A Novel Multi-Beam SAR Two-Dimensional Ambiguity Suppression Method Based on Azimuth Phase Coding
Abstract
:1. Introduction
2. MIMO–SAR System Signal Model Based on APC Waveform
2.1. APC Waveform
2.2. MIMO–SAR System and the Principle of Two-Dimensional Ambiguity
3. Wide-Swath Imaging under Two-Dimensional Ambiguity
3.1. Azimuth DBF Simultaneously Suppresses Azimuth Ambiguity and Range Ambiguity
3.2. Further Suppression of Range Ambiguity with Elevation Nulling DBF
3.3. Algorithm Flow
4. Experiment
4.1. Simulation with Point-like Targets
4.2. Simulation with Distributed Targets
4.3. Advantages Compared to Conventional Scheme
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wei, J.; Li, Y.; Yang, R.; Li, L.; Guo, L. Method of high signal-to-noise ratio and wide swath SAR imaging based on continuous pulse coding. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 2185–2196. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, Y.; Liao, G.; Li, J. Mitigating Range Ambiguity Method Based on DDMA for SAR Systems. Remote Sens. 2022, 14, 5485. [Google Scholar] [CrossRef]
- Freeman, A.; Johnson, W.T.K.; Huneycutt, B.; Jordan, R.; Hensley, S.; Siqueira, P.; Curlander, J. The “Myth” of the minimum SAR antenna area constraint. IEEE Trans. Geosci. Remote Sens. 2000, 38, 320–324. [Google Scholar] [CrossRef]
- He, F.; Dong, Z.; Zhang, Y.; Jin, G.; Yu, A. Processing of spaceborne squinted sliding spotlight and HRWS TOPS mode data using 2-D baseband azimuth scaling. IEEE Trans. Geosci. Remote Sens. 2019, 58, 938–955. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, Y.; Li, G.; Wang, W.; Liu, P. High-Resolution and Wide-Swath Monostatic SAR Imaging via Random Beam Scanning. In Proceedings of the 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hangzhou, China, 8–11 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Lightstone, L.; Faubert, D.; Rempel, G. Multiple phase centre DPCA for airborne radar. In Proceedings of the 1991 IEEE National Radar Conference, Los Angeles, CA, USA, 12–13 March 1991; IEEE: Piscataway, NJ, USA, 1991; pp. 36–40. [Google Scholar] [CrossRef]
- Krieger, G.; Gebert, N.; Moreira, A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling. IEEE Geosci. Remote Sens. Lett. 2004, 1, 260–264. [Google Scholar] [CrossRef]
- Krieger, G.; Gebert, N.; Moreira, A. SAR signal reconstruction from non-uniform displaced phase centre sampling. In Proceedings of the IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; IEEE: Piscataway, NJ, USA, 2004; Volume 3, pp. 1763–1766. [Google Scholar] [CrossRef]
- Zhang, S.-X.; Xing, M.-D.; Xia, X.-G.; Zhang, L.; Guo, R.; Liao, Y.; Bao, Z. Multichannel HRWS SAR imaging based on range-variant channel calibration and multi-Doppler-direction restriction ambiguity suppression. IEEE Trans. Geosci. Remote Sens. 2013, 52, 4306–4327. [Google Scholar] [CrossRef]
- Gebert, N. Multi-Channel Azimuth Processing for High-Resolution Wide-Swath; Universitat (TH), DLR-Forschungsbericht: Wessling, Germany, 2009. [Google Scholar]
- Castillo, J.; Younis, M.; Krieger, G. A HRWS SAR system design with multi-beam imaging capabilities. In Proceedings of the 2017 European Radar Conference (EURAD), Nuremberg, Germany, 11–13 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 179–182. [Google Scholar] [CrossRef]
- Huang, Y.; Liao, G.; Xu, J.; Li, J.; Yang, D. GMTI and parameter estimation for MIMO SAR system via fast interferometry RPCA method. IEEE Trans. Geosci. Remote Sens. 2017, 56, 1774–1787. [Google Scholar] [CrossRef]
- Krieger, G. MIMO-SAR: Opportunities and pitfalls. IEEE Trans. Geosci. Remote Sens. 2013, 52, 2628–2645. [Google Scholar] [CrossRef]
- Lan, L.; Xu, J.; Liao, G.; Zhang, Y.; Fioranelli, F.; So, H.C. Suppression of mainbeam deceptive jammer with FDA-MIMO radar. IEEE Trans. Veh. Technol. 2020, 69, 11584–11598. [Google Scholar] [CrossRef]
- Xu, W.; Huang, P.; Tan, W. Azimuth phase coding by up and down chirp modulation for range ambiguity suppression. IEEE Access 2019, 7, 143780–143791. [Google Scholar] [CrossRef]
- Yu, K.; Zhu, S.; Lan, L.; Yang, B. High-Resolution and Wide-Swath SAR Imaging with Space–Time Coding Array. Remote Sens. 2023, 15, 2465. [Google Scholar] [CrossRef]
- Zhang, M.; Liao, G.; Xu, J.; Lan, L.; Zhu, S.; Xing, M.; He, X. High-Resolution and Wide-Swath Imaging Based on Multifrequency Pulse Diversity and DPCA Technique. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Wang, W.Q. Mitigating range ambiguities in high-PRF SAR with OFDM waveform diversity. IEEE Geosci. Remote Sens. Lett. 2012, 10, 101–105. [Google Scholar] [CrossRef]
- Riche, V.; Meric, S.; Baudais, J.-Y.; Pottier, E. Investigations on OFDM signal for range ambiguity suppression in SAR configuration. IEEE Trans. Geosci. Remote Sens. 2013, 52, 4194–4197. [Google Scholar] [CrossRef]
- Wang, C.; Xu, J.; Liao, G.; Xu, X.; Zhang, Y. A range ambiguity resolution approach for high-resolution and wide-swath SAR imaging using frequency diverse array. IEEE J. Sel. Top. Signal Process. 2016, 11, 336–346. [Google Scholar] [CrossRef]
- Xu, J.; Zhu, S.; Liao, G. Range ambiguous clutter suppression for airborne FDA-STAP radar. IEEE J. Sel. Top. Signal Process. 2015, 9, 1620–1631. [Google Scholar] [CrossRef]
- Jin, G.; Wang, W.; Deng, Y.; Yan, H.; Wang, R. A novel range-azimuth joint modulation scheme for range ambiguity suppression. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–10. [Google Scholar] [CrossRef]
- Niu, S.; Zhu, D.; Jin, G.; Cheng, Y.; Wang, Y. A novel transmitter-interpulse phase coding MIMO-radar for range ambiguity separation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Jin, G.; Wang, Y.; Zhu, D.; Niu, S.; Yan, H. A reconfigurable MIMO-SAR transmission scheme based on inter-pulse and intra-pulse joint phase modulation. IEEE Trans. Signal Process. 2022, 70, 4265–4276. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Xu, J.; Liao, G.; Zhu, S. Range ambiguity suppression in a synthetic aperture radar using pulse phase coding and two-pulse cancellation. Int. J. Remote Sens. 2018, 39, 6525–6539. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, W.; Deng, Y.; Zhang, Y.; Zhao, P.; Zhang, H. A 2-D method based on nonlinear frequency modulation waveform and phase coding for range ambiguity suppression. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Wang, J.; Liang, X.-D.; Chen, L.-Y.; Li, K. A novel space–time coding scheme used for MIMO-SAR systems. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1556–1560. [Google Scholar] [CrossRef]
- Zhou, F.; Ai, J.; Dong, Z.; Zhang, J.; Xing, M. A novel MIMO–SAR solution based on azimuth phase coding waveforms and digital beamforming. Sensors 2018, 18, 3374. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Liao, G.; Zhu, S.; Xu, J.; Wang, C. Range-ambiguous clutter suppression for the SAR-GMTI system based on extended azimuth phase coding. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8147–8162. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, W.; Deng, Y.; Yu, W.; Zhang, Z.; Zhao, P.; Wang, R. Quadratically constrained ambiguity suppression algorithm for APC/multichannel SAR systems with nonuniform spatial sampling. IEEE Trans. Geosci. Remote Sens. 2020, 59, 1319–1330. [Google Scholar] [CrossRef]
- Wang, J.; Xin, Y.; Liang, X.-D.; Chen, L.-Y.; Li, Y.-L. Inter-pulse phase modulation waveform scheme for spaceborne MIMO SAR systems. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 4051–4066. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Carrier frequency | 9.6 GHz |
Waveform bandwidth | 150 MHz |
Pulse width | 2 µs |
PRF | 470 Hz |
Platform velocity | 7.4 km/s |
Platform altitude | 1000 km |
Elevation elements | 4 |
Azimuth elements | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Zhang, F.; Li, W.; Wan, Y.; Chen, L.; Jiang, T. A Novel Multi-Beam SAR Two-Dimensional Ambiguity Suppression Method Based on Azimuth Phase Coding. Remote Sens. 2024, 16, 2298. https://doi.org/10.3390/rs16132298
Xu Y, Zhang F, Li W, Wan Y, Chen L, Jiang T. A Novel Multi-Beam SAR Two-Dimensional Ambiguity Suppression Method Based on Azimuth Phase Coding. Remote Sensing. 2024; 16(13):2298. https://doi.org/10.3390/rs16132298
Chicago/Turabian StyleXu, Yihao, Fubo Zhang, Wenjie Li, Yangliang Wan, Longyong Chen, and Tao Jiang. 2024. "A Novel Multi-Beam SAR Two-Dimensional Ambiguity Suppression Method Based on Azimuth Phase Coding" Remote Sensing 16, no. 13: 2298. https://doi.org/10.3390/rs16132298
APA StyleXu, Y., Zhang, F., Li, W., Wan, Y., Chen, L., & Jiang, T. (2024). A Novel Multi-Beam SAR Two-Dimensional Ambiguity Suppression Method Based on Azimuth Phase Coding. Remote Sensing, 16(13), 2298. https://doi.org/10.3390/rs16132298