The ARGOS Instrument for Stratospheric Aerosol Measurements
Abstract
:1. Introduction
1.1. Science Requirements
- Solar occultation measurements determine total extinction directly, but only sample a single latitude each day with either sunrise or sunset events. An inclined (but not sun-synchronous) orbit is necessary to measure at different latitudes, and it may take several months to cover the full latitude range available from a given orbit.
- Space-based backscatter lidar measurements provide better spatial and temporal sampling and high vertical resolution but provide a different measured parameter (backscatter coefficient) that is not directly transferrable to the desired extinction. The low concentration of stratospheric aerosols compared to tropospheric aerosols also poses a challenge for signal-to-noise performance, particularly during daytime measurements.
- Limb scatter measurements provide comprehensive spatial and temporal sampling with daily global coverage and good vertical resolution. However, the observed signal is strongly dependent on viewing geometry (single scattering angle). In addition, the aerosol size distribution, including particle shape and composition, must be specified in order to retrieve extinction values from the measurements.
1.2. Current Limb Scattering Measurements
2. Materials and Methods
2.1. Instrument Design
- Out of field stray light is addressed by adding an external baffle to the front of each aperture.
- Interior surfaces of the baffles, telescope tubes, optical hub, and slits are coated with Acktar “Magic Black” paint to minimize stray light.
- Dual band filters are placed prior to the achromatic objective lens in each aperture to exclude out of band solar light. These filters are also rotated about their vertical (slit) axis by 1 degree to prevent ghosting signals at the same wavelength from other parts of the slit field of view (FOV).
- The facets of the central mirror are sized to minimize possible overlap of light from one facet onto a neighboring facet. A future design improvement would be to add small partitions at the facet intersections to further isolate the optical path of each facet.
- Finally, additional spectral isolation is achieved by placing a short pass edge filter (λ < 1000 nm) on the left slit and a long pass edge filter (λ > 1400 nm) on the right slit for the path of each aperture, to ensure that each slit only records light from one wavelength band. Laboratory tests show that each filter rejects approximately 99.995% of the incoming light at wavelengths outside the desired spectral range.
2.2. Science Benefits
3. Implementation and Status
- While the ARGOS design is relatively small and light, significant compromises in its configuration would be necessary to fit into a 6U Cubesat envelope. Loft’s hosted payload approach offers substantial margins in size, weight, and power for our existing design.
- Loft provides an existing spacecraft bus that supplies instrument power, thermal control, flight software, and space-to-ground communication functions. This enables our instrument team to plan for specified interfaces.
- The Loft spacecraft bus will provide the pointing knowledge (<1 arcmin over a 6-s averaging period, equivalent to <1 km accuracy in altitude registration from this orbit) required to make high-quality limb scattering measurements.
- Frequent flight opportunities are available, depending on mission requirements.
- Mission costs are defined in advance and fixed throughout the beginning of in-orbit operations, which greatly simplifies financial planning for a program with a limited budget.
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. (Eds.) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC, Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; p. 2391. [Google Scholar] [CrossRef]
- Kremser, S.; Thomason, L.W.; von Hobe, M.; Hermann, M.; Deshler, T.; Timmreck, C.; Toohey, M.; Stenke, A.; Schwarz, J.P.; Weigel, R.; et al. Stratospheric aerosol—Observations, processes, and impact on climate. Rev. Geophys. 2016, 54, 278–335. [Google Scholar] [CrossRef]
- Shallock, J.; Brühl, C.; Bingen, C.; Höpfner, M.; Rieger, L.; Lelieveld, J. Reconstructing volcanic radiative forcing since 1990, using a comprehensive emission inventory and spatially resolved sulfur injections from satellite data in a chemistry-climate model. Atmos. Chem. Phys. 2023, 23, 1169–1207. [Google Scholar] [CrossRef]
- National Academies of Science, Engineering, and Medicine. Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space; National Academies Press: Washington, DC, USA, 2018; p. 716. [Google Scholar] [CrossRef]
- Llewellyn, E.J.; Lloyd, N.D.; Degenstein, D.A.; Gattinger, R.L.; Petelina, S.V.; Bourassa, A.E.; Wiensz, J.T.; Ivanov, E.V.; McDade, I.C.; Solheim, B.H.; et al. The OSIRIS instrument on the Odin spacecraft. Can. J. Phys. 2004, 82, 411–422. [Google Scholar] [CrossRef]
- Rieger, L.A.; Zawada, D.J.; Bourassa, A.E.; Degenstein, D.A. A multiwavelength retrieval approach for improved OSIRIS aerosol extinction retrievals. J. Geophys. Res. Atmos. 2019, 124, 7286–7307. [Google Scholar] [CrossRef]
- Jaross, G.; Bhartia, P.K.; Chen, G.; Kowitt, M.; Haken, M.; Chen, Z.; Xu, P.; Warner, J.; Kelly, T. OMPS Limb Profiler instrument performance assessment. J. Geophys. Res. Atmos. 2014, 119, 4399–4412. [Google Scholar] [CrossRef]
- Taha, G.; Loughman, R.; Zhu, T.; Thomason, L.; Kar, J.; Rieger, L.; Bourassa, A. OMPS LP Version 2.0 multi-wavelength aerosol extinction coefficient retrieval algorithm. Atmos. Meas. Tech. 2021, 14, 1015–1036. [Google Scholar] [CrossRef]
- Loughman, R.; Bhartia, P.K.; Chen, Z.; Xu, P.; Nyaku, E.; Taha, G. The Ozone Mapping and Profiler Suite (OMPS) Limb Profiler (LP) Version 1 aerosol extinction retrieval algorithm: Theoretical basis. Atmos. Meas. Technol. 2018, 11, 2633–2651. [Google Scholar] [CrossRef]
- Junior, V.G.; Junior, J.O. Development of an omnidirectional vision system. J. Braz. Soc. Mech. Sci. Eng. 2006, 28, 58–68. [Google Scholar] [CrossRef]
- DeLand, M.; Colarco, P.; Kowalewski, M.; Gorkavyi, N.; Ramos-Izquierdo, L. Development of the Multi-Angle Stratospheric Aerosol Radiometer (MASTAR). In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 6312–6315. [Google Scholar] [CrossRef]
- Janz, S.J.; Hilsenrath, E.; Flittner, D.E.; Heath, D.F. Rayleigh scattering attitude sensor. Proc. SPIE 1996, 146, 2831. [Google Scholar] [CrossRef]
- Moy, L.; Bhartia, P.K.; Jaross, G.; Loughman, R.; Kramarova, N.; Chen, Z.; Taha, G.; Chen, G.; Xu, P. Altitude registration of limb-scattered radiation. Atmos. Meas. Technol. 2017, 10, 167–178. [Google Scholar] [CrossRef]
- Rieger, L.A.; Bourassa, A.E.; Degenstein, D.A. Stratospheric aerosol particle size in Odin-OSIRIS limb scatter spectra. Atmos. Meas. Tech. 2014, 7, 507–522. [Google Scholar] [CrossRef]
- Bourassa, A.E.; Zawada, D.J.; Rieger, L.A.; Warnock, T.W.; Toohey, M.; Degenstein, D.A. Tomographic retrievals of Hunga Tonga-Hunga Ha’apai volcanic aerosol. Geophys. Res. Lett. 2023, 50, e2022GL101978. [Google Scholar] [CrossRef]
- Loughman, R.; Flittner, D.; Nyaku, E.; Bhartia, P.K. Gauss-Seidel limb scattering (GSLS) radiative transfer model development in support of the Ozone Mapping and Profiling Suite (OMPS) limb profiler mission. Atmos. Chem. Phys. 2015, 15, 3007–3020. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Size | 20 cm [W] × 20 cm [L] × 11.3 cm [H] |
Mass | 4.2 kg |
Power | 12 W (nominal) |
Apertures | 8 (each separated by 45° in azimuth) |
Wavelengths (each aperture) | 870 (±5) nm, 1550 (±20) nm |
Slit field of view | 1.29° [H] × 0.17° [W] |
Slit separation (each aperture) | 1° |
Altitude coverage | 0–50 km at 550 km orbit altitude |
Camera | Princeton IR Technologies 1280 MVCam |
Focal plane | 1280 × 1024 pixels |
Data rate (with subsetting and averaging) | 2.0 Mbits/second |
Data volume (typical) | ~13 Gbytes/day |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
DeLand, M.T.; Kowalewski, M.G.; Colarco, P.R.; Ramos-Izquierdo, L. The ARGOS Instrument for Stratospheric Aerosol Measurements. Remote Sens. 2024, 16, 1531. https://doi.org/10.3390/rs16091531
DeLand MT, Kowalewski MG, Colarco PR, Ramos-Izquierdo L. The ARGOS Instrument for Stratospheric Aerosol Measurements. Remote Sensing. 2024; 16(9):1531. https://doi.org/10.3390/rs16091531
Chicago/Turabian StyleDeLand, Matthew T., Matthew G. Kowalewski, Peter R. Colarco, and Luis Ramos-Izquierdo. 2024. "The ARGOS Instrument for Stratospheric Aerosol Measurements" Remote Sensing 16, no. 9: 1531. https://doi.org/10.3390/rs16091531
APA StyleDeLand, M. T., Kowalewski, M. G., Colarco, P. R., & Ramos-Izquierdo, L. (2024). The ARGOS Instrument for Stratospheric Aerosol Measurements. Remote Sensing, 16(9), 1531. https://doi.org/10.3390/rs16091531