821 | 0.69 0.24 | 0.79 0.11 |
VIIRS SNPP | 669 | 0.67 0.18 | 0.79 0.11 |
Sentinel OLCI 3A | 235 | 0.73 0.17 | 0.79 0.11 |
Period | CIMHI(412/443) | CIMHI(400/443) | CIsat(412/443) | CIsat(400/443) |
---|---|---|---|---|
September 2016 | 0.91 0.08 | 0.89 0.09 | 0.94 0.24 | 0.88 0.31 |
May 2017 | 0.89 0.02 | 0.87 0.02 | 0.80 0.03 | 0.62 0.03 |
October 2017 | 0.86 0.04 | 0.85 0.04 | 0.76 0.05 | 0.61 0.22 |
October 2018 | 0.83 0.09 | 0.79 0.1 | 0.58 0.16 | 0.41 0.23 |
June 2019 | 0.81 0.05 | 0.76 0.06 | 0.72 0.006 | 0.60 0.014 |
July 2021 | 0.82 0.07 | 0.81 0.1 | ||
Average | 0.85 0.06 | 0.82 0.07 | 0.76 0.09 | 0.62 0.15 |
Total Backscattering Wavelength Exponent | 0.3 | 0.6 | 0.9 | 1.2 | 1.5 | 1.8 | 2.1 | 2.4 | 2.7 | 3.0 |
---|---|---|---|---|---|---|---|---|---|---|
Absorption Spectral Slope, nm−1 | ||||||||||
0.008 | 0.798 | 0.815 | 0.833 | 0.851 | 0.87 | 0.889 | 0.909 | 0.929 | 0.949 | 0.970 |
0.010 | 0.75 | 0.766 | 0.783 | 0.8 | 0.818 | 0.836 | 0.854 | 0.873 | 0.892 | 0.912 |
0.012 | 0.705 | 0.72 | 0.736 | 0.752 | 0.769 | 0.786 | 0.803 | 0.82 | 0.839 | 0.857 |
0.014 | 0.662 | 0.677 | 0.692 | 0.707 | 0.722 | 0.738 | 0.755 | 0.771 | 0.788 | 0.805 |
0.016 | 0.622 | 0.636 | 0.65 | 0.664 | 0.679 | 0.694 | 0.709 | 0.725 | 0.741 | 0.757 |
0.018 | 0.585 | 0.598 | 0.611 | 0.624 | 0.638 | 0.652 | 0.667 | 0.681 | 0.696 | 0.712 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shybanov, E.; Papkova, A.; Korchemkina, E.; Suslin, V. Blue Color Indices as a Reference for Remote Sensing of Black Sea Water. Remote Sens. 2023, 15, 3658. https://doi.org/10.3390/rs15143658
Shybanov E, Papkova A, Korchemkina E, Suslin V. Blue Color Indices as a Reference for Remote Sensing of Black Sea Water. Remote Sensing. 2023; 15(14):3658. https://doi.org/10.3390/rs15143658
Chicago/Turabian StyleShybanov, Evgeny, Anna Papkova, Elena Korchemkina, and Vyacheslav Suslin. 2023. "Blue Color Indices as a Reference for Remote Sensing of Black Sea Water" Remote Sensing 15, no. 14: 3658. https://doi.org/10.3390/rs15143658
APA StyleShybanov, E., Papkova, A., Korchemkina, E., & Suslin, V. (2023). Blue Color Indices as a Reference for Remote Sensing of Black Sea Water. Remote Sensing, 15(14), 3658. https://doi.org/10.3390/rs15143658