Association between Types of Screen Time and Weight Status during the COVID-19 Pandemic: A Longitudinal Study in Children and Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Study Sample
2.2. Key Study Variables and Measurements
2.2.1. Outcome Variables
2.2.2. Exposure Variables
2.2.3. Covariates
2.3. Statistical Analysis
2.4. Ethics
3. Results
3.1. Sample Characteristics
3.2. The Dynamic Changes in Screen Use Behavior
3.3. Associations between Screen Time and Weight Status
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NCD Risk Factor Collaboration. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Jan, C.; Ma, Y.; Dong, B.; Zou, Z.; Yang, Y.; Xu, R.; Song, Y.; Ma, J.; Sawyer, S.M. Economic development and the nutritional status of Chinese school-aged children and adolescents from 1995 to 2014: An analysis of five successive national surveys. Lancet Diabetes Endocrinol. 2019, 7, 288–299. [Google Scholar] [CrossRef]
- Pan, X.F.; Wang, L.; Pan, A. Epidemiology and determinants of obesity in China. Lancet Diabetes Endocrinol. 2021, 9, 373–392. [Google Scholar] [CrossRef]
- Daniels, S.R.; Arnett, D.K.; Eckel, R.H.; Gidding, S.S.; Hayman, L.L.; Kumanyika, S.; Robinson, T.N.; Scott, B.J.; St Jeor, S.; Williams, C.L. Overweight in children and adolescents: Pathophysiology, consequences, prevention, and treatment. Circulation 2005, 111, 1999–2012. [Google Scholar] [CrossRef] [PubMed]
- Rundle, A.G.; Park, Y.; Herbstman, J.B.; Kinsey, E.W.; Wang, Y.C. COVID-19-Related School Closings and Risk of Weight Gain Among Children. Obesity 2020, 28, 1008–1009. [Google Scholar] [CrossRef] [PubMed]
- Hall, G.; Laddu, D.R.; Phillips, S.A.; Lavie, C.J.; Arena, R. A tale of two pandemics: How will COVID-19 and global trends in physical inactivity and sedentary behavior affect one another? Prog. Cardiovasc. Dis. 2021, 64, 108–110. [Google Scholar] [CrossRef]
- Jia, P.; Zhang, L.; Yu, W.; Yu, B.; Liu, M.; Zhang, D.; Yang, S. Impact of COVID-19 lockdown on activity patterns and weight status among youths in China: The COVID-19 Impact on Lifestyle Change Survey (COINLICS). Int. J. Obes. 2021, 45, 695–699. [Google Scholar] [CrossRef]
- Kelly, A.S.; Barlow, S.E.; Rao, G.; Inge, T.H.; Hayman, L.L.; Steinberger, J.; Urbina, E.M.; Ewing, L.J.; Daniels, S.R.; American Heart Association Atherosclerosis, H.; et al. Severe obesity in children and adolescents: Identification, associated health risks, and treatment approaches: A scientific statement from the American Heart Association. Circulation 2013, 128, 1689–1712. [Google Scholar] [CrossRef]
- Jebeile, H.; Kelly, A.S.; O’Malley, G.; Baur, L.A. Obesity in children and adolescents: Epidemiology, causes, assessment, and management. Lancet Diabetes Endocrinol. 2022, 10, 351–365. [Google Scholar] [CrossRef]
- te Velde, S.J.; van Nassau, F.; Uijtdewilligen, L.; van Stralen, M.M.; Cardon, G.; De Craemer, M.; Manios, Y.; Brug, J.; Chinapaw, M.J. Energy balance-related behaviours associated with overweight and obesity in preschool children: A systematic review of prospective studies. Obes. Rev. 2012, 13, 56–74. [Google Scholar] [CrossRef]
- Robinson, T.N.; Banda, J.A.; Hale, L.; Lu, A.S.; Fleming-Milici, F.; Calvert, S.L.; Wartella, E. Screen Media Exposure and Obesity in Children and Adolescents. Pediatrics 2017, 140, S97–S101. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xue, H.; Wang, W.; Wang, Y. Parental Expectations and Child Screen and Academic Sedentary Behaviors in China. Am. J. Prev. Med. 2017, 52, 680–689. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Hesketh, T. Educational Aspirations and Expectations of Adolescents in Rural China: Determinants, Mental Health, and Academic Outcomes. Int. J. Environ. Res. Public. Health 2021, 18, 11524. [Google Scholar] [CrossRef] [PubMed]
- Sanders, T.; Parker, P.D.; Del Pozo-Cruz, B.; Noetel, M.; Lonsdale, C. Type of screen time moderates effects on outcomes in 4013 children: Evidence from the Longitudinal Study of Australian Children. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 117. [Google Scholar] [CrossRef]
- Arundell, L.; Salmon, J.; Veitch, J.; Timperio, A. The Relationship between Objectively Measured and Self-Reported Sedentary Behaviours and Social Connectedness among Adolescents. Int. J. Environ. Res. Public. Health 2019, 16, 277. [Google Scholar] [CrossRef]
- Kuzik, N.; da Costa, B.G.G.; Hwang, Y.; Verswijveren, S.; Rollo, S.; Tremblay, M.S.; Bélanger, S.; Carson, V.; Davis, M.; Hornby, S.; et al. School-related sedentary behaviours and indicators of health and well-being among children and youth: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2022, 19, 40. [Google Scholar] [CrossRef]
- Kenđel Jovanović, G.; Dragaš Zubalj, N.; Klobučar Majanović, S.; Rahelić, D.; Rahelić, V.; Vučak Lončar, J.; Pavičić Žeželj, S. The Outcome of COVID-19 Lockdown on Changes in Body Mass Index and Lifestyle among Croatian Schoolchildren: A Cross-Sectional Study. Nutrients 2021, 13, 3788. [Google Scholar] [CrossRef]
- Furthner, D.; Ehrenmueller, M.; Lanzersdorfer, R.; Halmerbauer, G.; Schmitt, K.; Biebl, A. Education, school type and screen time were associated with overweight and obesity in 2930 adolescents. Acta Paediatr. 2018, 107, 517–522. [Google Scholar] [CrossRef]
- Crowe, M.; Sampasa-Kanyinga, H.; Saunders, T.J.; Hamilton, H.A.; Benchimol, E.I.; Chaput, J.P. Combinations of physical activity and screen time recommendations and their association with overweight/obesity in adolescents. Can. J. Public. Health 2020, 111, 515–522. [Google Scholar] [CrossRef]
- People’s Daily Online. Shanghai Takes the Strictest Measures to Implement a Major Public Health Emergency Response Mechanism. 2020. Available online: http://sh.people.com.cn/GB/n2/2020/0124/c134768-33743400.html (accessed on 22 February 2023).
- People’s Daily Online. Shanghai’s Emergency Response Level for Major Public Health Emergencies Adjusted to Two. 2020. Available online: http://gz.people.com.cn/n2/2020/0323/c344102-33897262.html (accessed on 22 February 2023).
- WHO. Growth Reference Data for 5–19 Years/Indicators/BMI-for-Age (5–19 Years). Available online: https://www.who.int/tools/growth-reference-data-for-5to19-years/indicators/bmi-for-age (accessed on 29 January 2023).
- De Onis, M.; Blössner, M.; World Health Organization. WHO Global Database on Child Growth and Malnutrition/Compiled by Mercedis de Onis and Monika Blössner; World Health Organization: Geneva, Switzerland, 1997. [Google Scholar]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- WHO. Obesity and Overweight. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 28 January 2023).
- Gao, H.; Li, X.; Zi, Y.; Mu, X.; Fu, M.; Mo, T.; Yu, K. Reliability and Validity of Common Subjective Instruments in Assessing Physical Activity and Sedentary Behaviour in Chinese College Students. Int. J. Environ. Res. Public. Health 2022, 19, 8379. [Google Scholar] [CrossRef]
- WHO. Recommended Levels of Physical Activity for Children Aged 5–17 Years. Available online: https://www.who.int/dietphysicalactivity/factsheet_young_people/en/ (accessed on 22 August 2022).
- Wang, W.; Cheng, H.; Zhao, X.; Zhang, M.; Chen, F.; Hou, D.; Mi, J. Reproducibility and validity of a food frequency questionnaire developed for children and adolescents in Beijing. Chin. J. Child. Health Care 2016, 24, 8–11. [Google Scholar]
- National Institute for Nutrition and Food Safety of Chinese Center for Disease Control and Prevention. Chinese Food Composition Table; Peking University Medical Press: Beijing, China, 2009. [Google Scholar]
- Tanskey, L.A.; Goldberg, J.; Chui, K.; Must, A.; Sacheck, J. The State of the Summer: A Review of Child Summer Weight Gain and Efforts to Prevent It. Curr. Obes. Rep. 2018, 7, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Mohler-Kuo, M.; Dzemaili, S.; Foster, S.; Werlen, L.; Walitza, S. Stress and Mental Health among Children/Adolescents, Their Parents, and Young Adults during the First COVID-19 Lockdown in Switzerland. Int. J. Environ. Res. Public. Health 2021, 18, 4668. [Google Scholar] [CrossRef]
- Chen, I.H.; Chen, C.Y.; Liu, C.H.; Ahorsu, D.K.; Griffiths, M.D.; Chen, Y.P.; Kuo, Y.J.; Lin, C.Y.; Pakpour, A.H.; Wang, S.M. Internet addiction and psychological distress among Chinese schoolchildren before and during the COVID-19 outbreak: A latent class analysis. J. Behav. Addict. 2021, 10, 731–746. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Li, J.; Zhong, H.; Pan, C.W. Associations of outdoor activity and screen time with adiposity: Findings from rural Chinese adolescents with relatively low adiposity risks. BMC Public. Health 2020, 20, 1769. [Google Scholar] [CrossRef] [PubMed]
- Hui, S.S.; Zhang, R.; Suzuki, K.; Naito, H.; Balasekaran, G.; Song, J.K.; Park, S.Y.; Liou, Y.M.; Lu, D.; Poh, B.K.; et al. The associations between meeting 24-hour movement guidelines and adiposity in Asian Adolescents: The Asia-Fit Study. Scand. J. Med. Sci. Sport. 2021, 31, 763–771. [Google Scholar] [CrossRef]
- Ding, C.; Fan, J.; Yuan, F.; Feng, G.; Gong, W.; Song, C.; Ma, Y.; Chen, Z.; Liu, A. Association between Physical Activity, Sedentary Behaviors, Sleep, Diet, and Adiposity among Children and Adolescents in China. Obes. Facts 2022, 15, 26–35. [Google Scholar] [CrossRef]
- Mitchell, J.A.; Rodriguez, D.; Schmitz, K.H.; Audrain-McGovern, J. Greater screen time is associated with adolescent obesity: A longitudinal study of the BMI distribution from Ages 14 to 18. Obesity 2013, 21, 572–575. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhao, B.; Liu, J.; Wang, Y.; Xu, F.; Wang, Y.; Xue, H. A 3-year longitudinal study of the association of physical activity and sedentary behaviours with childhood obesity in China: The childhood obesity study in China mega-cities. Pediatr. Obes. 2021, 16, e12753. [Google Scholar] [CrossRef] [PubMed]
- Saunders, T.J.; Rollo, S.; Kuzik, N.; Demchenko, I.; Bélanger, S.; Brisson-Boivin, K.; Carson, V.; da Costa, B.G.G.; Davis, M.; Hornby, S.; et al. International school-related sedentary behaviour recommendations for children and youth. Int. J. Behav. Nutr. Phys. Act. 2022, 19, 39. [Google Scholar] [CrossRef] [PubMed]
- Eagle, T.F.; Gurm, R.; Goldberg, C.S.; DuRussel-Weston, J.; Kline-Rogers, E.; Palma-Davis, L.; Aaronson, S.; Fitzgerald, C.M.; Mitchell, L.R.; Rogers, B.; et al. Health status and behavior among middle-school children in a midwest community: What are the underpinnings of childhood obesity? Am. Heart J. 2010, 160, 1185–1189. [Google Scholar] [CrossRef]
- Holm, J.E.; Lilienthal, K.R.; Poltavski, D.V.; Vogeltanz-Holm, N. Relationships between health behaviors and weight status in American Indian and white rural children. J. Rural. Health 2013, 29, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Biddle, S.J.; García Bengoechea, E.; Wiesner, G. Sedentary behaviour and adiposity in youth: A systematic review of reviews and analysis of causality. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 43. [Google Scholar] [CrossRef]
- Lissak, G. Adverse physiological and psychological effects of screen time on children and adolescents: Literature review and case study. Environ. Res. 2018, 164, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Amirfakhraei, A.; Ebrahimzadeh, F.; Jahangiry, L.; Abbasalizad-Farhangi, M. Screen Time and Body Mass Index Among Children and Adolescents: A Systematic Review and Meta-Analysis. Front. Pediatr. 2022, 10, 822108. [Google Scholar] [CrossRef]
- Stival, C.; Lugo, A.; Barone, L.; Fattore, G.; Odone, A.; Salvatore, S.; Santoro, E.; Scaglioni, S.; van den Brandt, P.A.; Gallus, S.; et al. Prevalence and Correlates of Overweight, Obesity and Physical Activity in Italian Children and Adolescents from Lombardy, Italy. Nutrients 2022, 14, 2258. [Google Scholar] [CrossRef]
- Jakubec, L.; Gába, A.; Dygrýn, J.; Rubín, L.; Šimůnek, A.; Sigmund, E. Is adherence to the 24-hour movement guidelines associated with a reduced risk of adiposity among children and adolescents? BMC Public Health 2020, 20, 1119. [Google Scholar] [CrossRef]
- Rhodes, R.E.; Guerrero, M.D.; Vanderloo, L.M.; Barbeau, K.; Birken, C.S.; Chaput, J.P.; Faulkner, G.; Janssen, I.; Madigan, S.; Mâsse, L.C.; et al. Development of a consensus statement on the role of the family in the physical activity, sedentary, and sleep behaviours of children and youth. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 74. [Google Scholar] [CrossRef]
Characteristics | Total (n = 2228) | Overweight/Obesity | ||
---|---|---|---|---|
Overweight (n = 468) | Obesity (n = 232) | p-Value * | ||
BMI, mean (SD) | 19.0 (4.21) | 21.6 (2.31) | 26.7 (5.03) | <0.001 |
Child sex, n (%) | ||||
Male | 1127 (50.6%) | 303 (64.7%) | 164 (70.7%) | <0.001 |
Female | 1101 (49.4%) | 165 (35.3%) | 68 (29.3%) | |
Child Age (in years), mean (SD) | 10.9 (2.49) | 11.2 (2.40) | 10.5 (2.33) | <0.001 |
Child grade, n (%) | ||||
1–3 | 535 (24.0%) | 88 (18.8%) | 66 (28.4%) | 0.004 |
4–6 | 777 (34.9%) | 182 (38.9%) | 88 (37.9%) | |
7–9 | 916 (41.1%) | 198 (42.3%) | 78 (33.6%) | |
Father Obesity related variables, n (%) | ||||
BMI (in kg m−2), mean (SD) | 26.1(6.96) | 26.3 (6.34) | 28.9 (8.80) | <0.001 |
Normal | 1255 (56.3%) | 234 (50.0%) | 86 (37.1%) | <0.001 |
Overweight | 732 (32.9%) | 184 (39.3%) | 89 (38.4%) | |
Obesity | 241 (10.8%) | 50 (10.7%) | 57 (24.6%) | |
Mother Obesity related variables, n (%) | ||||
BMI (in kg m−2), mean (SD) | 23.3 (6.20) | 23.6 (5.93) | 25.4 (7.24) | <0.001 |
Normal | 1837 (82.5%) | 376 (80.3%) | 161 (69.4%) | <0.001 |
Overweight | 230 (10.3%) | 61 (13.0%) | 46 (19.8%) | |
Obesity | 161 (7.2%) | 31 (6.6%) | 25 (10.8%) | |
Household income, n (%) | ||||
<100,000 yuan | 262 (11.8%) | 46 (9.8%) | 39 (16.8%) | 0.204 |
100,000–200,000 yuan | 655 (29.4%) | 134 (28.6%) | 75 (32.3%) | |
200,000–300,000 yuan | 485 (21.8%) | 99 (21.2%) | 43 (18.5%) | |
300,000–500,000 yuan | 443 (19.9%) | 107 (22.9%) | 42 (18.1%) | |
≥500,000 yuan | 189 (8.5%) | 38 (8.1%) | 17 (7.3%) | |
Refuse to answer | 194 (8.7%) | 44 (9.4%) | 16 (6.9%) | |
Mother’s highest education levels, n (%) | ||||
Middle school or below | 212 (9.5%) | 43 (9.2%) | 26 (11.2%) | 0.072 |
High or vocational school | 433 (19.4%) | 81 (17.3%) | 59 (25.4%) | |
College or above | 1583 (71.1%) | 344 (73.5%) | 147 (63.4%) | |
Father’s highest education levels, n (%) | ||||
Middle school or below | 159 (7.1%) | 30 (6.4%) | 19 (8.2%) | 0.100 |
High or vocational school | 506 (22.7%) | 94 (20.1%) | 66 (28.4%) | |
College or above | 1563 (70.2%) | 344 (73.5%) | 147 (63.4%) | |
Child Physical activity level, n (%) | ||||
Inactive | 600 (26.9%) | 116 (24.8%) | 73 (31.5%) | 0.003 |
Insufficiently active | 597 (26.8%) | 107 (22.9%) | 74 (31.9%) | |
Sufficiently active | 1031 (46.3%) | 245 (52.4%) | 85 (36.6%) | |
Child Dietary pattern | ||||
Total energy intake (kcal), mean (SD) | 2884 (1863) | 2873 (1806) | 2731 (1873) | 0.398 |
Screen Use | Total | Overweight | Obesity | ||||
---|---|---|---|---|---|---|---|
Mean (SD) | Mean (SD) | p-Value u | p-Value a | Mean (SD) | p-Value u | p-Value a | |
Recreational screen time | |||||||
Watching TV/videos | 18.1 (25.7) | 17.9 (23.6) | 0.987 | 0.826 | 21.4 (29.7) | 0.049 | 0.038 |
Computer/smartphone gaming | 7.2 (17.3) | 7.8 (15.3) | 0.121 | 0.707 | 10.8 (25.0) | <0.001 | 0.007 |
Social media use | 10.5 (22.7) | 9.5 (19.4) | 0.184 | 0.218 | 8.8 (22.4) | 0.162 | 0.968 |
Browsing webpages | 5.4 (13.8) | 5.7 (12.7) | 0.491 | 0.375 | 5.7 (16.0) | 0.595 | 0.210 |
Total | 41.3 (58.3) | 40.9 (49.4) | 0.950 | 0.950 | 46.9 (71.7) | 0.133 | 0.040 |
Educational screen time | |||||||
Online homework | 7.5 (22.3) | 7.4 (22.1) | 0.787 | 0.871 | 6.8 (13.5) | 0.578 | 0.687 |
Online class | 75.1 (96.4) | 75.4 (95.6) | 0.890 | 0.640 | 68.0 (97.1) | 0.228 | 0.527 |
Total | 82.7 (100.6) | 82.9 (98.7) | 0.846 | 0.627 | 74.7 (100.0) | 0.200 | 0.485 |
Parameter | OR (95% CI) a | OR (95% CI) b | OR(95% CI) c |
---|---|---|---|
Recreational screen time | |||
Watching TV/videos | 1.565 (1.231–1.989) | 1.557 (1.219–1.988) | 1.576 (1.230–2.020) |
Computer/smartphone gaming | 1.081 (0.818–1.427) | 1.063 (0.801–1.410) | 1.073 (0.811–1.419) |
Social media use | 1.260 (0.947–1.675) | 1.241 (0.930–1.657) | 1.265 (0.948–1.686) |
Browsing webpages | 1.147 (0.905–1.454) | 1.148 (0.906–1.455) | 1.161 (0.916–1.472) |
Total | 1.503 (1.155–1.957) | 1.487 (1.139–1.943) | 1.518 (1.159–1.988) |
Educational screen time | |||
Online homework | 1.041 (0.764–1.418) | 1.025 (0.757–1.388) | 1.032 (0.763–1.395) |
Online class | 1.114 (0.712–1.744) | 1.094 (0.703–1.705) | 1.102 (0.707–1.720) |
Total | 1.115 (0.728–1.707) | 1.089 (0.715–1.658) | 1.107 (0.726–1.686) |
Parameter | OR (95% CI) a | OR (95% CI) b | OR(95% CI) c |
---|---|---|---|
Children (n = 649) | |||
Recreational screen time | |||
Watching TV/videos | 1.483 (1.092–2.015) | 1.482 (1.079–2.036) | 1.489 (0.948–2.337) |
Computer/smartphone gaming | 1.079 (0.755–1.542) | 1.072 (0.742–1.549) | 1.008 (0.622–1.634) |
Social media use | 1.347 (0.949–1.911) | 1.316 (0.918–1.886) | 1.366 (0.900–2.074) |
Browsing webpages | 1.129 (0.800–1.594) | 1.146 (0.811–1.618) | 1.007 (0.716–1.416) |
Total | 1.452 (1.041–2.026) | 1.450 (1.029–2.043) | 1.459 (0.907–2.344) |
Educational screen time | |||
Online homework | 1.321 (0.952–1.832) | 1.283 (0.919–1.791) | 0.553 (0.298–1.026) |
Online class | 1.146 (0.660–1.990) | 1.102 (0.640–1.899) | 0.912 (0.424–1.963) |
Total | 1.353 (0.805–2.276) | 1.285 (0.769–2.147) | 0.646 (0.301–1.387) |
Adolescents (n = 1579) | |||
Recreational screen time | 1.484 (1.092–2.015) | 1.482 (1.079–2.036) | 1.485 (1.080–2.042) |
Watching TV/videos | 1.079 (0.755–1.542) | 1.072 (0.742–1.549) | 1.071 (0.744–1.542) |
Computer/smartphone gaming | 1.347 (0.949–1.911) | 1.316 (0.918–1.886) | 1.332 (0.927–1.914) |
Social media use | 1.129 (0.800–1.594) | 1.146 (0.811–1.618) | 1.158 (0.823–1.631) |
Browsing webpages | 1.452 (1.040–2.026) | 1.450 (1.029–2.043) | 1.470 (1.040–2.078) |
Total | |||
Educational screen time | 1.321 (0.952–1.832) | 1.283 (0.919–1.791) | 1.274 (0.913–1.778) |
Online homework | 1.146 (0.660–1.991) | 1.102 (0.640–1.899) | 1.108 (0.643–1.908) |
Online class | 1.353 (0.805–2.276) | 1.285 (0.769–2.147) | 1.287 (0.770–2.151) |
Total | 1.484 (1.092–2.015) | 1.482 (1.079–2.036) | 1.485 (1.080–2.042) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Sun, X.; Zhang, E.; Li, H.; Ge, X.; Hu, F.; Cai, Y.; Xiang, M. Association between Types of Screen Time and Weight Status during the COVID-19 Pandemic: A Longitudinal Study in Children and Adolescents. Nutrients 2023, 15, 2055. https://doi.org/10.3390/nu15092055
Liu Y, Sun X, Zhang E, Li H, Ge X, Hu F, Cai Y, Xiang M. Association between Types of Screen Time and Weight Status during the COVID-19 Pandemic: A Longitudinal Study in Children and Adolescents. Nutrients. 2023; 15(9):2055. https://doi.org/10.3390/nu15092055
Chicago/Turabian StyleLiu, Yujie, Xiaomin Sun, Erliang Zhang, Huilun Li, Xin Ge, Fan Hu, Yong Cai, and Mi Xiang. 2023. "Association between Types of Screen Time and Weight Status during the COVID-19 Pandemic: A Longitudinal Study in Children and Adolescents" Nutrients 15, no. 9: 2055. https://doi.org/10.3390/nu15092055
APA StyleLiu, Y., Sun, X., Zhang, E., Li, H., Ge, X., Hu, F., Cai, Y., & Xiang, M. (2023). Association between Types of Screen Time and Weight Status during the COVID-19 Pandemic: A Longitudinal Study in Children and Adolescents. Nutrients, 15(9), 2055. https://doi.org/10.3390/nu15092055