Research on Multi-Modal Point Cloud Completion Algorithm Guided by Image Rotation Attention
Abstract
:1. Introduction
2. Related Works
3. Methodology
3.1. Overall Framework of Network
3.2. Point Cloud Multi-Scale Extractor
3.3. Image Feature Extractor
3.4. Cross-Model Feature Fusion (CMF)
3.5. Point Cloud Similarity Evaluation Metrics
- For each point in the real point cloud, find the closest point in the completed point cloud;
- If the Euclidean distance between and its closest point is less than a threshold (in experiments, the threshold is set to 0.001 times the diameter of the point cloud), then point is considered to be successfully matched; otherwise, it is considered a false match;
- Calculate the number of true matches (TP), false matches (FP), and the number of points not successfully matched (FN);
- Based on the definitions of precision and recall, compute the F-Score:
4. Results and Discussion
4.1. Datasets and Experimental Configuration
4.2. Experiment on ShapeNetViPC
4.3. Experiment on ModelNet40ViPC
4.4. Visualization
4.5. Ablation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, Y.; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; Bennamoun, M. Deep Learning for 3D Point Clouds: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 4338–4364. [Google Scholar] [CrossRef] [PubMed]
- Mitra, N.J.; Pauly, M.; Wand, M.; Ceylan, D. Symmetry in 3D Geometry: Extraction and Applications. Comput. Graph. Forum 2013, 32, 1–23. [Google Scholar] [CrossRef]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017; IEEE Computer Society: Washington, DC, USA, 2017; pp. 77–85. [Google Scholar] [CrossRef]
- Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. In Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017; Guyon, I., von Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R., Eds.; pp. 5099–5108. [Google Scholar]
- Zhang, X.; Feng, Y.; Li, S.; Zou, C.; Wan, H.; Zhao, X.; Guo, Y.; Gao, Y. View-Guided Point Cloud Completion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, Virtual, 19–25 June 2021; Computer Vision Foundation/IEEE: Piscataway, NJ, USA, 2021; pp. 15890–15899. [Google Scholar] [CrossRef]
- Zhu, Z.; Nan, L.; Xie, H.; Chen, H.; Wang, J.; Wei, M.; Qin, J. CSDN: Cross-Modal Shape-Transfer Dual-Refinement Network for Point Cloud Completion. IEEE Trans. Vis. Comput. Graph. 2024, 30, 3545–3563. [Google Scholar] [CrossRef] [PubMed]
- Tchapmi, L.P.; Kosaraju, V.; Rezatofighi, H.; Reid, I.D.; Savarese, S. TopNet: Structural Point Cloud Decoder. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019; Computer Vision Foundation/IEEE: Piscataway, NJ, USA, 2019; pp. 383–392. [Google Scholar] [CrossRef]
- Schnabel, R.; Degener, P.; Klein, R. Completion and Reconstruction with Primitive Shapes. Comput. Graph. Forum 2009, 28, 503–512. [Google Scholar] [CrossRef]
- Liu, M.; Sheng, L.; Yang, S.; Shao, J.; Hu, S. Morphing and Sampling Network for Dense Point Cloud Completion. In Proceedings of the The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, 7–12 February 2020; AAAI Press: Washington, DC, USA, 2020; pp. 11596–11603. [Google Scholar] [CrossRef]
- Yuan, W.; Khot, T.; Held, D.; Mertz, C.; Hebert, M. PCN: Point Completion Network. In Proceedings of the 2018 International Conference on 3D Vision, 3DV 2018, Verona, Italy, 5–8 September 2018; IEEE Computer Society: Washington, DC, USA, 2018; pp. 728–737. [Google Scholar] [CrossRef]
- Yu, X.; Rao, Y.; Wang, Z.; Liu, Z.; Lu, J.; Zhou, J. PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, 10–17 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 12478–12487. [Google Scholar] [CrossRef]
- Wang, J.; Cui, Y.; Guo, D.; Li, J.; Liu, Q.; Shen, C. PointAttN: You Only Need Attention for Point Cloud Completion. In Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2014, Vancouver, BC, Canada, 20–27 February 2024; Wooldridge, M.J., Dy, J.G., Natarajan, S., Eds.; AAAI Press: Washington, DC, USA, 2024; pp. 5472–5480. [Google Scholar] [CrossRef]
- Xiang, P.; Wen, X.; Liu, Y.; Cao, Y.; Wan, P.; Zheng, W.; Han, Z. SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, 10–17 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 5479–5489. [Google Scholar] [CrossRef]
- Yang, Y.; Feng, C.; Shen, Y.; Tian, D. FoldingNet: Point Cloud Auto-Encoder via Deep Grid Deformation. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018; Computer Vision Foundation/IEEE Computer Society: Piscataway, NJ, USA, 2018; pp. 206–215. [Google Scholar] [CrossRef]
- Pan, L. ECG: Edge-aware Point Cloud Completion with Graph Convolution. IEEE Robot. Autom. Lett. 2020, 5, 4392–4398. [Google Scholar] [CrossRef]
- Pan, L.; Chen, X.; Cai, Z.; Zhang, J.; Zhao, H.; Yi, S.; Liu, Z. Variational Relational Point Completion Network for Robust 3D Classification. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 11340–11351. [Google Scholar] [CrossRef] [PubMed]
- Aiello, E.; Valsesia, D.; Magli, E. Cross-modal Learning for Image-Guided Point Cloud Shape Completion. In Proceedings of the Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, 28 November–9 December 2022; Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A., Eds.; [Google Scholar]
- Gharineiat, Z.; Kurdi, F.T.; Campbell, G. Review of Automatic Processing of Topography and Surface Feature Identification LiDAR Data Using Machine Learning Techniques. Remote. Sens. 2022, 14, 4685. [Google Scholar] [CrossRef]
- Michalowska, M.; Rapinski, J. A Review of Tree Species Classification Based on Airborne LiDAR Data and Applied Classifiers. Remote. Sens. 2021, 13, 353. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All you Need. In Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017; Guyon, I., von Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R., Eds.; pp. 5998–6008. [Google Scholar]
- Fan, H.; Su, H.; Guibas, L.J. A Point Set Generation Network for 3D Object Reconstruction from a Single Image. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017; IEEE Computer Society: Piscataway, NJ, USA, 2017; pp. 2463–2471. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic Graph CNN for Learning on Point Clouds. ACM Trans. Graph. 2019, 38, 146:1–146:12. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Identity Mappings in Deep Residual Networks. In Proceedings of the Computer Vision—ECCV 2016—14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part IV. Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2016; Volume 9908, pp. 630–645. [Google Scholar] [CrossRef]
- Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.; Xiao, J. 3D ShapeNets: A deep representation for volumetric shapes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, 7–12 June 2015; IEEE Computer Society: Piscataway, NJ, USA, 2015; pp. 1912–1920. [Google Scholar] [CrossRef]
- Liu, X.; Hou, B.; Wang, H.; Xu, K.; Wan, J.; Guo, Y. DuInNet: Dual-Modality Feature Interaction for Point Cloud Completion. arXiv 2024, arXiv:2407.07374. [Google Scholar]
Parameter | Value/Description |
---|---|
Optimizer | Adaptive Moment Estimation (Adam) [23] |
Initial Learning Rate | 0.001 |
Learning Rate Decay | Decayed to 1/10 of its original value at the 25th and 125th epochs, respectively |
Batch Size | 128 |
Total Epochs | 200 |
Methods | Avg | Airplane | Cabinet | Car | Chair | Lamp | Sofa | Table | Watercraft | |
---|---|---|---|---|---|---|---|---|---|---|
Single-modal | AtlasNet [8] | 6.062 | 5.032 | 6.414 | 4.868 | 8.161 | 7.182 | 6.023 | 6.561 | 4.261 |
FoldingNet [14] | 6.271 | 5.242 | 6.958 | 5.307 | 8.823 | 6.504 | 6.368 | 7.080 | 3.882 | |
PCN [10] | 5.619 | 4.246 | 6.409 | 4.840 | 7.441 | 6.331 | 5.668 | 6.508 | 3.510 | |
TopNet [7] | 4.976 | 3.710 | 5.629 | 4.530 | 6.391 | 5.547 | 5.281 | 5.381 | 3.350 | |
ECG [15] | 4.957 | 2.952 | 6.721 | 5.243 | 5.867 | 4.602 | 6.813 | 4.332 | 3.127 | |
PoinTr [11] | 8.382 | 4.753 | 10.472 | 8.682 | 9.392 | 7.754 | 10.933 | 7.784 | 7.291 | |
PointAttN [12] | 6.634 | 3.282 | 10.775 | 6.132 | 7.141 | 5.921 | 9.727 | 6.164 | 3.592 | |
VRC-Net [16] | 4.598 | 2.813 | 6.108 | 4.932 | 5.342 | 4.103 | 6.614 | 3.953 | 2.925 | |
Multi-modal | ViPC [5] | 3.308 | 1.760 | 4.558 | 3.183 | 2.476 | 2.867 | 4.481 | 4.990 | 2.197 |
CSDN [6] | 1.653 | 1.873 | 3.245 | 1.943 | 1.885 | 2.096 | 3.417 | 4.009 | 2.236 | |
XMFnet [17] | 1.443 | 0.572 | 1.980 | 1.754 | 1.403 | 1.810 | 1.702 | 1.386 | 0.945 | |
Ours | 1.274 | 0.561 | 1.796 | 1.686 | 1.376 | 1.061 | 1.582 | 1.342 | 0.788 |
Methods | Avg | Airplane | Cabinet | Car | Chair | Lamp | Sofa | Table | Watercraft | |
---|---|---|---|---|---|---|---|---|---|---|
Single-modal | AtlasNet [8] | 0.410 | 0.509 | 0.304 | 0.379 | 0.326 | 0.426 | 0.318 | 0.469 | 0.551 |
FoldingNet [14] | 0.331 | 0.432 | 0.237 | 0.300 | 0.204 | 0.360 | 0.249 | 0.351 | 0.518 | |
PCN [10] | 0.407 | 0.578 | 0.270 | 0.331 | 0.323 | 0.456 | 0.293 | 0.431 | 0.577 | |
TopNet [7] | 0.467 | 0.593 | 0.358 | 0.405 | 0.388 | 0.491 | 0.361 | 0.528 | 0.615 | |
ECG [15] | 0.704 | 0.880 | 0.542 | 0.713 | 0.671 | 0.689 | 0.534 | 0.792 | 0.810 | |
PoinTr [11] | 0.635 | 0.462 | 0.873 | 0.703 | 0.693 | 0.655 | 0.592 | 0.787 | 0.792 | |
PointAttN [12] | 0.732 | 0.892 | 0.592 | 0.732 | 0.771 | 0.544 | 0.534 | 0.796 | 0.820 | |
VRC-Net [16] | 0.764 | 0.902 | 0.621 | 0.753 | 0.722 | 0.823 | 0.654 | 0.810 | 0.832 | |
Multi-modal | ViPC [5] | 0.591 | 0.803 | 0.451 | 0.512 | 0.529 | 0.706 | 0.434 | 0.594 | 0.730 |
CSDN [6] | 0.672 | 0.563 | 0.524 | 0.443 | 0.485 | 0.826 | 0.417 | 0.523 | 0.836 | |
XMFnet [17] | 0.796 | 0.961 | 0.662 | 0.691 | 0.809 | 0.792 | 0.723 | 0.830 | 0.901 | |
Ours | 0.822 | 0.968 | 0.696 | 0.710 | 0.812 | 0.879 | 0.748 | 0.835 | 0.929 |
Methods | |||||||
---|---|---|---|---|---|---|---|
Models | ViPC [5] | CSDN [6] | XFMnet [17] | Ours (RCA) | Ours (Multi-Scale 512) | Ours (Multi-Scale 1024) | Ours (RCA+M-S) |
glass_box | 10.833 | 4.614 | 2.751 | 2.768 | 3.206 | 3.363 | 2.770 |
range_hood | 11.464 | 5.079 | 3.086 | 3.153 | 3.290 | 3.530 | 2.799 |
laptop | 10.552 | 2.960 | 1.531 | 1.579 | 1.505 | 1.640 | 1.288 |
table | 9.296 | 3.419 | 2.107 | 2.103 | 1.974 | 2.238 | 1.840 |
bed | 7.684 | 3.850 | 2.714 | 2.746 | 2.552 | 2.711 | 2.387 |
chair | 9.742 | 4.792 | 3.004 | 3.036 | 2.778 | 3.023 | 2.580 |
bookshelf | 8.948 | 4.494 | 3.196 | 3.235 | 3.196 | 3.257 | 2.974 |
piano | 10.026 | 5.766 | 3.763 | 3.760 | 3.730 | 4.011 | 3.404 |
sink | 12.049 | 5.727 | 3.512 | 3.511 | 3.144 | 3.435 | 3.038 |
airplane | 4.274 | 1.758 | 1.011 | 1.027 | 1.047 | 1.141 | 0.894 |
dresser | 11.066 | 4.845 | 2.869 | 2.917 | 2.965 | 3.110 | 2.592 |
sofa | 7.680 | 4.102 | 2.814 | 2.853 | 2.804 | 2.938 | 2.560 |
bottle | 6.483 | 2.448 | 1.560 | 1.591 | 1.511 | 1.541 | 1.414 |
monitor | 7.275 | 3.756 | 2.489 | 2.537 | 2.611 | 2.708 | 2.310 |
tv_stand | 10.493 | 5.487 | 3.804 | 3.620 | 3.588 | 3.737 | 3.501 |
toilet | 11.202 | 5.942 | 3.826 | 3.884 | 3.848 | 4.066 | 3.554 |
stool | 12.755 | 6.831 | 4.464 | 3.519 | 3.179 | 3.404 | 3.267 |
xbox | 9.982 | 4.206 | 2.503 | 2.508 | 2.511 | 2.521 | 2.180 |
door | 6.777 | 2.031 | 1.038 | 1.077 | 1.114 | 1.181 | 0.988 |
night_stand | 12.136 | 5.580 | 3.666 | 3.693 | 3.449 | 3.651 | 3.230 |
bench | 9.044 | 4.353 | 2.549 | 2.611 | 2.232 | 2.448 | 2.094 |
vase | 11.445 | 6.675 | 3.906 | 3.702 | 3.583 | 3.674 | 3.419 |
tent | 12.585 | 6.719 | 3.971 | 3.679 | 3.347 | 3.679 | 3.163 |
desk | 12.517 | 6.321 | 4.003 | 4.018 | 3.710 | 4.001 | 3.507 |
car | 7.589 | 4.044 | 3.051 | 3.131 | 3.875 | 3.018 | 2.741 |
radio | 11.233 | 5.817 | 2.983 | 3.054 | 2.901 | 3.041 | 2.581 |
stairs | 9.898 | 8.704 | 4.625 | 4.364 | 3.564 | 3.644 | 3.462 |
guitar | 3.521 | 1.416 | 0.506 | 0.502 | 0.455 | 0.486 | 0.403 |
mantel | 11.906 | 4.292 | 2.327 | 2.354 | 2.685 | 2.708 | 2.219 |
cup | 13.504 | 7.348 | 5.288 | 5.105 | 4.692 | 4.857 | 4.708 |
plant | 9.102 | 8.076 | 5.929 | 5.315 | 4.794 | 4.806 | 4.721 |
curtain | 7.049 | 2.899 | 1.283 | 1.318 | 1.078 | 1.190 | 0.983 |
lamp | 19.825 | 12.622 | 4.986 | 5.073 | 3.313 | 3.546 | 3.931 |
flower_pot | 11.209 | 7.622 | 5.301 | 5.078 | 4.575 | 4.753 | 4.544 |
cone | 10.655 | 3.806 | 2.197 | 2.147 | 2.149 | 2.359 | 1.954 |
keyboard | 4.174 | 1.781 | 0.824 | 0.850 | 0.843 | 0.876 | 0.760 |
bathtub | 10.798 | 5.010 | 3.371 | 3.247 | 3.121 | 3.515 | 3.019 |
wardrobe | 9.831 | 4.181 | 2.543 | 2.603 | 2.622 | 2.781 | 2.279 |
bowl | 16.715 | 15.116 | 5.304 | 5.042 | 2.208 | 5.040 | 4.676 |
person | 6.267 | 5.623 | 2.541 | 2.468 | 2.124 | 2.179 | 2.050 |
all | 9.990 | 5.2528 | 3.080 | 3.019 | 2.781 | 2.995 | 2.669 |
Methods | |||||||
---|---|---|---|---|---|---|---|
Models | ViPC | CSDN | XFMnet | Ours (RCA) | Ours (Multi-Scale 512) | Ours (Multi-Scale 1024) | Ours (RCA+M-S) |
glass_box | 0.207 | 0.473 | 0.507 | 0.554 | 0.516 | 0.508 | 0.561 |
range_hood | 0.265 | 0.492 | 0.578 | 0.579 | 0.563 | 0.559 | 0.595 |
laptop | 0.416 | 0.662 | 0.711 | 0.717 | 0.713 | 0.701 | 0.743 |
table | 0.469 | 0.697 | 0.759 | 0.754 | 0.761 | 0.746 | 0.779 |
bed | 0.324 | 0.527 | 0.588 | 0.584 | 0.588 | 0.578 | 0.607 |
chair | 0.433 | 0.603 | 0.659 | 0.659 | 0.663 | 0.655 | 0.679 |
bookshelf | 0.325 | 0.528 | 0.564 | 0.580 | 0.568 | 0.564 | 0.597 |
piano | 0.288 | 0.476 | 0.526 | 0.544 | 0.537 | 0.527 | 0.560 |
sink | 0.345 | 0.579 | 0.644 | 0.640 | 0.652 | 0.632 | 0.667 |
airplane | 0.630 | 0.776 | 0.888 | 0.886 | 0.872 | 0.860 | 0.896 |
dresser | 0.223 | 0.478 | 0.575 | 0.572 | 0.544 | 0.526 | 0.582 |
sofa | 0.315 | 0.488 | 0.554 | 0.549 | 0.545 | 0.541 | 0.569 |
bottle | 0.455 | 0.739 | 0.822 | 0.820 | 0.816 | 0.793 | 0.839 |
monitor | 0.391 | 0.573 | 0.637 | 0.633 | 0.617 | 0.613 | 0.649 |
tv_stand | 0.276 | 0.484 | 0.547 | 0.544 | 0.542 | 0.531 | 0.563 |
toilet | 0.276 | 0.453 | 0.504 | 0.514 | 0.503 | 0.498 | 0.523 |
stool | 0.413 | 0.593 | 0.632 | 0.640 | 0.676 | 0.667 | 0.678 |
xbox | 0.263 | 0.538 | 0.630 | 0.624 | 0.603 | 0.587 | 0.645 |
door | 0.542 | 0.781 | 0.803 | 0.847 | 0.830 | 0.820 | 0.858 |
night_stand | 0.242 | 0.464 | 0.543 | 0.541 | 0.539 | 0.524 | 0.558 |
bench | 0.471 | 0.654 | 0.711 | 0.707 | 0.721 | 0.710 | 0.737 |
vase | 0.291 | 0.507 | 0.585 | 0.583 | 0.586 | 0.572 | 0.604 |
tent | 0.287 | 0.527 | 0.593 | 0.587 | 0.605 | 0.587 | 0.626 |
desk | 0.344 | 0.537 | 0.588 | 0.589 | 0.602 | 0.588 | 0.619 |
car | 0.318 | 0.499 | 0.543 | 0.544 | 0.544 | 0.533 | 0.562 |
radio | 0.302 | 0.531 | 0.613 | 0.619 | 0.617 | 0.602 | 0.645 |
stairs | 0.452 | 0.567 | 0.634 | 0.631 | 0.664 | 0.663 | 0.678 |
guitar | 0.741 | 0.887 | 0.955 | 0.950 | 0.960 | 0.954 | 0.965 |
mantel | 0.285 | 0.535 | 0.644 | 0.642 | 0.620 | 0.609 | 0.653 |
cup | 0.217 | 0.420 | 0.474 | 0.471 | 0.484 | 0.473 | 0.494 |
plant | 0.365 | 0.453 | 0.516 | 0.516 | 0.531 | 0.534 | 0.538 |
curtain | 0.533 | 0.759 | 0.838 | 0.834 | 0.844 | 0.830 | 0.860 |
lamp | 0.383 | 0.575 | 0.667 | 0.667 | 0.701 | 0.691 | 0.702 |
flower_pot | 0.270 | 0.413 | 0.476 | 0.481 | 0.482 | 0.476 | 0.493 |
cone | 0.364 | 0.678 | 0.715 | 0.775 | 0.757 | 0.773 | 0.798 |
keyboard | 0.635 | 0.781 | 0.857 | 0.870 | 0.865 | 0.857 | 0.889 |
bathtub | 0.296 | 0.523 | 0.577 | 0.573 | 0.578 | 0.564 | 0.598 |
wardrobe | 0.270 | 0.536 | 0.640 | 0.631 | 0.608 | 0.586 | 0.652 |
bowl | 0.209 | 0.453 | 0.523 | 0.519 | 0.524 | 0.517 | 0.536 |
person | 0.521 | 0.629 | 0.707 | 0.707 | 0.720 | 0.717 | 0.733 |
all | 0.366 | 0.571 | 0.638 | 0.641 | 0.642 | 0.632 | 0.663 |
RCA | Multi-Scale | XMFnet | CMFN | ||
---|---|---|---|---|---|
512 | 1024 | RCA+Multi-Scale | |||
Lamp | 1.490 | 1.327 | 1.452 | 1.810 | 1.061 |
Watercraft | 0.823 | 0.828 | 0.838 | 0.945 | 0.788 |
Cabinet | 1.936 | 1.877 | 1.915 | 1.980 | 1.796 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, S.; Xu, K.; Wan, J.; Hou, B.; Ma, Y. Research on Multi-Modal Point Cloud Completion Algorithm Guided by Image Rotation Attention. Remote Sens. 2025, 17, 1448. https://doi.org/10.3390/rs17081448
Gu S, Xu K, Wan J, Hou B, Ma Y. Research on Multi-Modal Point Cloud Completion Algorithm Guided by Image Rotation Attention. Remote Sensing. 2025; 17(8):1448. https://doi.org/10.3390/rs17081448
Chicago/Turabian StyleGu, Shangtai, Ke Xu, Jianwei Wan, Baolin Hou, and Yanxin Ma. 2025. "Research on Multi-Modal Point Cloud Completion Algorithm Guided by Image Rotation Attention" Remote Sensing 17, no. 8: 1448. https://doi.org/10.3390/rs17081448
APA StyleGu, S., Xu, K., Wan, J., Hou, B., & Ma, Y. (2025). Research on Multi-Modal Point Cloud Completion Algorithm Guided by Image Rotation Attention. Remote Sensing, 17(8), 1448. https://doi.org/10.3390/rs17081448