Consumption of an Oil Palm Fruit Extract Promotes Large Bowel Health in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal and Diets
2.2. SCFA, Phenols, p-Cresol and Ammonia
2.3. Microbiology
2.4. Histology
2.5. Statistics
3. Results
3.1. Body, Tissue and Digesta Weights
3.2. Impacts on Gastro-Intestinal Fermentation
3.3. Bacterial Population Changes
3.4. Effects on Colonic Tissues
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kushairi, A.; Loh, S.K.; Azman, I.; Hishamuddin, E.; Ong-Abdullah, M.; Izuddin, Z.B.M.N.; Razmah, G.; Sundram, S.; Parveez, G.K.A. Oil palm economic performance in Malaysia and R&D progress in 2017. J. Oil Palm Res. 2018, 30, 163–196. [Google Scholar]
- Singh, R.; Ong-Abdullah, M.; Low, E.-T.L.; Manaf, M.A.A.; Rosli, R.; Nookiah, R.; Ooi, L.C.-L.; Chan, K.-L.; Halim, M.A.; Azizi, N.; et al. Oil palm genome sequence reveals divergence of infertile species in Old and New Worlds. Nature 2013, 500, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.E.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef] [Green Version]
- Kawabata, K.; Yoshioka, Y.; Terao, J. Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules 2019, 24, 370. [Google Scholar] [CrossRef] [Green Version]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Tsao, R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci. 2016, 8, 33–42. [Google Scholar] [CrossRef]
- Forester, S.C.; Lambert, J.D. The role of antioxidant versus pro-oxidant effects of green tea polyphenols in cancer prevention. Mol. Nutr. Food Res. 2011, 55, 844–854. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.-H.; Li, Y.-Q.; Yang, X.-Y. Protective effects of epigallocatechin gallate on colon preneoplastic lesions induced by 2-amino-3-methylimidazol(4,5-f)quinoline in mice. Mol. Med. 2008, 14, 590–598. [Google Scholar] [CrossRef]
- Larrosa, M.; Gonza´lez-Sarrı´as, A.; Yañéz-Gascón, M.J.; Selma, M.V.; Azorín-Ortuño, M.; Toti, S.; Tomás-Barberán, F.; Dolara, P.; Espín, J.C. Anti-inflammatory properties of a pomegranate extract and its metabolite urolithin-A in a colitis rat model and the effect of colon inflammation on the phenolic metabolism. J. Nutr. Biochem. 2010, 21, 717–725. [Google Scholar] [CrossRef]
- Corona, G.; Spencer, J.P.; Dessi, M.A. Extra virgin olive oil phenolics: Absorption, metabolism, and biological activities in the GI tract. Toxicol. Ind. Health 2009, 25, 285–293. [Google Scholar] [CrossRef]
- Huderson, A.C.; Myers, J.N.; Niaz, M.S.; Washington, M.K.; Ramesh, A. Chemoprevention of benzo(a)pyrene-induced colon polyps in ApcMin mice by resveratrol. J. Nutr. Biochem. 2013, 24, 713–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina, E.; De Castro, A.; Romero, C.; Brenes, M. Comparison of the concentrations of phenolic compounds in olive oils and other plant oils: Correlation with antimicrobial activity. J. Agric. Food Chem. 2006, 54, 4954–4961. [Google Scholar] [CrossRef] [PubMed]
- Bingham, S.A.; Day, N.E.; Luben, R.; Ferrari, P.; Slimani, N.; Norat, T.; Clavel-Chapelon, F.; Kesse, E.; Nieters, A.; Boeing, H.; et al. Dietary fiber in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): An observational study. Lancet 2003, 361, 1496–1501. [Google Scholar] [CrossRef]
- Topping, D.L.; Clifton, P.M. Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 2001, 81, 1031–1064. [Google Scholar] [CrossRef] [PubMed]
- Bauer-Marinovic, M.; Florian, S.; Müller-Schmehl, K.; Glatt, H.; Jacobasch, G. Dietary resistant starch type 3 prevents tumor induction by 1,2 dimethylhydrazine and alters proliferation, apoptosis and dedifferentiation in rat colon. Carcinogenesis 2006, 27, 1849–1859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Leu, R.K.; Brown, I.L.; Hu, Y.; Esterman, A.; Young, G.P. Suppression of azoxymethane-induced colon cancer development in rats by dietary resistant starch. Cancer Biol. Ther. 2007, 6, 1621–1626. [Google Scholar] [CrossRef] [Green Version]
- Conlon, M.A.; Kerr, C.A.; McSweeney, C.S.; Dunne, R.A.; Shaw, J.M.; Kang, S.; Bird, A.R.; Morell, M.K.; Lockett, T.J.; Molloy, P.L.; et al. Resistant starches protect against colonic DNA damage and alter microbiota and gene expression in rats fed a western diet. J. Nutr. 2012, 142, 832–840. [Google Scholar] [CrossRef] [Green Version]
- Le Leu, R.K.; Young, G.P.; Hu, Y.; Winter, J.; Conlon, M.A. Dietary red meat aggravates dextran sulphate sodium-induced colitis in mice whereas resistant starch attenuates inflammation. Dig. Dis. Sci. 2013, 58, 3475–3482. [Google Scholar] [CrossRef]
- Sambanthamurthi, R.; Tan, Y.A.; Sundram, K.; Abeywardena, M.; Sambandan, T.G.; Rha, C.K.; Sinskey, A.J.; Subramanium, K.; Leow, S.-S.; Hayes, K.C.; et al. Oil palm vegetation liquor: A new source of phenolic bioactives. Br. J. Nutr. 2011, 106, 1655–1663. [Google Scholar] [CrossRef] [Green Version]
- Toden, S.; Bird, A.R.; Topping, D.L.; Conlon, M.A. Resistant starch prevents colonic DNA damage induced by high dietary cooked red meat or casein in rats. Cancer Biol. Ther. 2006, 5, 267–272. [Google Scholar] [CrossRef] [Green Version]
- Reeves, P.G.; Nielsen, F.H.; Fahey, G.C. AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition Ad Hoc Writing Committee on the Reformulation of the AIN-76A Rodent Diet. J. Nutr. 1993, 123, 1939–1951. [Google Scholar] [CrossRef] [PubMed]
- Patten, G.S.; Abeywardena, M.Y.; McMurchie, E.J.; Jahangiri, A. Dietary fish oil increases acetylcholine- and eicosanoid-induced contractility of isolated rat ileum. J. Nutr. 2002, 132, 2506–2513. [Google Scholar] [CrossRef] [PubMed]
- Murray, K.E.; Adams, R.F. Determination of simple phenols in faeces and urine by high-performance liquid chromatography. J. Chromatogr. 1986, 362, 425–429. [Google Scholar] [CrossRef]
- Chaney, A.L.; Marbach, E.P. Modified reagents for determination of urea and ammonia. Clin. Chem. 1962, 8, 130–132. [Google Scholar] [CrossRef]
- Christophersen, C.T.; Morrison, M.; Conlon, M.A. Overestimation of the abundance of sulfate-reducing bacteria in human feces by quantitative PCR targeting the Desulfovibrio 16S rRNA gene. Appl. Environ. Microbiol. 2011, 77, 3544–3546. [Google Scholar] [CrossRef] [Green Version]
- Le Leu, R.K.; Winter, J.; Humphreys, K.; Young, G.P.; Christophersen, C.T.; Hu, Y.; Gratz, S.W.; Miller, R.B.; Topping, D.L.; Bird, A.R.; et al. Effects of red meat and butyrylated resistant starch on rectal 06-methyl-guanine adducts, microbiota and biochemical biomarkers of colorectal cancer risk: A randomised clinical trial. Br. J. Nutr. 2015, 114, 220–230. [Google Scholar] [CrossRef] [Green Version]
- Bancroft, J.D.; Gamble, M. Theory and Practice of Histological Techniques, 6th ed.; Churchill Livingstone, Elsevier: London, UK, 2008; p. 170. [Google Scholar]
- Stephen, A.M.; Cummings, J.H. Mechanism of action of dietary fiber in the human colon. Nature 1980, 284, 283–284. [Google Scholar] [CrossRef]
- Cummings, J.H.; Bingham, S.A.; Heaton, K.W.; Eastwood, M.A. Fecal weight, colon cancer risk, and dietary-intake of nonstarch polysaccharides (dietary fiber). Gastroenterology 1992, 103, 1783–1789. [Google Scholar] [CrossRef]
- Birkett, A.M.; Jones, G.P.; deSilva, A.M.; Young, G.P.; Muir, J.G. Dietary intake and faecal excretion of carbohydrate by Australians: Importance of achieving stool weights greater than 150 g to improve faecal markers relevant to colon cancer risk. Eur. J. Clin. Nutr. 1997, 51, 625–632. [Google Scholar] [CrossRef] [Green Version]
- Roediger, W.E.W. Role of anaerobic-bacteria in the metabolic welfare of the colonic mucosa in man. Gut 1980, 21, 793–798. [Google Scholar] [CrossRef] [Green Version]
- Fung, K.Y.C.; Cosgrove, L.; Lockett, T.; Head, R.; Topping, D.L. A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. Br. J. Nutr. 2012, 108, 820–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trompette, A.; Gollwitzer, E.S.; Yadava, K.; Sichelstiel, A.K.; Sprenger, N.; Ngom-Bru, C.; Blanchard, C.; Junt, T.; Nicod, L.P.; Harris, N.L.; et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 2014, 20, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Deplancke, B.; Gaskins, H.R. Microbial modulation of innate defense: Goblet cells and the intestinal mucus layer. Am. J. Clin. Nutr. 2001, 73, 1131S–1141S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedemann, M.S.; Theil, P.K.; Knudsen, K.E.B. The thickness of the intestinal mucous layer in the colon of rats fed various sources of non-digestible carbohydrates is positively correlated with the pool of SCFA but negatively correlated with the proportion of butyric acid in digesta. Br. J. Nutr. 2009, 102, 117–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humphreys, K.J.; Conlon, M.A.; Young, G.P.; Topping, D.L.; Hu, Y.; Winter, J.; Bird, T.R.; Cobiac, L.; Kennedy, N.A.; Michael, M.Z.; et al. Dietary manipulation of oncogenic microRNA expression in human rectal mucosa: A randomised trial. Cancer Prev. Res. 2014, 7, 786–795. [Google Scholar] [CrossRef] [Green Version]
- Huttenhower, C.; Gevers, D.; Knight, R.; Abubucker, S.; Badger, J.H.; Chinwalla, A.T.; Creasy, H.H.; Earl, A.M.; Fitzgerald, M.G.; Fulton, R.S.; et al. Structure, function and diversity of the healthy human microbiome. Nature 2012, 486, 207–214. [Google Scholar]
- Gibson, G.R.; Scott, K.P.; Rastall, R.A.; Tuohy, K.M.; Hotchkiss, A.; Dubert-Ferrandon, A.; Gareau, M.; Murphy, E.F.; Saulnier, D.; Loh, G.; et al. Dietary prebiotics: Current status and new definition. Food Sci. Technol. Bull. Funct. Foods 2010, 7, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Bird, A.R.; Conlon, M.A.; Christophersen, C.T.; Topping, D.L. Resistant starch, large bowel fermentation and a broader perspective of prebiotics. Benef. Microbes 2010, 1, 423–431. [Google Scholar] [CrossRef]
- Sokol, H.; Pigneur, B.; Watterlot, L.; Lakhdari, O.; Bermudez-Humaran, L.G.; Gratadoux, J.-J.; Blugeon, S.; Bridonneau, C.; Furet, J.-P.; Corthier, G.; et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn’s disease patients. Proc. Natl. Acad. Sci. USA 2008, 105, 16731–16736. [Google Scholar] [CrossRef] [Green Version]
- Collado, M.C.; Derrien, M.; Isolauri, E.; de Vos, W.M.; Salminen, S. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl. Environ. Microbiol. 2007, 73, 7767–7770. [Google Scholar] [CrossRef] [Green Version]
- Png, C.W.; Linden, S.K.; Gilshenan, K.S.; Zoetendal, E.G.; McSweeney, C.S.; Sly, L.I.; McGuckin, M.A.; Florin, T.H.J. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am. J. Gastroenterol. 2010, 105, 2420–2428. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Christophersen, C.T.; Sorich, M.J.; Gerber, J.P.; Angley, M.T.; Conlon, M.A. Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Appl. Environ. Microbiol. 2011, 77, 6718–6721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abell, G.C.J.; Cooke, C.M.; Bennett, C.N.; Conlon, M.A.; McOrist, A.L. Phylotypes related to Ruminococcus bromii are abundant in the large bowel of humans and increase in response to a diet high in resistant starch. FEMS Microbiol. Ecol. 2008, 66, 505–515. [Google Scholar] [CrossRef] [Green Version]
- Reygaert, W.C. The antimicrobial possibilities of green tea. Front. Microbiol. 2014, 5, 434. [Google Scholar] [CrossRef] [PubMed]
Ingredient | WD | OPP-F 2 | OPP-D 3 | HAMS | GT |
---|---|---|---|---|---|
Red meat | 250 | 250 | 250 | 250 | 250 |
Cornstarch | 480 | 480 | 480 | 180 | 480 |
Hi-maize ™ | 0 | 0 | 0 | 300 | 0 |
Sucrose | 100 | 100 | 100 | 100 | 100 |
Sunflower oil | 70 | 70 | 70 | 70 | 70 |
Wheat bran | 50 | 50 | 50 | 50 | 50 |
l-Cystine | 3 | 3 | 3 | 3 | 3 |
Choline bitartrate | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
Vitamins (ain-93) | 10 | 10 | 10 | 10 | 10 |
Minerals | 35 | 35 | 35 | 35 | 35 |
tert-butyl hydroquinol | 0.014 | 0.014 | 0.014 | 0.014 | 0.014 |
OPP GAE/kg diet | − | 2000 mg | − | − | − |
OPP GAE in drink water | − | − | 50 mg GAE/d | − | − |
GT GAE in drink water | − | − | − | − | 50 mg GAE/d |
Weights | WD | OPP-F | OPP-D | HAMS | GT |
---|---|---|---|---|---|
Body weight, g | 306 ± 9 | 318 ± 11 | 294 ± 11 | 287 ± 19 | 303 ± 9 |
Caecum | |||||
Tissue weight, g | 0.93 ± 0.18 | 0.72 ± 0.03 a | 0.79 ± 0.05 | 1.18 ± 0.08 ab | 0.61 ± 0.02 b |
Digesta weight, g | 1.86 ± 0.17 ab | 2.18 ± 0.21 c | 3.42 ± 0.37 ade | 4.82 ± 0.60 bcef | 1.48 ± 0.11 df |
Caecum pH | 7.94 ± 0.08 a | 7.82 ± 0.09 b | 7.68 ± 0.06 c | 6.91 ± 0.16 abcd | 7.69 ± 0.07 d |
Colon | |||||
Digesta weight, g | 0.96 ± 0.16 a | 1.43 ± 0.19 b | 1.40 ± 0.20 c | 3.37 ± 0.50 abcd | 1.68 ± 0.08 d |
Colon pH | 7.49 ± 0.08 ab | 7.85 ± 0.15 cd | 8.04 ± 0.09 aef | 6.44 ± 0.07 bdfg | 7.14 ± 0.06 ceg |
Organ weights, g | |||||
Liver | 11.33 ± 0.41 | 11.90 ± 0.52 | 11.27 ± 0.68 | 11.06 ± 0.65 | 10.55 ± 0.31 |
Heart | 1.17 ± 0.04 | 1.19 ± 0.04 | 1.14 ± 0.04 | 1.06 ± 0.05 | 1.20 ± 0.07 |
Kidney | 1.95 ± 0.07 | 2.10 ± 0.06 | 2.02 ± 0.08 | 1.86 ± 0.11 | 1.97 ± 0.05 |
SCFA | WD | OPP-F | OPP-D | HAMS | GT |
---|---|---|---|---|---|
Caecum Concentration 2 | |||||
Acetate | 41.4 ± 3.6 a | 55.5 ± 4.4 | 55.5 ± 2.7 | 68.1 ± 4.9 ab | 40.1 ± 2.9 b |
Propionate | 6.0 ± 0.7 ab | 9.2 ± 0.9 ac | 9.5 ± 0.6 bd | 7.8 ± 0.8 | 5.1 ± 0.4 cd |
Butyrate | 4.0 ± 0.3 a | 6.2 ± 0.8 abc | 2.8 ± 0.3 bd | 3.5 ± 0.4 c | 5.1 ± 0.6 d |
Total | 53.4 ± 4.5 ab | 73.3 ± 0.6 ac | 69.3 ± 2.9 | 79.7 ± 5.6 bd | 51.9 ± 3.6 cd |
Caecum pool 3 | |||||
Acetate | 73.2 ± 6.2 ab | 124.0 ± 17.7 c | 188.4 ± 19.5 ade | 328.9 ± 44.6 bcef | 60.4 ± 7.2 df |
Propionate | 11.4 ± 1.7 ab | 20.9 ± 3.4 c | 33.6 ± 4.3 ad | 37.9 ± 5.8 bce | 7.7 ± 1.0 de |
Butyrate | 7.1 ± 0.7 ab | 13.8 ± 2.1 a | 8.9 ± 0.9 c | 17.1 ± 2.6 bcd | 7.9 ± 1.5 d |
Total | 94.9 ± 8.4 ab | 164.1 ± 23.4 c | 235.9 ± 24.1 ade | 384.7 ± 51.4 bcef | 78.4 ± 9.6 df |
Colon concentration | |||||
Acetate | 32.9 ± 3.6 a | 35.0 ± 2.4 b | 26.2 ± 3.0 c | 48.5 ± 4.3 abcd | 28.5 ± 1.7 d |
Propionate | 4.8 ± 0.4 | 6.5 ± 0.5 ab | 6.3 ± 0.4 c | 3.7 ± 0.6 bc | 4.4 ± 0.2 a |
Butyrate | 3.7 ± 0.5 ab | 3.0 ± 0.3 | 1.6 ± 0.2 ac | 2.0 ± 0.4 b | 3.7 ± 0.3 c |
Total | 42.8 ± 4.5 | 46.1 ± 2.9 | 35.9 ± 3.2 a | 54.2 ± 4.7 ab | 38.1 ± 1.8 b |
Colon pool | |||||
Acetate | 33.1 ± 7.6 a | 50.3 ± 8.1 b | 35.6 ± 6.7 c | 170.9 ± 29.6 abcd | 47.9 ± 3.8d |
Propionate | 4.8 ± 1.0 a | 9.8 ± 1.7 | 8.8 ± 1.4 | 11.8 ± 1.9 a | 7.4 ± 0.5 |
Butyrate | 3.3 ± 0.6 | 4.4 ± 0.8 | 2.3 ± 0.4 a | 6.6 ±1.5 a | 6.2 ± 0.6 |
Total | 42.8 ± 9.4 a | 67.1 ± 10.7 b | 49.3 ± 8.4 c | 189.3 ± 31.5 abcd | 64.0 ± 4.4 d |
Measure | WD | OPP-F | OPP-D | HAMS | GT |
---|---|---|---|---|---|
Caecum ammonia | |||||
Concentration 2 | 7.97 ± 0.47 a | 8.38 ± 0.99 b | 5.76 ± 0.45 | 4.19 ± 0.6 abc | 7.76 ± 0.62 c |
Pool 3 | 15.26 ± 2.10 | 17.58 ± 1.78 | 18.89 ± 1.87 | 20.89 ± 3.77 | 11.96 ±1.66 |
Caecum phenols | |||||
Concentration | 0.68 ± 0.04 ab | 6.04 ± 1.02 acd | 5.55 ± 0.60 bef | 0.52 ± 0.02 df | 0.63 ± 0.02 ce |
Caecum cresols | |||||
Concentration | 5.71 ± 0.93 a | 8.12 ± 1.66 bc | 3.62 ± 0.77 b | 2.64 ± 0.49 acd | 6.90 ± 0.73 d |
Colon ammonia | |||||
Concentration | 10.59 ± 0.58 a | 9.06 ± 0.71 b | 6.59 ± 0.47 d | 5.10 ± 0.55 abc | 12.19 ± 0.31 cd |
Pool 3 | 12.70 ± 1.82 | 13.89 ± 1.6 | 9.34 ± 1.56 ab | 17.67 ± 3.00 b | 20.53 ±1.17 a |
Colon phenols | |||||
Concentration | 0.96 ± 0.07 a | 3.02 ± 0.34 abcd | 1.65 ± 0.17 be | 0.5 ± 0.01 de | 0.83 ± 0.06 c |
Colon cresols | |||||
Concentration | 14.9 ± 3.02 a | 9.98 ± 2.18 b | 13.74 ± 3.51 c | 1.54 ± 0.23 bd | 24.05 ± 3.4 acd |
Bacteria | WD | OPP-F | OPP-D | HAMS | GT |
---|---|---|---|---|---|
A. muciniphila | 8.92 ± 0.21 ab | 9.49 ± 0.28 c | 10.72 ± 0.20 bcd | 10.11 ± 0.14 a | 9.67 ± 0.20 d |
Bacteroides | 10.54 ± 0.24 | 10.07 ± 0.34 | 11.23 ± 0.29 a | 10.70 ± 0.14 | 9.48 ± 0.45 a |
Bifidobacterium | 9.84 ± 0.22 a | 9.09 ± 0.27 be | 9.53 ± 0.15 cf | 11.87 ± 0.16 abcd | 10.39 ± 0.22 def |
C. coccoides | 7.83 ± 0.09 | 7.99 ± 0.09 | 8.18 ± 0.09 | 8.11 ± 0.08 | 8.05 ± 0.09 |
C. leptum | 6.99 ± 0.13 a | 7.25 ± 0.11 | 7.25 ± 0.11 | 7.72 ± 0.12 ab | 7.19 ± 0.14 b |
E. coli | 7.41 ± 0.23 | 7.02 ± 0.31 | 6.64 ± 0.34 | 6.51 ± 0.32 | 7.39 ± 0.17 |
E. faecium | 6.20 ± 0.50 | 6.92 ± 0.77 | 6.54 ± 0.16 | 6.82 ± 1.06 | 6.38 ± 0.75 |
F. prausnitzii | 10.29 ± 0.24 a | 10.15 ± 0.24 b | 11.65 ± 0.32 abc | 10.84 ± 0.24 | 10.51 ± 0.18 c |
Lactobacillus | 7.13 ± 0.10 a | 7.33 ± 0.16 b | 7.44 ± 0.13 c | 7.62 ± 0.15 | 8.07 ± 0.12 abc |
R. bromii | 9.18 ± 0.34 ab | 9.76 ± 0.27 c | 9.70 ± 0.21 d | 11.19 ± 0.28 acd | 10.35 ± 0.23 b |
R. gnavus | 9.40 ± 0.13 a | 9.48 ± 0.11 c | 10.33 ± 0.09 abcd | 9.71 ± 0.10 b | 9.79 ± 0.18 d |
R. torques | 8.76 ± 0.22 a | 9.13 ± 0.19 b | 8.75 ± 0.26 c | 10.48 ± 0.18 abcd | 9.18 ± 0.42 d |
Roseburia | 7.04 ± 0.14 a | 6.71 ± 0.19 | 6.51 ± 0.08 | 6.22 ± 0.20 ab | 6.90 ± 0.14 b |
SRB dsr | 7.96 ± 0.15 | 8.25 ± 0.10 | 8.33 ± 0.08 | 8.12 ± 0.10 | 8.22 ± 0.15 |
Total Bacteria | 11.63 ± 0.09 | 11.62 ± 0.12 | 11.62 ± 0.09 | 11.99 ± 0.09 | 11.76 ± 0.09 |
Histology Measure | WD | OPP-F | OPP-D | HAMS | GT |
---|---|---|---|---|---|
Wall thickness (μm) | 460 ± 29 | 400 ± 31 | 383 ± 34 | 366 ± 24 | 407 ± 60 |
Total cells per crypt 2 | 61 ± 2 a | 61 ± 2 b | 63 ± 1 c | 73 ± 2 abcd | 64 ± 2 d |
Goblet cells per crypt | |||||
Total | 6.3 ± 0.6 ab | 8.4 ± 0.5 ac | 9.5 ± 0.6 bd | 15.0 ± 0.6 bcde | 8.4 ± 1.0 e |
Sulphomucin positive | 0.8 ± 0.2 | 1.1 ± 0.3 | 0.9 ± 0.4 | 0.7 ± 0.3 | 0.9 ± 0.3 |
Neutral mucin positive | 5.5 ± 0.6 a | 7.3 ± 0.5 c | 8.6 ± 0.6 a | 14.3 ± 0.9 ace | 7.5 ± 1.0 e |
Area (% of crypt) | 9.2 ± 0.9 a | 11.7 ± 0.8 | 13.8 ± 1.2 a | 12.5 ± 0.6 | 11.8 ± 1.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conlon, M.A.; Sambanthamurthi, R.; Tan, Y.A.; Sundram, K.; Fairus, S.; Abeywardena, M.Y. Consumption of an Oil Palm Fruit Extract Promotes Large Bowel Health in Rats. Nutrients 2020, 12, 644. https://doi.org/10.3390/nu12030644
Conlon MA, Sambanthamurthi R, Tan YA, Sundram K, Fairus S, Abeywardena MY. Consumption of an Oil Palm Fruit Extract Promotes Large Bowel Health in Rats. Nutrients. 2020; 12(3):644. https://doi.org/10.3390/nu12030644
Chicago/Turabian StyleConlon, Michael A, Ravigadevi Sambanthamurthi, Yew Ai Tan, Kalyana Sundram, Syed Fairus, and Mahinda Y Abeywardena. 2020. "Consumption of an Oil Palm Fruit Extract Promotes Large Bowel Health in Rats" Nutrients 12, no. 3: 644. https://doi.org/10.3390/nu12030644
APA StyleConlon, M. A., Sambanthamurthi, R., Tan, Y. A., Sundram, K., Fairus, S., & Abeywardena, M. Y. (2020). Consumption of an Oil Palm Fruit Extract Promotes Large Bowel Health in Rats. Nutrients, 12(3), 644. https://doi.org/10.3390/nu12030644