Consumption of Breast Milk Is Associated with Decreased Prevalence of Autism in Fragile X Syndrome
Abstract
:1. Introduction
2. Methods and Subjects
2.1. Study Design
2.2. Data Collection
2.3. Statistics
3. Results
3.1. Study Population
3.2. Comorbid Conditions as a Function of Infant Feeding with Breast Milk
3.3. Caregiver-Reported Reasons for Starting & Stopping Breastfeeding
3.4. Seizures in the Study Population
3.5. Gastrointestinal Problems in the Study Population
3.6. Allergies in the Study Population
3.7. Comorbid Conditions as a Function of Exclusive Feeding with One Type of Milk
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Academy of Pediatrics. Breastfeeding and the use of human milk. Pediatrics 2012, 129, e827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tseng, P.-T.; Chen, Y.-W.; Stubbs, B.; Carvalho, A.F.; Whiteley, P.; Tang, C.-H.; Yang, W.-C.; Chen, T.-Y.; Li, D.-J.; Chu, C.-S.; et al. Maternal breastfeeding and autism spectrum disorder in children: A systematic review and meta-analysis. Nutr. Neurosci. 2017, 22, 354–362. [Google Scholar] [CrossRef]
- Shamberger, R. Attention-deficit disorder associated with breast-feeding: A brief report. J. Am. Coll. Nutr. 2012, 31, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Liu, L.; Zhu, Y.; Huang, G.; Wang, P.P. The association between breastfeeding and childhood obesity: A meta-analysis. BMC Public Health 2014, 14, 1267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quigley, M.A.; Carson, C.; Sacker, A.; Kelly, Y. Exclusive breastfeeding duration and infant infection. Eur. J. Clin. Nutr. 2016, 70, 1420–1427. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.M.; Tanabe, K.; Moon, R.Y.; Mitchell, E.A.; McGarvey, C.; Tappin, D.; Blair, P.; Hauck, F.R. Duration of Breastfeeding and Risk of SIDS: An Individual Participant Data Meta-Analysis. Pediatrics 2017, 140, e20171324. [Google Scholar] [CrossRef] [Green Version]
- Greer, F.R.; Sicherer, S.H.; Burks, A.W.; Committee on Nutrition and Section on Allergy and Immunology. The Effects of Early Nutritional Interventions on the Development of Atopic Disease in Infants and Children: The Role of Maternal Dietary Restriction, Breastfeeding, Hydrolyzed Formulas and Timing of Introduction of Allergenic Complementary Foods. Pediatrics 2019, 143, e20190281. [Google Scholar] [CrossRef] [Green Version]
- Verkerk, A.J.; Pieretti, M.; Sutcliffe, J.S.; Fu, Y.-H.; Kuhl, D.P.; Pizzuti, A.; Reiner, O.; Richards, S.; Victoria, M.F.; Zhang, F.; et al. Identification of a gene (FMR1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 1991, 65, 905–914. [Google Scholar] [CrossRef]
- Pieretti, M.; Zhang, F.; Fu, Y.-H.; Warren, S.T.; Oostra, B.A.; Caskey, C.; Nelson, D.L. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell 1991, 66, 817–822. [Google Scholar] [CrossRef]
- Malecki, C.; Hambly, B.D.; Jeremy, R.W.; Robertson, E.N. The RNA-binding fragile-X mental retardation protein and its role beyond the brain. Biophys. Rev. 2020, 12, 903–916. [Google Scholar] [CrossRef]
- Hagerman, R.J.; Berry-Kravis, E.; Hazlett, H.C.; Bailey, D.B., Jr.; Moine, H.; Kooy, R.F.; Tassone, F.; Gantois, I.; Sonenberg, N.; Mandel, J.L.; et al. Fragile X syndrome. Nat. Rev. Dis. Primers 2017, 3, 17065. [Google Scholar] [CrossRef] [PubMed]
- Hagerman, R.J.; Hagerman, P.J. Physical and Behavioral Phenotype; John Hopkins University Press: Baltimore, MD, USA, 2002. [Google Scholar]
- Westmark, C.J.; Westmark, P.R.; Malter, J.S. Soy-Based Diet Exacerbates Seizures in Mouse Models of Neurological Disease. J. Alzheimer’s Dis. 2013, 33, 797–805. [Google Scholar] [CrossRef]
- Westmark, C.J. Soy Infant Formula and Seizures in Children with Autism: A Retrospective Study. PLoS ONE 2014, 9, e80488. [Google Scholar] [CrossRef] [PubMed]
- Westmark, C.J. Soy Infant Formula may be Associated with Increased Autistic Behaviors. Autism Open Access 2013, 3, 20727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westmark, C.J. A Hypothesis Regarding the Molecular Mechanism Underlying Dietary Soy-Induced Effects on Seizure Propensity. Front. Neurol. 2014, 5, 169. [Google Scholar] [CrossRef] [Green Version]
- Westmark, C.J. Soy-Based Therapeutic Baby Formulas: Testable Hypotheses Regarding the Pros and Cons. Front. Nutr. 2017, 3. [Google Scholar] [CrossRef] [Green Version]
- Sherman, S.L.; Kidd, S.A.; Riley, C.; Berry-Kravis, E.; Andrews, H.F.; Miller, R.M.; Lincoln, S.; Swanson, M.; Kaufmann, W.E.; Brown, W.T. Forward: A Registry and Longitudinal Clinical Database to Study Fragile X Syndrome. Pediatrics 2017, 139, S183–S193. [Google Scholar] [CrossRef] [Green Version]
- Westmark, C.J.; Kniss, C.; Sampene, E.; Wang, A.; Milunovich, A.; Elver, K.; Hessl, D.; Talboy, A.; Picker, J.; Haas-Givler, B.; et al. Soy-Based Infant Formula is Associated with an Increased Prevalence of Comorbidities in Fragile X Syndrome. Nutrients 2020, 12, 3136. [Google Scholar] [CrossRef]
- Breastfeeding among U.S. Children Born 2010–2017, CDC National Immunization Survey. Available online: https://www.cdc.gov/breastfeeding/data/nis_data/results.html (accessed on 13 April 2021).
- Clifford, S.; Dissanayake, C.; Bui, Q.M.; Huggins, R.; Taylor, A.K.; Loesch, D.Z. Autism Spectrum Phenotype in Males and Females with Fragile X Full Mutation and Premutation. J. Autism Dev. Disord. 2007, 37, 738–747. [Google Scholar] [CrossRef]
- Kaufmann, W.E.; Cortell, R.; Kau, A.S.; Bukelis, I.; Tierney, E.; Gray, R.M.; Cox, C.; Capone, G.T.; Stanard, P. Autism spectrum disorder in fragile X syndrome: Communication, social interaction, and specific behaviors. Am. J. Med. Genet. 2004, 129A, 225–234. [Google Scholar] [CrossRef]
- Zikopoulos, B.; Barbas, H. Changes in prefrontal axons may disrupt the network in autism. J. Neurosci. 2010, 30, 14595–14609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chesik, D.; De Keyser, J.; Wilczak, N. Insulin-like growth factor system regulates oligodendroglial cell behavior: Therapeutic po-tential in CNS. J. Mol. Neurosci. 2008, 35, 81–90. [Google Scholar] [CrossRef]
- Vanhala, R.; Turpeinen, U.; Riikonen, R. Low levels of insulin-like growth factor-I in cerebrospinal fluid in children with autism. Dev. Med. Child Neurol. 2001, 43, 614–616. [Google Scholar] [CrossRef] [PubMed]
- Riikonen, R.; Makkonen, I.; Vanhala, R.; Turpeinen, U.; Kuikka, J.; Kokki, H. Cerebrospinal fluid insulin-like growth factors IGF-1 and IGF-2 in infantile autism. Dev. Med. Child Neurol. 2006, 48, 751–755. [Google Scholar] [CrossRef] [PubMed]
- Anlar, B.; Öktem, F.; Bakkaloglu, B.; Haliloglu, M.; Oğuz, H.; Ünal, F.; Pehlivanturk, B.; Gokler, B.; Ozbesler, C.; Yordam, N. Urinary Epidermal and Insulin-Like Growth Factor Excretion in Autistic Children. Neuropediatrics 2007, 38, 151–153. [Google Scholar] [CrossRef] [PubMed]
- Steinman, G.; Mankuta, D. Breastfeeding as a possible deterrent to autism—A clinical perspective. Med. Hypotheses 2013, 81, 999–1001. [Google Scholar] [CrossRef]
- Steinman, G.; Mankuta, D. Insulin-like growth factor and the etiology of autism. Med. Hypotheses 2013, 80, 475–480. [Google Scholar] [CrossRef]
- Pacey, L.; Xuan, I.C.; Guan, S.; Sussman, D.; Henkelman, R.M.; Chen, Y.; Thomsen, C.; Hampson, D.R. Delayed myelination in a mouse model of fragile X syndrome. Hum. Mol. Genet. 2013, 22, 3920–3930. [Google Scholar] [CrossRef]
- Shi, D.; Xu, S.; Zhuo, J.; McKenna, M.C.; Gullapalli, R.P. White Matter Alterations in Fmr1 Knockout Mice during Early Postnatal Brain Development. Dev. Neurosci. 2019, 41, 274–289. [Google Scholar] [CrossRef]
- Wise, T.L. Changes in insulin-like growth factor signaling alter phenotypes in Fragile X Mice. Genes. Brain Behav. 2016, 16, 241–249. [Google Scholar] [CrossRef]
- Deacon, R.M.J.; Glass, L.; Snape, M.; Hurley, M.J.; Altimiras, F.J.; Biekofsky, R.R.; Cogram, P. NNZ-2566, a Novel Analog of (1–3) IGF-1, as a Potential Therapeutic Agent for Fragile X Syndrome. NeuroMol. Med. 2015, 17, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Nagashima, K.; Itoh, K.; Kuroume, T. Levels of Insulin-Like Growth Factor I in Full- and Preterm Human Milk in Comparison to Levels in Cow’s Milk and in Milk Formulas. Biol. Neonate 1990, 58, 343–346. [Google Scholar] [CrossRef] [PubMed]
- Alzaree, F.A.; Abushady, M.M.; Atti, M.A.; Fathy, G.A.; Galal, E.M.; Ali, A.; Elias, T.R. Effect of Early Breast Milk Nutrition on Serum Insulin-Like Growth Factor-1 in Preterm Infants. Open Access Maced. J. Med. Sci. 2019, 7, 77–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isaacs, E.B.; Fischl, B.R.; Quinn, B.T.; Chong, W.K.; Gadian, D.G.; Lucas, A. Impact of Breast Milk on Intelligence Quotient, Brain Size and White Matter Development. Pediatr. Res. 2010, 67, 357–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kidd, S.A.; Lachiewicz, A.; Barbouth, D.; Blitz, R.K.; Delahunty, C.; McBrien, D.; Visootsak, J.; Berry-Kravis, E. Fragile X Syndrome: A Review of Associated Medical Problems. Pediatrics 2014, 134, 995–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Utari, A.; Adams, E.; Berry-Kravis, E.; Chavez, A.; Scaggs, F.; Ngotran, L.; Boyd, A.; Hessl, D.; Gane, L.W.; Tassone, F.; et al. Aging in fragile X syndrome. J. Neurodev. Disord. 2010, 2, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Penn, A.H.; Carver, L.J.; Herbert, C.A.; Lai, T.S.; McIntire, M.J.; Howard, J.T.; Taylor, S.F.; Schmid-Schönbein, G.W.; Dobkins, K.R. Breast Milk Protects against Gastrointestinal Symptoms in Infants at High Risk for Autism during Early Development. J. Pediatr. Gastroenterol. Nutr. 2016, 62, 317–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldsmith, F.; O’Sullivan, A.; Smilowitz, J.T.; Freeman, S.L. Lactation and Intestinal Microbiota: How Early Diet Shapes the Infant Gut. J. Mammary Gland. Biol. Neoplasia 2015, 20, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Favier, C.F.; Vaughan, E.E.; De Vos, W.M.; Akkermans, A.D.L. Molecular Monitoring of Succession of Bacterial Communities in Human Neonates. Appl. Environ. Microbiol. 2002, 68, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Perrier, C.; Corthésy, B. Gut permeability and food allergies. Clin. Exp. Allergy 2010, 41, 20–28. [Google Scholar] [CrossRef]
- Schneider, A.; Johnston, C.; Tassone, F.; Sansone, S.; Hagerman, R.J.; Ferrer, E.; Rivera, S.M.; Hessl, D. Broad autism spectrum and obsessive-compulsive symptoms in adults with the fragile X premutation. Clin. Neuropsychol. 2016, 30, 929–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagerman, R.J.; Protic, D.; Rajaratnam, A.; Salcedo, M.; Aydin, E.Y.; Schneider, A. Fragile X-Associated Neuropsychiatric Disorders (FXAND). Front. Psychiatry 2018, 9, 564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winarni, T.I.; Chonchaiya, W.; Sumekar, T.A.; Ashwood, P.; Morales, G.M.; Tassone, F.; Nguyen, D.V.; Faradz, S.M.; Van de Water, J.; Cook, K.; et al. Immune-mediated disorders among women carriers of fragile X premutation alleles. Am. J. Med. Genet. Part A 2012, 158A, 2473–2481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vojdani, A.; Campbell, A.; Anyanwu, E.; Kashanian, A.; Bock, K.; Vojdani, E. Antibodies to neuron-specific antigens in children with autism: Possible cross-reaction with encephalitogenic proteins from milk, Chlamydia pneumoniae and Streptococcus group A. J. Neuroimmunol. 2002, 129, 168–177. [Google Scholar] [CrossRef]
- Vojdani, A.; O’Bryan, T.; Green, J.; McCandless, J.; Woeller, K.; Vojdani, E.; Nourian, A.; Cooper, E. Immune Response to Dietary Proteins, Gliadin and Cerebellar Peptides in Children with Autism. Nutr. Neurosci. 2004, 7, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Lisik, M.Z.; Gutmajster, E.; Sieron, A.L. Anti-Neuronal Antibodies in Patients with Fragile X Syndrome: Is there a Role of Autoimmunity in Its Pathogenesis? Neurodegener. Dis. 2014, 15, 45–49. [Google Scholar] [CrossRef]
- Chonchaiya, W.; Tassone, F.; Ashwood, P.; Hessl, D.; Schneider, A.; Campos, L.; Nguyen, D.V.; Hagerman, R.J. Autoimmune disease in mothers with the FMR1 premutation is associated with seizures in their children with fragile X syndrome. Qual. Life Res. 2010, 128, 539–548. [Google Scholar] [CrossRef] [Green Version]
- Quigley, M.A.; Hockley, C.; Carson, C.; Kelly, Y.; Renfrew, M.; Sacker, A. Breastfeeding is Associated with Improved Child Cognitive Development: A Population-Based Cohort Study. J. Pediatr. 2012, 160, 25–32. [Google Scholar] [CrossRef]
- Giulivi, C.; Napoli, E.; Tassone, F.; Halmai, J.; Hagerman, R. Plasma metabolic profile delineates roles for neurodegeneration, pro-inflammatory damage and mitochondrial dysfunction in the FMR1 premutation. Biochem. J. 2016, 473, 3871–3888. [Google Scholar] [CrossRef]
- Westmark, P.R.; Gutierrez, A.; Gholston, A.K.; Wilmer, T.M.; Westmark, C.J. Preclinical testing of the ketogenic diet in fragile X mice. Neurochem. Int. 2020, 134, 104687. [Google Scholar] [CrossRef]
- Leboucher, A.; Pisani, D.F.; Martinez-Gili, L.; Chilloux, J.; Bermudez-Martin, P.; Van Dijck, A.; Ganief, T.; Macek, B.; Becker, J.A.; Le Merrer, J.; et al. The translational regulator FMRP controls lipid and glucose metabolism in mice and humans. Mol. Metab. 2019, 21, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Berry-Kravis, E.; Levin, R.; Shah, H.; Mathur, S.; Darnell, J.C.; Ouyang, B.; Ooyang, B. Cholesterol levels in fragile X syndrome. Am. J. Med. Genet. Part A 2014, 167, 379–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werner, H.B.; Krämer-Albers, E.-M.; Strenzke, N.; Saher, G.; Tenzer, S.; Ohno-Iwashita, Y.; De Monasterio-Schrader, P.; Möbius, W.; Moser, T.; Griffiths, I.R.; et al. A critical role for the cholesterol-associated proteolipids PLP and M6B in myelination of the central nervous system. Glia 2013, 61, 567–586. [Google Scholar] [CrossRef]
- Napoli, E.; Ross-Inta, C.; Song, G.; Wong, S.; Hagerman, R.; Gane, L.W.; Smilowitz, J.T.; Tassone, F.; Giulivi, C. Premutation in the Fragile X Mental Retardation 1 (FMR1) Gene Affects Maternal Zn-milk and Perinatal Brain Bioenergetics and Scaffolding. Front. Neurosci. 2016, 10, 159. [Google Scholar] [CrossRef] [Green Version]
- Gomez, B.G.; Perez-Corona, M.T.; Madrid, Y. Availability of zinc from infant formula by in vitro methods (solubility and dialyza-bility) and size-exclusion chromatography coupled to inductively coupled plasma-mass spectrometry. J. Dairy. Sci. 2016, 99, 9405–9414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh, J.-Y.; Lim, J.S.; Byun, H.-R.; Yoo, M.-H. Abnormalities in the zinc-metalloprotease-BDNF axis may contribute to megalencephaly and cortical hyperconnectivity in young autism spectrum disorder patients. Mol. Brain 2014, 7, 64. [Google Scholar] [CrossRef] [PubMed]
- Abrams, L.; Cronister, A.; Brown, W.T.; Tassone, F.; Sherman, S.L.; Finucane, B.; McConkie-Rosell, A.; Hagerman, R.; Kaufmann, W.E.; Picker, J.; et al. Newborn, Carrier, and Early Childhood Screening Recommendations for Fragile X. Pediatrics 2012, 130, 1126–1135. [Google Scholar] [CrossRef] [Green Version]
- Victora, C.G.; Bahl, R.; Barros, A.J.D.; França, G.V.; Horton, S.; Krasevec, J.; Murch, S.; Sankar, M.J.; Walker, N.; Rollins, N.C.; et al. Breastfeeding in the 21st century: Epidemiology, mechanisms and lifelong effect. Lancet 2016, 387, 475–490. [Google Scholar] [CrossRef] [Green Version]
Timeframe | Total Population BM a % (n = 141) | Males BM % (n = 106) | Females BM % (n = 35) | Males vs. Females p b |
---|---|---|---|---|
2 weeks or less | 5.7 | 5.7 | 5.7 | 1.0 c |
3–10 weeks | 13 | 12 | 17 | 0.46 |
at least 3 months | 81 | 82 | 71 | 0.18 |
at least 6 months | 73 | 75 | 60 | 0.078 |
12 months or longer | 41 | 41 | 37 | 0.72 |
only BM d | 29 | 30 | 26 | 0.61 |
Phenotype | BM a % (n) | No BM % (n) | pb | OR | 95% CI |
---|---|---|---|---|---|
none d | 22 (134) | 19 (52) | 0.56 | 0.79 | 0.36–1.8 |
autism | 47 (131) | 53 (47) | 0.49 | 0.79 | 0.41–1.5 |
food allergies | 11 (130) | 11 (47) | 0.98 | 1.0 | 0.34–3.0 |
diabetes | 0.75 (134) | 2.1 (48) | 0.46 c | 0.35 | 0.022–5.8 |
GI problems | 31 (137) | 33 (51) | 0.73 | 0.88 | 0.45–1.8 |
seizures | 12 (139) | 17 (52) | 0.36 | 0.67 | 0.28–1.6 |
allergies | 36 (138) | 42 (52) | 0.39 | 0.75 | 0.39–1.4 |
Phenotype | No BM a % (n) | BM 3 mo % (n) | BM 6 mo % (n) | BM 12 mo % (n) | BM 3 mo p b, OR, 95% CI | BM 6 mo p b, OR, 95% CI | BM 12 mo p b, OR, 95% CI |
---|---|---|---|---|---|---|---|
none d | 19 (52) | 25 (110) | 26 (99) | 33 (56) | 0.38, 0.70, 0.31–1.6 | 0.27, 0.63, 0.28–1.4 | 0.085, 0.46, 0.19–1.1 |
autism | 53 (47) | 46 (106) | 44 (96) | 32 (56) | 0.43, 0.76, 0.38–1.5 | 0.29, 0.68, 0.34–1.4 | 0.031, 0.42, 0.19–0.93 |
food allergies | 11 (47) | 12 (104) | 13 (96) | 11 (53) | 0.87, 1.1, 0.36–3.3 | 0.75, 1.2, 0.40–3.6 | 0.91, 1.1, 0.31–3.8 |
diabetes | 2.1 (48) | 0.93 (108) | 1.0 (98) | 0 (55) | 0.52 c, 0.44, 0.027–7.2 | 0.55 c, 0.48, 0.030–7.9 | 0.47 c, n/a, n/a |
GI problems | 33 (51) | 29 (112) | 25 (102) | 25 (57) | 0.54, 0.80, 0.39–1.6 | 0.31, 0.68, 0.33–1.4 | 0.31, 0.65, 0.28–1.5 |
seizures | 17 (52) | 14 (111) | 12 (100) | 5.2 (58) | 0.52, 0.75, 0.30–1.8 | 0.37, 0.65, 0.26–1.7 | 0.064 c, 0.26, 0.066–1.0 |
allergies | 42 (52) | 36 (110) | 37 (100) | 34 (56) | 0.47, 0.78, 0.40–1.5 | 0.52, 0.80, 0.40–1.6 | 0.37, 0.70, 0.32–1.5 |
Q1a (autism, “YES”) | Q1a (autism, “NO”) | Fold Change | pa | Significant a | |
---|---|---|---|---|---|
Q40a (talk) (average, SEM, N) | 2.2 (0.12) (85) | 3.0 (0.13) (88) | 0.73 | 5.2 × 10−6 | Yes |
Q40b (say name) | 2.1 (0.12) (87) | 2.7 (0.15) (88) | 0.77 | 2.0 × 10−3 | No |
Q40c (respond) | 3.2 (0.11) (87) | 4.1 (0.090) (88) | 0.78 | 3.7 × 10−9 | Yes |
Q40d (3 word sentences) | 1.7 (0.10) (88) | 2.4 (0.15) (88) | 0.71 | 3.0 × 104 | Yes |
Q40e (words to request things) | 2.1 (0.12) (88) | 2.8 (0.14) (87) | 0.77 | 6.8 × 10−4 | Yes |
Q41a (correctly identify) | 2.7 (0.13) (86) | 3.3 (0.13, 86) | 0.81 | 1.2 × 10−3 | Yes |
Q41b (follow directions) | 2.6 (0.11) (87) | 3.3 (0.11) (88) | 0.79 | 1.9–5 | Yes |
Q41c (point to request) | 2.8 (0.13) (87) | 3.6 (0.11) (88) | 0.76 | 7.2 × 10−7 | Yes |
Q41d (copy others) | 2.7 (0.12) (87) | 3.6 (0.10) (87) | 0.76 | 1.5 × 10−7 | Yes |
Q41e (play pretend) | 1.6 (0.11) (87) | 2.4 (0.14) (87) | 0.67 | 1.4 × 10−5 | Yes |
Q41f (have savant ability) | 1.4 (0.10) (87) | 1.3 (0.078) (88) | 1.09 | 0.34 | No |
Q43a (likes motion) | 4.1 (0.11) (86) | 4.0 (0.098) (88) | 1.02 | 0.64 | No |
Q43b (walk) | 4.1 (0.10) (86) | 4.3 (0.093) (87) | 0.95 | 0.16 | No |
Q43c (toe walk) | 2.4 (0.14) (85) | 2.0 (0.15) (87) | 1.2 | 0.083 | No |
Q43d (picks up small objects) | 3.5 (0.11) (87) | 3.8 (0.12) (87) | 0.92 | 0.063 | No |
Q43e (feeds self with spoon) | 2.6 (0.13) (87) | 3.6 (0.12) (87) | 0.74 | 1.4 × 10−6 | Yes |
Q43f (help dress self) | 2.3 (0.12) (87) | 2.9 (0.13) (88) | 0.79 | 7.3 × 10−4 | Yes |
Q44a (upset by loud noises) | 3.4 (0.15) (86) | 2.9 (0.13) (88) | 1.16 | 0.017 | No |
Q44b (rocking, hand flapping) | 3.8 (0.14) (87) | 3.0 (0.17) (88) | 1.26 | 4.5 × 10−4 | Yes |
Q44c (cry excessively) | 2.4 (0.13) (87) | 2.4 (0.13) (88) | 1.03 | 0.74 | No |
Q44d (temper outbursts) | 3.1 (0.13) (87) | 3.0 (0.13) (88) | 1.06 | 0.31 | No |
Q44e (isolate self) | 2.7 (0.12) (87) | 2.3 (0.13) (87) | 1.19 | 0.017 | No |
Q44f (injure self) | 2.0 (0.14) (87) | 1.6 (0.13) (88) | 1.23 | 0.047 | No |
Q45a (upset by minor changes) | 3.5 (0.11) (87) | 3.1 (0.12) (88) | 1.13 | 0.013 | No |
Q45b (difficulty expressing needs) | 4.2 (0.087) (87) | 3.8 (0.11) (88) | 1.09 | 0.013 | No |
Q45c (hate crowds) | 3.8 (0.13) (87) | 3.1 (0.13) (88) | 1.21 | 5.7 × 10−4 | Yes |
Q45d (not liked to be touched) | 2.5 (0.11) (87) | 2.2 (0.13) (88) | 1.16 | 0.050 | No |
Q45e (like to play with other kids) | 2.4 (0.12) (87) | 3.2 (0.11) (88) | 0.76 | 3.7 × 10−6 | Yes |
Q46a (anxiety problem) | 3.7 (0.14) (87) | 3.2 (0.15) (88) | 1.17 | 0.010 | No |
Q46b (hearing problem) | 2.0 (0.14) (87) | 1.6 (0.12) (88) | 1.31 | 7.8 × 10−3 | No |
Q46c (vision problem) | 1.8 (0.12) (87) | 1.5 (0.12) (88) | 1.22 | 0.067 | No |
Q46d (learning problem) | 4.6 (0.079) (87) | 4.2 (0.12) (88) | 1.09 | 0.012 | No |
Phenotype | Regression Coefficient a | Correlation Coefficient |
---|---|---|
none b | 1.1 | 0.96 |
autism | −1.7 | 0.98 |
food allergies | −0.0095 | 0.0026 |
diabetes | −0.16 | 0.88 |
GI problems | −0.65 | 0.75 |
seizures | −0.97 | 0.99 |
allergies | −0.56 | 0.72 |
Phenotype | No BM a % (N) | BM only % (n) | pb | OR | 95% CI |
---|---|---|---|---|---|
none d | 19 (52) | 38 (40) | 0.051 | 0.40 | 0.16–1.0 |
autism e | 53 (47) | 28 (39) | 0.019 | 0.35 | 0.14–0.85 |
food allergies | 11 (47) | 13 (38) | 0.72 | 1.3 | 0.34–4.8 |
diabetes | 2.1 (48) | 0 (38) | 1.0 c | n/a | n/a |
GI problems | 33 (51) | 23 (40) | 0.26 | 0.58 | 0.23–1.5 |
Seizures | 17 (52) | 7.3 (41) | 0.22 c | 0.38 | 0.095–1.5 |
allergies | 42 (52) | 31 (39) | 0.26 | 0.61 | 0.25–1.5 |
n | Reasons to Start a |
123 | Healthiest for the baby (believed best for baby, best for development, strong immunity/antigen benefit, most natural) |
16 | Parental choice/belief/instinct |
11 | Doctor recommended |
8 | Family recommended/custom |
7 | To bond with baby |
2 | To save money |
n | Reasons to Stop b |
47 | Not enough milk |
46 | Child age-related (time to stop, transitioned to baby food, using a sippy cup) |
31 | Mother wanted/needed to wean child (work-related, health of mother-related, eat dairy again, convenience, time) |
18 | Painful to mother |
16 | Child health-related problem (GERD, latching issue, poor suck, rejecting breast, missed developmental milestones) |
6 | Lack of interest by child |
4 | Mother became pregnant or wanted to conceive again |
Age of Onset of GI Problems | BM a % (n = 39) | No BM % (n = 17) | p | OR | 95% CI |
0–2 weeks (%) | 33 | 41 | 0.57 b | 0.71 | 0.22–2.3 |
0–12 months (%) | 69 | 65 | 0.74 b | 1.2 | 0.37–4.1 |
0–3 years (%) | 95 | 65 | 0.007 c | 10.1 | 1.8–57 |
Mean age in months (SEM) | 22 (9.1) | 65 (24) | 0.044 d | n/a | n/a |
Age of Allergy Onset | BM % (n = 45) | No BM % (n = 19) | p | OR | 95% CI |
0–2 weeks (%) | 4.4 | 11 | 0.58 c | 0.40 | 0.015–3.0 |
0–12 months (%) | 33 | 26 | 0.58 b | 1.4 | 0.42–4.6 |
0–3 years (%) | 78 | 47 | 0.016 b | 3.9 | 1.2–12 |
Mean age in months (SEM) | 29 (3.9) | 67 (13) | 0.00054 d | n/a | n/a |
Phenotype | BM % (n) | CM % (n) | SM % (n) | pa | pb | pc | pd | OR | 95% CI |
---|---|---|---|---|---|---|---|---|---|
autism | 27 (30) | 67 (9) | 50 (4) | 0.070 | 0.048 | 0.56 | 0.61 | 5.5 e | 1.1–27 e |
food allergies | 10 (30) | 14 (7) | 67 (3) | 0.071 | 1.0 | 0.053 | 0.18 | 18 f | 1.2–263 f |
GI problems | 19 (31) | 67 (9) | 25 (4) | 0.026 | 0.012 | 1.0 | 0.27 | 8.3 e | 1.6–43 e |
seizures | 9.4 (32) | 0 (9) | 25 (4) | 0.46 | 1.0 | 0.39 | 0.31 | n/a | n/a |
allergies | 32 (31) | 78 (9) | 50 (4) | 0.045 | 0.023 | 0.59 | 0.53 | 7.4 e | 1.3–42 e |
Comorbidity | BM a | CM b | pc |
---|---|---|---|
GI problems, Mean age in years (SEM) (n) | 0.90 (0.55) (5) | 12 (3.4) (6) | 0.018 |
Allergies, Mean age in years (SEM) (n) | 1.8 (0.51) (10) | 9.4 (1.6) (7) | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Westmark, C.J. Consumption of Breast Milk Is Associated with Decreased Prevalence of Autism in Fragile X Syndrome. Nutrients 2021, 13, 1785. https://doi.org/10.3390/nu13061785
Westmark CJ. Consumption of Breast Milk Is Associated with Decreased Prevalence of Autism in Fragile X Syndrome. Nutrients. 2021; 13(6):1785. https://doi.org/10.3390/nu13061785
Chicago/Turabian StyleWestmark, Cara J. 2021. "Consumption of Breast Milk Is Associated with Decreased Prevalence of Autism in Fragile X Syndrome" Nutrients 13, no. 6: 1785. https://doi.org/10.3390/nu13061785
APA StyleWestmark, C. J. (2021). Consumption of Breast Milk Is Associated with Decreased Prevalence of Autism in Fragile X Syndrome. Nutrients, 13(6), 1785. https://doi.org/10.3390/nu13061785