Recent Advances in Dielectric Properties-Based Soil Water Content Measurements
Abstract
:1. Introduction
2. Dielectric Models for Soil Water Content Measurements
Equations | Source | Soil Type | Experimental Methods | Properties of Soil Bulk Density (g/cm3) | Particle Density (g/cm3) | Porosity | |
---|---|---|---|---|---|---|---|
Model with one parameter | |||||||
1 | [41] |
| 𝜀: using TDR Tektronik Model 7S12 to perform 18 experiments with different treatments 𝜃: using gravimetric technique | 1.04–1.44 0.422 1.08 1.49–1.61 | - | - | |
2 | |||||||
3 | |||||||
Model with two parameters | |||||||
4 | [59] | 22 different samples | Modeling using data from other studies | 1.1–1.7 | 2.6–2.75 | 0.4–0.6 | |
5 | |||||||
6 | [60] | 62 soil samples | TDR CAMI | 0.13–1.66 | 1.06–2.7 | 0.33–0.95 | |
7 | [51] | From 11 different field sites | TDR | - | - | - | |
8 | |||||||
9 | [61] | Quartz grain, coarse grain, sandy soil | TDR Tektronix 1502B | - | - | - | |
10 | [62] | Silica materials Brown earths | Capacitance probe (80–150 MHz) | 1.24–1.63 1.08–1.49 | - | - |
3. Remote Sensing Based on Dielectric Properties of Soil Moisture
4. Applications of Dielectric Models in Soil Water Content Measurements
5. Challenges, Prospects, and Trends in Using Dielectric Properties to Measure SWC
5.1. Challenges
5.2. Prospective and Future Trends
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Algeo, J.; Van Dam, R.L.; Slater, L. Early-Time GPR: A Method to Monitor Spatial Variations in Soil Water Content during Irrigation in Clay Soils. Vadose Zone J. 2016, 15, 1–9. [Google Scholar] [CrossRef]
- Benedetto, A.; Tosti, F.; Ortuani, B.; Giudici, M.; Mele, M. Mapping the spatial variation of soil moisture at the large scale using GPR for pavement applications. Near Surf. Geophys. 2015, 13, 269–278. [Google Scholar] [CrossRef]
- Wan, H.; Qi, H.; Shang, S. Estimating soil water and salt contents from field measurements with time domain reflectometry using machine learning algorithms. Agric. Water Manag. 2023, 285, 108364. [Google Scholar] [CrossRef]
- Li, M.; Jwo, K.-W.; Yi, W. A novel spectroscopy-based method using monopole antenna for measuring soil water content. Measurement 2021, 168, 108459. [Google Scholar] [CrossRef]
- Bao, J.; Hou, Z.; Ray, J.; Huang, M.; Swiler, L.; Ren, H. Soil moisture estimation using tomographic ground penetrating radar in a MCMC–Bayesian framework. Stoch. Environ. Res. Risk Assess. 2018, 32, 2213–2231. [Google Scholar] [CrossRef]
- Fu, Z.; Zhang, X.; Zhang, H.; Li, Y.; Zhou, H.; Zhang, Y. On the Understandings of Dielectric Constant and Its Impacts on the Photovoltaic Efficiency in Organic Solar Cells. Chin. J. Chem. 2021, 39, 381–390. [Google Scholar] [CrossRef]
- Farhat, I.; Farrugia, L.; Bonello, J.; Sammut, C.; Persico, R. Measuring the Dielectric Properties of Soil: A Review and Some Innovative Proposals. In Instrumentation and Measurement Technologies for Water Cycle Management; Di Mauro, A., Scozzari, A., Soldovieri, F., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 485–509. [Google Scholar]
- Klotzsche, A.; Jonard, F.; Looms, M.C.; van der Kruk, J.; Huisman, J.A. Measuring Soil Water Content with Ground Penetrating Radar: A Decade of Progress. Vadose Zone J. 2018, 17, 180052. [Google Scholar] [CrossRef]
- Mukhlisin, M.; Saputra, A. Dielectric Analysis Model for Measurement of Soil Moisture Water Content Using Electrical Capacitance Volume Tomography. In Modern Applications of Electrostatics and Dielectrics; Dengming, X., Krishnaswamy, S., Eds.; IntechOpen: Rijeka, Croatia, 2019. [Google Scholar]
- Zawilski, B.M.; Granouillac, F.; Claverie, N.; Lemaire, B.; Brut, A.; Tallec, T. Calculation of soil water content using dielectric-permittivity-based sensors—Benefits of soil-specific calibration. Geosci. Instrum. Method. Data Syst. 2023, 12, 45–56. [Google Scholar] [CrossRef]
- He, H.; Zou, W.; Jones, S.B.; Robinson, D.A.; Horton, R.; Dyck, M.; Filipović, V.; Noborio, K.; Bristow, K.; Gong, Y.; et al. Critical review of the models used to determine soil water content using TDR-measured apparent permittivity. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2023; Volume 182, pp. 169–219. [Google Scholar]
- Szypłowska, A.; Lewandowski, A.; Yagihara, S.; Saito, H.; Furuhata, K.; Szerement, J.; Kafarski, M.; Wilczek, A.; Majcher, J.; Woszczyk, A.; et al. Dielectric models for moisture determination of soils with variable organic matter content. Geoderma 2021, 401, 115288. [Google Scholar] [CrossRef]
- Liu, J.; He, T.; Yang, Z.; Peng, S.; Zhu, Y.; Li, H.; Lu, D.; Li, Q.; Feng, Y.; Chen, K.; et al. Insight into the mechanism of nano-TiO2-doped biochar in mitigating cadmium mobility in soil-pak choi system. Sci. Total Environ. 2024, 916, 169996. [Google Scholar] [CrossRef]
- Quan, C.; Jiuli, L.; Zhihua, T.; Jiangyuan, Z.; Yan, L. Study on the relationship between soil moisture and its dielectric constant obtained by space-borne microwave radiometers and scatterometers. IOP Conf. Ser. Earth Environ. Sci. 2014, 17, 012143. [Google Scholar] [CrossRef]
- Zhou, G.; Su, S.; Xu, J.; Tian, Z.; Cao, Q. Bathymetry Retrieval From Spaceborne Multispectral Subsurface Reflectance. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 2547–2558. [Google Scholar] [CrossRef]
- Bobrov, P.P.; Belyaeva, T.A.; Kroshka, E.S.; Rodionova, O.V. Soil Moisture Measurement by the Dielectric Method. Eurasian Soil Sci. 2019, 52, 822–833. [Google Scholar] [CrossRef]
- Nielsen, C.K.; Thomsen, A.G. Local Calibration of TDR Measurements for Determining Water and Organic Carbon Contents of Peaty Soils. Soil Syst. 2023, 7, 10. [Google Scholar] [CrossRef]
- Abdulraheem, M.I.; Zhang, W.; Li, S.; Moshayedi, A.J.; Farooque, A.A.; Hu, J. Advancement of Remote Sensing for Soil Measurements and Applications: A Comprehensive Review. Sustainability 2023, 15, 15444. [Google Scholar] [CrossRef]
- Quemada, C.; Pérez-Escudero, J.M.; Gonzalo, R.; Ederra, I.; Santesteban, L.G.; Torres, N.; Iriarte, J.C. Remote Sensing for Plant Water Content Monitoring: A Review. Remote Sens. 2021, 13, 2088. [Google Scholar] [CrossRef]
- Rehman, F.; Abouelnaga, H.S.O.; Rehman, F. Estimation of dielectric permittivity, water content, and porosity for environmental engineering and hydrogeological studies using ground penetrating radar, a short review. Arab. J. Geosci. 2016, 9, 312. [Google Scholar] [CrossRef]
- Zhu, G.; Yong, L.; Zhao, X.; Liu, Y.; Zhang, Z.; Xu, Y.; Sun, Z.; Sang, L.; Wang, L. Evaporation, infiltration and storage of soil water in different vegetation zones in the Qilian Mountains: A stable isotope perspective. Hydrol. Earth Syst. Sci. 2022, 26, 3771–3784. [Google Scholar] [CrossRef]
- Dai, H.; Ju, J.; Gui, D.; Zhu, Y.; Ye, M.; Liu, Y.; Cui, J.; Hu, B.X. A two-step Bayesian network-based process sensitivity analysis for complex nitrogen reactive transport modeling. J. Hydrol. 2024, 632, 130903. [Google Scholar] [CrossRef]
- Zhou, L.; Yu, D.; Wang, Z.; Wang, X. Soil Water Content Estimation Using High-Frequency Ground Penetrating Radar. Water 2019, 11, 1036. [Google Scholar] [CrossRef]
- Anbazhagan, P.; Bittelli, M.; Pallepati, R.R.; Mahajan, P. Comparison of soil water content estimation equations using ground penetrating radar. J. Hydrol. 2020, 588, 125039. [Google Scholar] [CrossRef]
- Bittelli, M.; Tomei, F.; Anbazhagan, P.; Pallapati, R.R.; Mahajan, P.; Meisina, C.; Bordoni, M.; Valentino, R. Measurement of soil bulk density and water content with time domain reflectometry: Algorithm implementation and method analysis. J. Hydrol. 2021, 598, 126389. [Google Scholar] [CrossRef]
- Shan, G.; Sun, Y.; Zhou, H.; Schulze Lammers, P.; Grantz, D.A.; Xue, X.; Wang, Z. A horizontal mobile dielectric sensor to assess dynamic soil water content and flows: Direct measurements under drip irrigation compared with HYDRUS-2D model simulation. Biosyst. Eng. 2019, 179, 13–21. [Google Scholar] [CrossRef]
- Piuzzi, E.; Cannazza, G.; Cataldo, A.; De Benedetto, E.; De Giorgi, L.; Frezza, F.; Leucci, G.; Pisa, S.; Pittella, E.; Prontera, S.; et al. A comparative assessment of microwave-based methods for moisture content characterization in stone materials. Measurement 2018, 114, 493–500. [Google Scholar] [CrossRef]
- Huang, J.; Ma, H.; Sedano, F.; Lewis, P.; Liang, S.; Wu, Q.; Su, W.; Zhang, X.; Zhu, D. Evaluation of regional estimates of winter wheat yield by assimilating three remotely sensed reflectance datasets into the coupled WOFOST–PROSAIL model. Eur. J. Agron. 2019, 102, 1–13. [Google Scholar] [CrossRef]
- Mane, S.; Das, N.; Singh, G.; Cosh, M.; Dong, Y. Advancements in dielectric soil moisture sensor Calibration: A comprehensive review of methods and techniques. Comput. Electron. Agric. 2024, 218C, 108686. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhu, G.; Meng, G.; Lu, S.; Qiu, D.; Lin, X.; Li, R.; Wang, Q.; Chen, L.; Zhao, L.; et al. Estimating non-productive water loss in irrigated farmland in arid oasis regions: Based on stable isotope data. Agric. Water Manag. 2023, 289, 108515. [Google Scholar] [CrossRef]
- Bai, B.; Xu, T.; Nie, Q.; Li, P. Temperature-driven migration of heavy metal Pb2+ along with moisture movement in unsaturated soils. Int. J. Heat Mass Transf. 2020, 153, 119573. [Google Scholar] [CrossRef]
- Mohan, R.R.; Paul, B.; Mridula, S.; Mohanan, P. Measurement of Soil Moisture Content at Microwave Frequencies. Procedia Comput. Sci. 2015, 46, 1238–1245. [Google Scholar] [CrossRef]
- Kelleners, T.J.; Verma, A.K. Measured and Modeled Dielectric Properties of Soils at 50 Megahertz. Soil Sci. Soc. Am. J. 2010, 74, 744–752. [Google Scholar] [CrossRef]
- Mo, H.; Wang, G.; Liu, F.; Jiang, P. The influence of the interface between mica and epoxy matrix on properties of epoxy-based dielectric materials with high thermal conductivity and low dielectric loss. Rsc Adv. 2016, 6, 83163–83174. [Google Scholar] [CrossRef]
- Guan, Y.; Lu, H.; Yin, C.; Xue, Y.; Jiang, Y.; Kang, Y.; He, L.; Heiskanen, J. Vegetation response to climate zone dynamics and its impacts on surface soil water content and albedo in China. Sci. Total Environ. 2020, 747, 141537. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Wu, J.; Huang, J.; Wu, M.; Zeng, W. Design of a new TDR probe to measure water content and electrical conductivity in highly saline soils. J. Soils Sediments 2018, 18, 1087–1099. [Google Scholar] [CrossRef]
- Kargas, G.; Soulis, K.X. Performance evaluation of a recently developed soil water content, dielectric permittivity, and bulk electrical conductivity electromagnetic sensor. Agric. Water Manag. 2019, 213, 568–579. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, W.; Wang, Y. Measuring and modeling the dielectric constant of soil during freezing and thawing processes: An application on silty clay. Acta Geotech. 2022, 17, 3867–3886. [Google Scholar] [CrossRef]
- Hernandez-Soriano, M.C.; Jimenez-Lopez, J.C. Effects of soil water content and organic matter addition on the speciation and bioavailability of heavy metals. Sci. Total Environ. 2012, 423, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Kabir, H.; Khan, M.J.; Brodie, G.; Gupta, D.; Pang, A.; Jacob, M.V.; Antunes, E. Measurement and modelling of soil dielectric properties as a function of soil class and moisture content. J. Microw. Power Electromagn. Energy 2020, 54, 3–18. [Google Scholar] [CrossRef]
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef]
- He, H.; Dyck, M.; Zhao, Y.; Si, B.; Jin, H.; Zhang, T.; Lv, J.; Wang, J. Evaluation of five composite dielectric mixing models for understanding relationships between effective permittivity and unfrozen water content. Cold Reg. Sci. Technol. 2016, 130, 33–42. [Google Scholar] [CrossRef]
- Pan, X.; Han, Y.; Chun, K.P.; Zhang, J.; Ma, D.; Gao, H. On the laboratory calibration of dielectric permittivity models for agricultural soils: Effect of systematic porosity variation. Vadose Zone J. 2021, 20, e20096. [Google Scholar] [CrossRef]
- Chen, Y.P.; Or, D. Geometrical factors and interfacial processes affecting complex dielectric permittivity of partially saturated porous media. Water Resour. Res. 2006, 42, W06423. [Google Scholar] [CrossRef]
- Majcher, J.; Kafarski, M.; Wilczek, A.; Woszczyk, A.; Szypłowska, A.; Lewandowski, A.; Szerement, J.; Skierucha, W. Application of a Monopole Antenna Probe with an Optimized Flange Diameter for TDR Soil Moisture Measurement. Sensors 2020, 20, 2374. [Google Scholar] [CrossRef] [PubMed]
- Hardie, M. Review of Novel and Emerging Proximal Soil Moisture Sensors for Use in Agriculture. Sensors 2020, 20, 6934. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wang, H.; Qu, X.; Li, C.; Cai, B.; Peng, G. Study on the dielectric properties and dielectric constant model of laterite. Front. Earth Sci. 2022, 10, 1035692. [Google Scholar] [CrossRef]
- Liao, H.; Dong, H.; Ning, C.; Zhang, J.; Sun, J. A new logarithmic dielectric constant model of soils. Jpn. Geotech. Soc. Spec. Publ. 2019, 7, 281–286. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, G.; Su, S.; Cao, Q.; Tian, Z. The Development of A Rigorous Model for Bathymetric Mapping from Multispectral Satellite-Images. Remote Sens. 2022, 14, 2495. [Google Scholar] [CrossRef]
- Xu, Z.; Li, X.; Li, J.; Xue, Y.; Jiang, S.; Liu, L.; Luo, Q.; Wu, K.; Zhang, N.; Feng, Y.; et al. Characteristics of Source Rocks and Genetic Origins of Natural Gas in Deep Formations, Gudian Depression, Songliao Basin, NE China. ACS Earth Space Chem. 2022, 6, 1750–1771. [Google Scholar] [CrossRef]
- Roth, K.; Schulin, R.; Flühler, H.; Attinger, W. Calibration of time domain reflectometry for water content measurement using a composite dielectric approach. Water Resour. Res. 1990, 26, 2267–2273. [Google Scholar] [CrossRef]
- Savin, I.V.; Muzalevskiy, K.V. Dielectric Model for Thawed Organic Soils at Frequency of 435 MHz. IEEE Geosci. Remote Sens. Lett. 2021, 18, 218–221. [Google Scholar] [CrossRef]
- Bogena, H.R.; Huisman, J.A.; Schilling, B.; Weuthen, A.; Vereecken, H. Effective Calibration of Low-Cost Soil Water Content Sensors. Sensors 2017, 17, 208. [Google Scholar] [CrossRef]
- Kibirige, D.; Dobos, E. Off-Site Calibration Approach of EnviroScan Capacitance Probe to Assist Operational Field Applications. Water 2021, 13, 837. [Google Scholar] [CrossRef]
- Huan, Z.; Wang, H.; Li, C.; Wan, C. The soil moisture sensor based on soil dielectric property. Pers. Ubiquitous Comput. 2017, 21, 67–74. [Google Scholar] [CrossRef]
- Bianchi, F.; Chiappini, M.; Giordano, R. Formation, diffusion and distribution of leachate: Integrated mathematical models of SIGLOD project. Quad. Di Geofis. 2015, 128, 1–30. [Google Scholar]
- Wang, J.R. The dielectric properties of soil-water mixtures at microwave frequencies. Radio Sci. 1980, 15, 977–985. [Google Scholar] [CrossRef]
- Park, C.-H.; Behrendt, A.; LeDrew, E.; Wulfmeyer, V. New Approach for Calculating the Effective Dielectric Constant of the Moist Soil for Microwaves. Remote Sens. 2017, 9, 732. [Google Scholar] [CrossRef]
- Wang, J.R.; Schmugge, T.J. An Empirical Model for the Complex Dielectric Permittivity of Soils as a Function of Water Content. IEEE Trans. Geosci. Remote Sens. 1980, GE-18, 288–295. [Google Scholar] [CrossRef]
- Malicki, M.A.; Plagge, R.; Roth, C.H. Improving the calibration of dielectric TDR soil moisture determination taking into account the solid soil. Eur. J. Soil Sci. 1996, 47, 357–366. [Google Scholar] [CrossRef]
- Robinson, D.A.; Jones, S.B.; Blonquist, J.M.; Friedman, S.P. A Physically Derived Water Content/Permittivity Calibration Model for Coarse-Textured, Layered Soils. Soil Sci. Soc. Am. J. 2005, 69, 1372–1378. [Google Scholar] [CrossRef]
- Gardner, C.M.K.; Dean, T.J.; Cooper, J.D. Soil Water Content Measurement with a High-Frequency Capacitance Sensor. J. Agric. Eng. Res. 2018, 71, 395–403. [Google Scholar] [CrossRef]
- Szerement, J.; Woszczyk, A.; Szypłowska, A.; Kafarski, M.; Lewandowski, A.; Wilczek, A.; Skierucha, W. A Seven-Rod Dielectric Sensor for Determination of Soil Moisture in Well-Defined Sample Volumes. Sensors 2019, 19, 1646. [Google Scholar] [CrossRef]
- Moshayedi, A.J.; Sohail Khan, A.; Hu, J.; Nawaz, A.; Zhu, J. E-Nose-Driven Advancements in Ammonia Gas Detection: A Comprehensive Review from Traditional to Cutting-Edge Systems in Indoor to Outdoor Agriculture. Sustainability 2023, 15, 11601. [Google Scholar] [CrossRef]
- Wojciech, S. Time Domain Reflectometry: Temperature-dependent Measurements of Soil Dielectric Permittivity. In Electromagnetic Waves; Vitaliy, Z., Ed.; IntechOpen: Rijeka, Croatia, 2011. [Google Scholar]
- Or, D.; Wraith, J.M. Temperature effects on soil bulk dielectric permittivity measured by time domain reflectometry: A physical model. Water Resour. Res. 1999, 35, 371–383. [Google Scholar] [CrossRef]
- Loewer, M.; Günther, T.; Igel, J.; Kruschwitz, S.; Martin, T.; Wagner, N. Ultra-broad-band electrical spectroscopy of soils and sediments—A combined permittivity and conductivity model. Geophys. J. Int. 2017, 210, 1360–1373. [Google Scholar] [CrossRef]
- He, M.-Y.; Dong, J.-B.; Jin, Z.; Liu, C.-Y.; Xiao, J.; Zhang, F.; Sun, H.; Zhao, Z.-Q.; Gou, L.-F.; Liu, W.-G.; et al. Pedogenic processes in loess-paleosol sediments: Clues from Li isotopes of leachate in Luochuan loess. Geochim. Et Cosmochim. Acta 2021, 299, 151–162. [Google Scholar] [CrossRef]
- Vaz, C.M.P.; Jones, S.; Meding, M.; Tuller, M. Evaluation of standard calibration functions for eight electromagnetic soil moisture sensors. Vadose Zone J. 2013, 12, 1–16. [Google Scholar] [CrossRef]
- Adla, S.; Rai, N.K.; Karumanchi, S.H.; Tripathi, S.; Disse, M.; Pande, S. Laboratory Calibration and Performance Evaluation of Low-Cost Capacitive and Very Low-Cost Resistive Soil Moisture Sensors. Sensors 2020, 20, 363. [Google Scholar] [CrossRef] [PubMed]
- Szerement, J.; Saito, H.; Furuhata, K.; Yagihara, S.; Szypłowska, A.; Lewandowski, A.; Kafarski, M.; Wilczek, A.; Majcher, J.; Woszczyk, A.; et al. Dielectric Properties of Glass Beads with Talc as a Reference Material for Calibration and Verification of Dielectric Methods and Devices for Measuring Soil Moisture. Materials 2020, 13, 1968. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.L.; Ma, W. State-of-art of research on mechanical properties of frozen soils. Rock Soil Mech. 2010, 31, 133–143. [Google Scholar]
- Wan, X.; Lai, Y.; Wang, C. Experimental study on the freezing temperatures of saline silty soils. Permafr. Periglac. Process. 2015, 26, 175–187. [Google Scholar] [CrossRef]
- Torres-Rua, A.F.; Ticlavilca, A.M.; Bachour, R.; McKee, M. Estimation of Surface Soil Moisture in Irrigated Lands by Assimilation of Landsat Vegetation Indices, Surface Energy Balance Products, and Relevance Vector Machines. Water 2016, 8, 167. [Google Scholar] [CrossRef]
- Huang, J.; Gómez-Dans, J.L.; Huang, H.; Ma, H.; Wu, Q.; Lewis, P.E.; Liang, S.; Chen, Z.; Xue, J.-H.; Wu, Y.; et al. Assimilation of remote sensing into crop growth models: Current status and perspectives. Agric. For. Meteorol. 2019, 276–277, 107609. [Google Scholar] [CrossRef]
- Stellini, J.; Farrugia, L.; Farhat, I.; Bonello, J.; Persico, R.; Sacco, A.; Spiteri, K.; Sammut, C.V. Broadband Measurements of Soil Complex Permittivity. Sensors 2023, 23, 5357. [Google Scholar] [CrossRef]
- Yao, X.; Yu, X.; Wang, L.; Zeng, Y.; Mao, L.; Liu, S.; Xie, H.; He, G.; Huang, Z.; Liu, Z. Preparation of cinnamic hydroxamic acid collector and study on flotation characteristics and mechanism of scheelite. Int. J. Min. Sci. Technol. 2023, 33, 773–781. [Google Scholar] [CrossRef]
- Lu, Q.; Liu, K.; Zeng, Z.; Liu, S.; Li, R.; Xia, L.; Guo, S.; Li, Z. Estimation of the Soil Water Content Using the Early Time Signal of Ground-Penetrating Radar in Heterogeneous Soil. Remote Sens. 2023, 15, 3026. [Google Scholar] [CrossRef]
- Zhang, T.; Song, B.; Han, G.; Zhao, H.; Hu, Q.; Zhao, Y.; Liu, H. Effects of coastal wetland reclamation on soil organic carbon, total nitrogen, and total phosphorus in China: A meta-analysis. Land Degrad. Dev. 2023, 34, 3340–3349. [Google Scholar] [CrossRef]
- Mohanty, B.P.; Cosh, M.H.; Lakshmi, V.; Montzka, C. Soil moisture remote sensing: State-of-the-science. Vadose Zone J. 2017, 16, 1–9. [Google Scholar] [CrossRef]
- Lakshmi, V. Remote Sensing of Soil Moisture. ISRN Soil Sci. 2013, 2013, 424178. [Google Scholar] [CrossRef]
- Araya, S.N.; Fryjoff-Hung, A.; Anderson, A.; Viers, J.H.; Ghezzehei, T.A. Advances in soil moisture retrieval from multispectral remote sensing using unoccupied aircraft systems and machine learning techniques. Hydrol. Earth Syst. Sci. 2021, 25, 2739–2758. [Google Scholar] [CrossRef]
- Babaeian, E.; Sadeghi, M.; Jones, S.B.; Montzka, C.; Vereecken, H.; Tuller, M. Ground, Proximal, and Satellite Remote Sensing of Soil Moisture. Rev. Geophys. 2019, 57, 530–616. [Google Scholar] [CrossRef]
- Yin, L.; Wang, L.; Li, T.; Lu, S.; Yin, Z.; Liu, X.; Li, X.; Zheng, W. U-Net-STN: A Novel End-to-End Lake Boundary Prediction Model. Land 2023, 12, 1602. [Google Scholar] [CrossRef]
- Jia, B.; Zhou, G. Estimation of global karst carbon sink from 1950s to 2050s using response surface methodology. Geo-Spat. Spat. Spat. Inf. Sci. 2023, 1–18. [Google Scholar] [CrossRef]
- Yin, L.; Wang, L.; Li, T.; Lu, S.; Tian, J.; Yin, Z.; Li, X.; Zheng, W. U-Net-LSTM: Time Series-Enhanced Lake Boundary Prediction Model. Land 2023, 12, 1859. [Google Scholar] [CrossRef]
- Alexandridis, T.K.; Cherif, I.; Bilas, G.; Almeida, W.G.; Hartanto, I.M.; Van Andel, S.J.; Araujo, A. Spatial and Temporal Distribution of Soil Moisture at the Catchment Scale Using Remotely-Sensed Energy Fluxes. Water 2016, 8, 32. [Google Scholar] [CrossRef]
- Koch, F.; Schlenz, F.; Prasch, M.; Appel, F.; Ruf, T.; Mauser, W. Soil Moisture Retrieval Based on GPS Signal Strength Attenuation. Water 2016, 8, 276. [Google Scholar] [CrossRef]
- Li, Z.; Zeng, Z.; Xiong, H.; Lu, Q.; An, B.; Yan, J.; Li, R.; Xia, L.; Wang, H.; Liu, K. Study on Rapid Inversion of Soil Water Content from Ground-Penetrating Radar Data Based on Deep Learning. Remote Sens. 2023, 15, 1906. [Google Scholar] [CrossRef]
- Qiu, S.; Yang, H.; Zhang, S.; Huang, S.; Zhao, S.; Xu, X.; He, P.; Zhou, W.; Zhao, Y.; Yan, N.; et al. Carbon storage in an arable soil combining field measurements, aggregate turnover modeling and climate scenarios. CATENA 2023, 220, 106708. [Google Scholar] [CrossRef]
- Ozgur, M. Development and validation of a degree of saturation prediction model using time domain reflectometry for compaction control. Transp. Geotech. 2023, 42, 101062. [Google Scholar] [CrossRef]
- González-Teruel, J.D.; Jones, S.B.; Soto-Valles, F.; Torres-Sánchez, R.; Lebron, I.; Friedman, S.P.; Robinson, D.A. Dielectric Spectroscopy and Application of Mixing Models Describing Dielectric Dispersion in Clay Minerals and Clayey Soils. Sensors 2020, 20, 6678. [Google Scholar] [CrossRef] [PubMed]
- Dyck, M.; Miyamoto, T.; Iwata, Y.; Kameyama, K. Bound Water, Phase Configuration, and Dielectric Damping Effects on TDR-Measured Apparent Permittivity. Vadose Zone J. 2019, 18, 190027. [Google Scholar] [CrossRef]
- He, H.; Flerchinger, G.N.; Kojima, Y.; Dyck, M.; Lv, J. A review and evaluation of 39 thermal conductivity models for frozen soils. Geoderma 2021, 382, 114694. [Google Scholar] [CrossRef]
- He, H.; Dyck, M. Application of Multiphase Dielectric Mixing Models for Understanding the Effective Dielectric Permittivity of Frozen Soils. Vadose Zone J. 2013, 12, 1–22. [Google Scholar] [CrossRef]
- Greco, R.; Guida, A. Field measurements of topsoil moisture profiles by vertical TDR probes. J. Hydrol. 2018, 348, 442–451. [Google Scholar] [CrossRef]
- Regalado, C.M. A physical interpretation of logarithmic TDR calibration equations of volcanic soils and their solid fraction permittivity based on Lichtenecker’s mixing formulae. Geoderma 2014, 123, 41–50. [Google Scholar] [CrossRef]
- Gnatowski, T.; Szatyłowicz, J.; Pawluśkiewicz, B.; Oleszczuk, R.; Janicka, M.; Papierowska, E.; Szejba, D. Field Calibration of TDR to Assess the Soil Moisture of Drained Peatland Surface Layers. Water 2018, 10, 1842. [Google Scholar] [CrossRef]
- Pepin, S.; Livingston, N.J.; Hook, W.R. Temperature-Dependent Measurement Errors in Time Domain Reflectometry Determinations of Soil Water. Soil Sci. Soc. Am. J. 2015, 59, 38–43. [Google Scholar] [CrossRef]
- Cui, F.; Ni, J.; Du, Y.; Zhao, Y.; Zhou, Y. Soil water content estimation using ground penetrating radar data via group intelligence optimization algorithms: An application in the Northern Shaanxi Coal Mining Area. Energy Explor. Exploit. 2020, 39, 318–335. [Google Scholar] [CrossRef]
- Mukhlisin, M.; Saputra, A.; Taha, M. A New Model of Dielectric Analysis for Measurement Soil Moisture Water Content. J. Eng. Sci. Technol. 2013, 13, 2910. [Google Scholar]
- Amankwah, S.K.; Ireson, A.M.; Brannen, R. An improved model and field calibration technique for measuring liquid water content in unfrozen and frozen soils with dielectric probes. Vadose Zone J. 2022, 21, e20225. [Google Scholar] [CrossRef]
- Xu, J.; Logsdon, S.; Ma, X.; Horton, R.; Han, W.; Zhao, Y. Measurement of Soil Water Content with Dielectric Dispersion Frequency. Soil Sci. Soc. Am. J. 2014, 78, 1500. [Google Scholar] [CrossRef]
- Inaudi, D.; Glisic, B. Distributed fiber-optic sensing for long-range monitoring of pipelines. In Proceedings of the 3rd International Conference on Structural Health Monitoring of Intelligent Infrastructure, Vancouver, BC, Canada, 13–16 November 2007; pp. 1–8. [Google Scholar]
- Peng, J.; Loew, A. Recent Advances in Soil Moisture Estimation from Remote Sensing. Water 2017, 9, 530. [Google Scholar] [CrossRef]
- Satoh, Y.; Kakiuchi, H. Calibration method to address influences of temperature and electrical conductivity for a low-cost soil water content sensor in the agricultural field. Agric. Water Manag. 2021, 255, 107015. [Google Scholar] [CrossRef]
- Peng, W.; Lu, Y.; Wang, M.; Ren, T.; Horton, R. Determining water content and bulk density: The heat-pulse method outperforms the thermo-TDR method in high-salinity soils. Geoderma 2022, 407, 115564. [Google Scholar] [CrossRef]
- Lu, Y.; Song, W.; Lu, J.; Wang, X.; Tan, Y. An Examination of Soil Moisture Estimation Using Ground Penetrating Radar in Desert Steppe. Water 2017, 9, 521. [Google Scholar] [CrossRef]
- Zhou, L.; Yu, D.; Wang, X.; Wang, X.; Zhang, H. Determination of top soil water content based on high-frequency ground penetrating radar. Acta Pedol. Sin. 2016, 53, 621–626. [Google Scholar]
- Dai, H.; Liu, Y.; Guadagnini, A.; Yuan, S.; Yang, J.; Ye, M. Comparative Assessment of Two Global Sensitivity Approaches Considering Model and Parameter Uncertainty. Water Resour. Res. 2024, 60, e2023WR036096. [Google Scholar] [CrossRef]
- Zhao, Y.; Ding, Z.; Shen, C.; Chen, Y. Interfacial microstructure and properties of aluminum–magnesium AZ31B multi-pass friction stir processed composite plate. Mater. Des. 2016, 94, 240–252. [Google Scholar] [CrossRef]
- Ju, Z.; Liu, X.; Ren, T.; Hu, C. Measuring soil water content with time domain reflectometry: An improved calibration considering soil bulk density. Soil Sci. 2010, 175, 469–473. [Google Scholar] [CrossRef]
- Whalley, W.R.; Leeds-Harrison, P.B.; Whitmore, A.P.; Sarker, P.K. Effect of aggregate size on the water content estimated with time domain reflectance [TDR]. Int. Agrophys. 2014, 18, 181–187. [Google Scholar]
- Skierucha, W. Accuracy of soil moisture measurement by TDR technique. Int. Agrophys. 2020, 14, 417–426. [Google Scholar]
- Siddiqui, S.I.; Drnevich, V.P. A New Method of Measuring Density and Moisture Content of Soil Using the Technique of Time Domain Reflectometry; Joint Highway Research Project; Purdue University: Lafayette, IN, USA, 1995. [Google Scholar]
- Friedman, S.P. Statistical Mixing Model for the Apparent Dielectric Constant of Unsaturated Porous Media. Soil Sci. Soc. Am. J. 1997, 61, 742–745. [Google Scholar] [CrossRef]
- Peplinski, N.R.; Ulaby, F.T.; Dobson, M.C. Dielectric Properties of Soils in the 0.3–1.3-GHz Range. IEEE Trans. Geosci. Remote Sens. 1995, 33, 803–807. [Google Scholar] [CrossRef]
- Zhao, Y.; Ling, D.-s.; Wang, Y.-l.; Huang, B.; Wang, H.-l. Study on a calibration equation for soil water content in field tests using time domain reflectometry. J. Zhejiang Univ. SCIENCE A 2016, 17, 240–252. [Google Scholar] [CrossRef]
- Liu, X.; Chen, J.; Cui, X.; Liu, Q.; Cao, X.; Chen, X. Measurement of soil water content using ground-penetrating radar: A review of current methods. Int. J. Digit. Earth 2019, 12, 95–118. [Google Scholar] [CrossRef]
- Koyama, C.N.; Liu, H.; Takahashi, K.; Shimada, M.; Watanabe, M.; Khuut, T.; Sato, M. In-Situ Measurement of Soil Permittivity at Various Depths for the Calibration and Validation of Low-Frequency SAR Soil Moisture Models by Using GPR. Remote Sens. 2017, 9, 580. [Google Scholar] [CrossRef]
- Mukhlisin, M.; Astuti, H.W.; Wardihani, E.D.; Matlan, S.J. Techniques for ground-based soil moisture measurement: A detailed overview. Arab. J. Geosci. 2021, 14, 2032. [Google Scholar] [CrossRef]
- Comite, D.; Galli, A.; Lauro, S.E.; Mattei, E.; Pettinelli, E. Analysis of GPR early-time signal features for the evaluation of soil permittivity through numerical and experimental surveys. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 9, 178–187. [Google Scholar] [CrossRef]
- Busch, S.; Van der Kruk, J.; Vereecken, H. Improved characterization of fine-texture soils using on-ground GPR full-waveform inversion. IEEE Trans. Geosci. Remote Sens. 2013, 52, 3947–3958. [Google Scholar] [CrossRef]
- Novák, V.; Hlaváčiková, H. Soil-Water Content and Its Measurement. In Applied Soil Hydrology; Novák, V., Hlaváčiková, H., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 49–61. [Google Scholar]
- He, H.; Turner, N.C.; Aogu, K.; Dyck, M.; Feng, H.; Si, B.; Wang, J.; Lv, J. Time and frequency domain reflectometry for the measurement of tree stem water content: A review, evaluation, and future perspectives. Agric. For. Meteorol. 2021, 306, 108442. [Google Scholar] [CrossRef]
- Zhu, Y.; Irmak, S.; Jhala, A.; Vuran, M.; Diotto, A. Time-domain and Frequency-domain Reflectometry Type Soil Moisture Sensor Performance and Soil Temperature Effects in Fine- and Coarse-textured Soils. Appl. Eng. Agric. 2019, 35, 117–134. [Google Scholar] [CrossRef]
- De Vos, B.; Cools, N.; Verstraeten, A.; Neirynck, J. Accurate Measurements of Forest Soil Water Content Using FDR Sensors Require Empirical In Situ (Re)Calibration. Appl. Sci. 2021, 11, 11620. [Google Scholar] [CrossRef]
- Lü, H.B.; Jiang, W.Y.; Zhao, Y.L.; Zeng, Z.T. Relationship between volumetric water content and effective dielectric permittivity of Nanning expansive soil. Rock Soil Mech. 2016, 37, 2145–2150. [Google Scholar]
- Orangi, A.; Narsilio, G.A.; Ryu, D. A Laboratory Study on Non-Invasive Soil Water Content Estimation Using Capacitive Based Sensors. Sensors 2019, 19, 651. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.; Liao, K.; Lai, X.; Zhu, Q.; Zhou, S. Hillslope soil moisture temporal stability under two contrasting land use types during different time periods. Environ. Earth Sci. 2016, 75, 560. [Google Scholar] [CrossRef]
- Bajno, D.; Bednarz, L.; Matkowski, Z.; Raszczuk, K. Monitoring of Thermal and Moisture Processes in Various Types of External Historical Walls. Materials 2020, 13, 505. [Google Scholar] [CrossRef] [PubMed]
- Dettmann, U.; Bechtold, M. Evaluating Commercial Moisture Probes in Reference Solutions Covering Mineral to Peat Soil Conditions. Vadose Zone J. 2018, 17, 170208. [Google Scholar] [CrossRef]
- Susha Lekshmi, S.U.; Singh, D.N.; Shojaei Baghini, M. A critical review of soil moisture measurement. Measurement 2014, 54, 92–105. [Google Scholar]
- Romanov, A.N. Influence of Water Content and Temperature on the Dielectric and Radio-Emitting Properties of the Salt Crust of Puffy Solonchak. Eurasian Soil Sci. 2019, 52, 171–179. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, W.; Fan, C.; Li, G. Effects of temperature, dry density and water content on the thermal conductivity of Genhe silty clay. Results Phys. 2020, 16, 102830. [Google Scholar] [CrossRef]
- Yan, G.; Bore, T.; Bhuyan, H.; Schlaeger, S.; Scheuermann, A. The Technical Challenges for Applying Unsaturated Soil Sensors to Conduct Laboratory-Scale Seepage Experiments. Sensors 2022, 22, 3724. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, Y.; Yao, W.; Liu, X.; Ren, C.; Cai, Y.; Tang, X. Stress relaxation behaviour of marble under cyclic weak disturbance and confining pressures. Measurement 2021, 182, 109777. [Google Scholar] [CrossRef]
- Ren, C.; Yu, J.; Liu, S.; Yao, W.; Zhu, Y.; Liu, X. A Plastic Strain-Induced Damage Model of Porous Rock Suitable for Different Stress Paths. Rock Mech. Rock Eng. 2022, 55, 1887–1906. [Google Scholar] [CrossRef]
- Xu, L.L.; Gao, C.H.; Wang, J.M. Evaluation and analysis of TDR calibration curves for soil water content measurement. J. Glaciol. Geocryol. 2020, 42, 265–275. [Google Scholar]
- He, H.; Aogu, K.; Li, M.; Xu, J.; Sheng, W.; Jones, S.B.; González-Teruel, J.D.; Robinson, D.A.; Horton, R.; Bristow, K.; et al. A review of time domain reflectometry (TDR) applications in porous media. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2021; Volume 168, pp. 83–155. [Google Scholar]
- Underwood, T.R.; Bourg, I.C. Dielectric Properties of Water in Charged Nanopores. J. Phys. Chem. B 2022, 126, 2688–2698. [Google Scholar] [CrossRef] [PubMed]
- Mohan, V.B.; Jayaraman, K.; Bhattacharyya, D. Brunauer–Emmett–Teller (BET) specific surface area analysis of different graphene materials: A comparison to their structural regularity and electrical properties. Solid State Commun. 2020, 320, 114004. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, H.; Song, B.; Xue, P.; Zhang, W.; Peth, S.; Lee Hill, R.; Horn, R. Characterizing uncertainty in process-based hydraulic modeling, exemplified in a semiarid Inner Mongolia steppe. Geoderma 2023, 440, 116713. [Google Scholar] [CrossRef]
- Abdullah, N.H.H.; Kuan, N.W.; Ibrahim, A.; Ismail, B.N.; Majid, M.R.A.; Ramli, R.; Mansor, N.S. Determination of Soil Water Content Using Time Domain Reflectometer (TDR) for Clayey Soil; Advances in Civil Engineering and Science Technology; AIP Publishing: Melville, NY, USA, 2018. [Google Scholar]
- Singh, J.; Lo, T.; Rudnick, D.R.; Dorr, T.J.; Burr, C.A.; Werle, R.; Shaver, T.M.; Muñoz-Arriola, F. Performance assessment of factory and field calibrations for electromagnetic sensors in a loam soil. Agric. Water Manag. 2018, 196, 87–98. [Google Scholar] [CrossRef]
No | Soil Type | Texture (in Percent) | Wilting Point (cm3/cm3) | Transition Water Content (cm3/cm3) | Real Part of the Complex Dielectric Permittivity | Imaginary Part of Dielectric Permittivity | ||
---|---|---|---|---|---|---|---|---|
Sand | Silt | Clay | ||||||
1 | Harlingen clay | 2.0 | 37.0 | 61.0 | 0.358 | 0.31 | 0.30 | 0 |
2 | Yuma sand | 100.0 | 0 | 0 | 0.004 | 0.17 | 0.50 | 0 |
3 | Eufaula fine sand | 90.0 | 7.0 | 3.0 | 0.024 | 0.16 | 0.50 | 0 |
4 | Dougherty fine sand | 82.0 | 14.0 | 4.0 | 0.34 | 0.17 | 0.50 | 0 |
5 | Minco very fine sand | 70.0 | 22.0 | 8.0 | 0.051 | 0.17 | 0.50 | 0 |
6 | Chinkasha loam | 58.0 | 28.0 | 14.0 | 0.098 | 0.22 | 0.40 | 8 |
7 | Open street silt | 22.0 | 70.0 | 8.0 | 0.092 | 0.23 | 0.50 | 8 |
8 | Zanies loam | 48.0 | 36.0 | 16.0 | 0.114 | 0.22 | 0.40 | 8 |
9 | Collinville loam | 45.0 | 39.0 | 16.0 | 0.115 | 0.23 | 0.40 | 8 |
10 | Kirkland silt loam | 26.0 | 56.0 | 18.0 | 0.137 | 0.20 | 0.40 | 8 |
11 | Vernon clay loam | 16.0 | 56.0 | 22.0 | 0.192 | 0.28 | 0.45 | 26 |
12 | Tabler silt loam | 22.0 | 56.0 | 22.0 | 0.159 | 0.19 | 0.40 | 8 |
13 | Long lake clay | 6.0 | 54.0 | 40.0 | 0.255 | 0.26 | 0.40 | 26 |
14 | Sand | 86.0 | 7.0 | 7.0 | 0.046 | 0.20 | 0.40 | 0 |
15 | Miller clay | 3.0 | 35.0 | 62.0 | 0.361 | 0.33 | 0.30 | 20 |
No | Soil Sample (pH) | ɛr fr = 1.88 GHz | ɛr fr = 2.45 GHz | ɛr fr = 5.35 GHz |
---|---|---|---|---|
1 | 4.7 | 3.99 | 3.90 | 3.84 |
2 | 4.9 | 3.62 | 3.43 | 3.32 |
3 | 5.0 | 3.79 | 3.53 | 3.27 |
4 | 5.2 | 3.83 | 3.75 | 3.52 |
5 | 5.8 | 3.45 | 3.76 | 3.68 |
6 | 6.1 | 3.64 | 3.47 | 3.14 |
7 | 6.3 | 3.48 | 3.55 | 3.21 |
8 | 7.0 | 3.32 | 3.72 | 3.56 |
9 | 7.4 | 3.78 | 3.80 | 3.30 |
Experiment | Objectives/Aim | Findings | References |
---|---|---|---|
Soil’s specific features and calibration | Focused on the FDR sensors on their factory calibration |
| [10] |
Calibration procedure for electromagnetic SWC sensors | To demonstrate the recent and effective calibration methods for low-cost EM sensors |
| [53] |
Laterite’s dielectric characteristics and constant model | To examine the mechanical and physical aspects of in situ laterite dielectric properties |
| [47] |
Measurement and modelling of the dielectric permittivity of soil | To suggest, locate, and demonstrate fresh approaches to determining the dielectric permittivity during freezing |
| [38] |
Dielectric analysis models for measurement of SWC | To presents a normalization-based calibration model. |
| [9] |
Saturated prediction model using TDR | To suggest the level of soil’s saturation with different control criterion for compaction quality |
| [91] |
Calibration of the dielectric permittivity model for agricultural soils | To investigates using three pre-established dielectric permittivity models |
| [43] |
Dielectric models for estimating SWC | Examining the link between soil dielectric permittivity, volumetric water content, and dielectric permittivity |
| [12] |
Mixing models describing dielectric dispersion | To study the dielectric response in the frequency domain of clay minerals and clayey soils |
| [92] |
Modeling and measurement of soil dielectric properties | To investigate the dielectric properties at room temperature |
| [40] |
Dielectric damping and configuration effects on TDR | To investigate the impacts of phase configuration and bound water in four high-surface-area soils |
| [93] |
Evaluation of the thermal conductivity model | Classification into physical, mixing, normalized, linear, and non-linear regression |
| [94] |
Application of TDR in porous media | To study TDR applications and analyzing waveforms for electrical conductivity and permittivity |
| [95] |
Using TDR probes, field observations of topsoil moisture | To assesses the effectiveness of a novel inverse method to predict water content profiles |
| [96] |
Logarithmic TDR calibration formulas: a physical interpretation | To give an empirical estimate of the solid percentage permittivity in volcanic soils |
| [97] |
TDR field calibration for determining SWC | Examining the dielectric permittivity and gravimetric water content in damaged peatlands |
| [98] |
Temperature-dependent measurement error in TDR determinations of SWC | To compared soil temperature fluctuations in Ka measurement errors with those estimated using a dielectric mixing model |
| [99] |
Calculating effective approaches for the dielectric permittivity of moist soil | To calculate the effective dielectric permittivity of multiphase soil |
| [58] |
SWC estimation | To determine the precise dielectric permittivity by calibrating the wave velocity |
| [100] |
A novel soil water sensor that adjusts soil temperature and water content | To adjust and monitor SWC reflectometers for various soil types |
| [36] |
Soil water remote sensing | To enhance retrieval algorithms and transfer empirical observation at different resolutions |
| [80] |
Dielectric study to quantify the water content of soil | To examine SWC using a new dielectric analysis model |
| [101] |
Effective field calibration method and model for determining liquid water content | To calculate the amount of uncertainty in the liquid water content |
| [102] |
Soil water measurement by dielectric method | To investigate the dielectric method of measuring SWC and identify sensor values that are differentially influenced by complex dielectric permeability |
| [16] |
Measurement of SWC with dielectric dispersion frequency | To investigate the possibility of measuring variations in theta using the soil dielectric spectrum |
| [103] |
Soil water content retrieval from multispectral remote sensing | To measure SWC with machine learning algorithms and remote sensing |
| [82] |
Dielectric properties calibration, methods and devices for measuring soil water content | To investigate talc, glass beads, and their combinations at various levels of salinity and water content. |
| [71] |
Distributed fiber-optic sensing for long-range Monitoring | DiTeSt is a laser-based distributed sensing system that utilizes optical scattering within the sensing fiber. |
| [104] |
Detecting SWC with GPR | Evaluation of the latest advancements in GPR applications in SWC measurement |
| [8] |
GPR outside the ground for soil water content determination | To examine the connection between SWC and surface characteristics. |
| [82] |
SWC estimation from remote sensing | To examine recent developments and applications related to SWC estimate from remote sensing |
| [105] |
Temperature and electrical conductivity effects on an inexpensive SWC | To use a two-sensor array to measure the electrical conductivity sensor used in agricultural fields |
| [106] |
Soil water retention curves from water content measurements | To develop a new method to estimate soil water retention curves. |
| [6] |
TDR to quantify the SWC and bulk density | Implementation and testing of a novel software for TDR-waveform analysis to measures SWC |
| [25] |
Monopole antenna-based spectroscopy technique for measuring SWC | To suggest a new approach to measuring soil water that uses frequency scanning |
| [4] |
Determining SWC and bulk density | To determine the TDR calibration slope and effects of electromagnetic waveform on soil salinity |
| [107] |
Model Name | Model Formula | Applicability | References | |
---|---|---|---|---|
Empirical models | ZY2016 | For soil dry density values larger than 1.3 gcm−3 | [111] | |
GC2018 | Values for the dry bulk density of soil range from 1.08 to 1.49 | [62] | ||
JZ2010 | All types of soils | [112] | ||
MM1996 | Organic and minerals soils | [60] | ||
WW2014 | Clay soil | [113] | ||
SW2020-1 | All soil types | [114] | ||
SW2020-2 | All soil types | [114] | ||
SD1995 | All soils types | [115] | ||
PS2015 | Temperature depends on soil water content | [99] | ||
Semi-empirical models | GT2018 | For peat soil | [98] | |
RC2014-1 | 3-phase soils | [97] | ||
RC2014-2 | 4-phase soils, subscript bw indicates bound water | [97] | ||
FS 1997 | 3-phase soils | [116] | ||
PN1995 | The bulk and particle densities of the sand and clay fractions S and C are given in the text | [117] | ||
Physical models | DM2019 | The terms saturated, unsaturated, and critical point are used to describe 4-phase mixtures in unfrozen soils | [93] | |
RD2005 | The features of soil water retention and aggregated porosity define the hydraulic critical point in aggregated soils, whereas the permittivity of the saturated and unsaturated aggregate layers is represented by εsat and εunsat. | [61] | ||
HD2013 | Confocal model | [95] | ||
ZM2016 | Glass beads and unsaturated soils (3 phase mixtures) | [118] |
Classification of Methods | Configurations of Radar System | Signal Attributes Used in Method | Reference Depth Range of SWC Estimation | Antenna Frequency Used in References (MHz) | References |
---|---|---|---|---|---|
Reflected wave method | Ground-coupled GPR | Time | Depth of reflector | 450; 900 225/450/900 | [108] |
Ground wave method | Ground-coupled GPR (or surface GPR) | Time | ≤30 cm (Penetrating depth of ground wave in soil) | 225/450/900 | [121] |
AEA method | Ground-coupled GPR | Amplitude and Waveform | ≤30 cm | 250/500 | [1,122] |
FWI method | -- | All attributes of recorded signal | ~2 cm | 1000~2000 | [123] |
Frequency shift method | Ground-coupled GPR | Energy and phase etc. | 10 cm | 600 | [2] |
Borehole GPR method | Borehole GPR | Time | Maximum distance between receiver and transmitter | 100; 250 | [119] |
Configurations | Applications | References | |||
---|---|---|---|---|---|
Probe Length (cm) | No of Rod/Probe | Diameter (mm) | Spacing (mm) | ||
120 | 2 | 3.0 | 30 | Measurement of soil and oak stem water content in a lab | [129] |
40–45 | 7 | 3.0 | 7 | Lab test | [63] |
250 | 3 | 5 | 30 | GPR and TDR mapping of the depth, density, and layering of dry snow | [9,11] |
105, 150, 300 | 1 | 3.0 | 32 | Top soil water profile in the field | [96] |
480 | 1 | 37 | - | Obtaining a 3 m depth soil water profile, perfect for high-salinity soil | [128,130] |
100 | 2 | 2 | 16 | Soil salinity, water and temperature | [131] |
200 | 2 | 3 | 50 | Field measurement SWC | [37] |
110/160 | 2 | 3.5/6 | 20/40 | Soil temperature and water content | [132] |
98 | 7 | 2 | 15 | Complex dielectric permittivity of soil | [58] |
99–380 | 3 | 3–12 | 8–57 | Field, spatial variability of θv | [133] |
150 | 2, 3 | 4 | 20 | Comparing parallel plates with traditional rods in a field and laboratory test to measure SWC | [134] |
150 | 3–4 | 4.76 | 30 | Field measurement of θ and EC | [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulraheem, M.I.; Chen, H.; Li, L.; Moshood, A.Y.; Zhang, W.; Xiong, Y.; Zhang, Y.; Taiwo, L.B.; Farooque, A.A.; Hu, J. Recent Advances in Dielectric Properties-Based Soil Water Content Measurements. Remote Sens. 2024, 16, 1328. https://doi.org/10.3390/rs16081328
Abdulraheem MI, Chen H, Li L, Moshood AY, Zhang W, Xiong Y, Zhang Y, Taiwo LB, Farooque AA, Hu J. Recent Advances in Dielectric Properties-Based Soil Water Content Measurements. Remote Sensing. 2024; 16(8):1328. https://doi.org/10.3390/rs16081328
Chicago/Turabian StyleAbdulraheem, Mukhtar Iderawumi, Hongjun Chen, Linze Li, Abiodun Yusuff Moshood, Wei Zhang, Yani Xiong, Yanyan Zhang, Lateef Bamidele Taiwo, Aitazaz A. Farooque, and Jiandong Hu. 2024. "Recent Advances in Dielectric Properties-Based Soil Water Content Measurements" Remote Sensing 16, no. 8: 1328. https://doi.org/10.3390/rs16081328
APA StyleAbdulraheem, M. I., Chen, H., Li, L., Moshood, A. Y., Zhang, W., Xiong, Y., Zhang, Y., Taiwo, L. B., Farooque, A. A., & Hu, J. (2024). Recent Advances in Dielectric Properties-Based Soil Water Content Measurements. Remote Sensing, 16(8), 1328. https://doi.org/10.3390/rs16081328