Precision or Personalized Nutrition: A Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Scientific Publications Search Strategy
2.2. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carrillo-Álvarez, E. Perspective: Food and Nutrition Insecurity in Europe: Challenges and Opportunities for Dietitians. Adv. Nutr. 2023, 14, 995–1004. [Google Scholar] [CrossRef] [PubMed]
- Varzakas, T.; Smaoui, S. Global Food Security and Sustainability Issues: The Road to 2030 from Nutrition and Sustainable Healthy Diets to Food Systems Change. Foods 2024, 13, 306. [Google Scholar] [CrossRef] [PubMed]
- General Assembly. Sustainable Development Goals. SDGs Transform Our World 2030.10.1186. 2015. Available online: https://www.refworld.org/legal/resolution/unga/2015/en/111816 (accessed on 13 July 2024).
- European Commission; Directorate-General for Research and Innovation. Food 2030 Pathways for Action: Research and Innovation Policy as a Driver for Sustainable, Healthy, and Inclusive Food Systems. 15 October 2020. Available online: https://research-and-innovation.ec.europa.eu/knowledge-publications-tools-and-data/publications/all-publications/food-2030-pathways-action-research-and-innovation-policy-driver-sustainable-healthy-and-inclusive_en (accessed on 13 July 2024).
- Lillford, P.; Hermansson, A.-M. Global Missions and the Critical Needs of Food Science and Technology. Trends Food Sci. Technol. 2021, 111, 800–811. [Google Scholar] [CrossRef]
- Torres, N.; Tovar, A.R. The Present and Future of Personalized Nutrition. RIC 2021, 73, 6896. [Google Scholar] [CrossRef]
- Ververis, E.; Ackerl, R.; Azzollini, D.; Colombo, P.A.; De Sesmaisons, A.; Dumas, C.; Fernandez-Dumont, A.; Ferreira Da Costa, L.; Germini, A.; Goumperis, T.; et al. Novel Foods in the European Union: Scientific Requirements and Challenges of the Risk Assessment Process by the European Food Safety Authority. Food Res. Int. 2020, 137, 109515. [Google Scholar] [CrossRef] [PubMed]
- Polak, R.; Finkelstein, A.; Budd, M.A.; Gray, B.E.; Robinson, H.; Silver, J.K.; Faries, M.D.; Tirosh, A. Expectations from a Home Cooking Program: Qualitative Analyses of Perceptions from Participants in “Action” and “Contemplation” Stages of Change, before Entering a Bi-Center Randomized Controlled Trial. Nutrients 2023, 15, 2082. [Google Scholar] [CrossRef]
- Livingstone, K.M.; Ramos-Lopez, O.; Pérusse, L.; Kato, H.; Ordovas, J.M.; Martínez, J.A. Precision Nutrition: A Review of Current Approaches and Future Endeavors. Trends Food Sci. Technol. 2022, 128, 253–264. [Google Scholar] [CrossRef]
- Galanakis, C.M. The Future of Food. Foods 2024, 13, 506. [Google Scholar] [CrossRef]
- Berry, S.E.; Valdes, A.M.; Drew, D.A.; Asnicar, F.; Mazidi, M.; Wolf, J.; Capdevila, J.; Hadjigeorgiou, G.; Davies, R.; Al Khatib, H.; et al. Human Postprandial Responses to Food and Potential for Precision Nutrition. Nat. Med. 2020, 26, 964–973. [Google Scholar] [CrossRef]
- Celis-Morales, C.; Livingstone, K.M.; Marsaux, C.F.M.; Macready, A.L.; Fallaize, R.; O’Donovan, C.B.; Woolhead, C.; Forster, H.; Walsh, M.C.; Navas-Carretero, S.; et al. Effect of Personalized Nutrition on Health-Related Behaviour Change: Evidence from the Food4me European Randomized Controlled Trial. Int. J. Epidemiol. 2017, 46, 578–588. [Google Scholar] [CrossRef]
- Ordovas, J.M.; Ferguson, L.R.; Tai, E.S.; Mathers, J.C. Personalised Nutrition and Health. BMJ 2018, 361, bmj.k2173. [Google Scholar] [CrossRef]
- Bush, C.L.; Blumberg, J.B.; El-Sohemy, A.; Minich, D.M.; Ordovás, J.M.; Reed, D.G.; Behm, V.A.Y. Toward the Definition of Personalized Nutrition: A Proposal by The American Nutrition Association. J. Am. Coll. Nutr. 2020, 39, 5–15. [Google Scholar] [CrossRef]
- Alabduljabbar, S.; Zaidan, S.A.; Lakshmanan, A.P.; Terranegra, A. Personalized Nutrition Approach in Pregnancy and Early Life to Tackle Childhood and Adult Non-Communicable Diseases. Life 2021, 11, 467. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, L.R.; De Caterina, R.; Görman, U.; Allayee, H.; Kohlmeier, M.; Prasad, C.; Choi, M.S.; Curi, R.; De Luis, D.A.; Gil, Á.; et al. Guide and Position of the International Society of Nutrigenetics/Nutrigenomics on Personalised Nutrition: Part 1—Fields of Precision Nutrition. Lifestyle Genom. 2016, 9, 12–27. [Google Scholar] [CrossRef]
- Wang, F.; Zheng, J.; Cheng, J.; Zou, H.; Li, M.; Deng, B.; Luo, R.; Wang, F.; Huang, D.; Li, G.; et al. Personalized Nutrition: A Review of Genotype-Based Nutritional Supplementation. Front. Nutr. 2022, 9, 992986. [Google Scholar] [CrossRef]
- Sonnenburg, J.L.; Bäckhed, F. Diet–Microbiota Interactions as Moderators of Human Metabolism. Nature 2016, 535, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Kussmann, M.; Raymond, F.; Affolter, M. OMICS-Driven Biomarker Discovery in Nutrition and Health. J. Biotechnol. 2006, 124, 758–787. [Google Scholar] [CrossRef] [PubMed]
- Mills, S.; Stanton, C.; Lane, J.; Smith, G.; Ross, R. Precision Nutrition and the Microbiome, Part I: Current State of the Science. Nutrients 2019, 11, 923. [Google Scholar] [CrossRef]
- Mohammadi-Shemirani, P.; Sood, T.; Paré, G. From ‘Omics to Multi-Omics Technologies: The Discovery of Novel Causal Mediators. Curr. Atheroscler. Rep. 2023, 25, 55–65. [Google Scholar] [CrossRef]
- Feng, J.; Liu, H.; Mai, S.; Su, J.; Sun, J.; Zhou, J.; Zhang, Y.; Wang, Y.; Wu, F.; Zheng, G.; et al. Protocol of a Parallel, Randomized Controlled Trial on the Effects of a Novel Personalized Nutrition Approach by Artificial Intelligence in Real World Scenario. BMC Public Health 2023, 23, 1700. [Google Scholar] [CrossRef]
- Walsh, M.; Kuhn, S. Developments in Personalised Nutrition. Nutr. Bull. 2012, 37, 380–383. [Google Scholar] [CrossRef]
- Hinojosa-Nogueira, D.; Ortiz-Viso, B.; Navajas-Porras, B.; Pérez-Burillo, S.; González-Vigil, V.; De La Cueva, S.P.; Rufián-Henares, J.Á. Stance4Health Nutritional APP: A Path to Personalized Smart Nutrition. Nutrients 2023, 15, 276. [Google Scholar] [CrossRef] [PubMed]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to Conduct a Bibliometric Analysis: An Overview and Guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Pranckutė, R. Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Pesti, G.M.; Miller, B.R. Modelling for Precision Nutrition. J. Appl. Poult. Res. 1997, 6, 483–494. [Google Scholar] [CrossRef]
- Brug, J.; Campbell, M.; Van Assema, P. The Application and Impact of Computer-Generated Personalized Nutrition Education: A Review of the Literature. Patient Educ. Couns. 1999, 36, 145–156. [Google Scholar] [CrossRef]
- Go, V.L.W.; Wong, D.A.; Wang, Y.; Wilkerson, L.; Butrum, R.R.; Norman, H.A. Diet and Cancer Prevention: Evidence-Based Medicine to Genomic Medicine. J. Nutr. 2004, 134, 3513S–3516S. [Google Scholar] [CrossRef]
- Görman, U. Ethical Issues Raised by Personalized Nutrition Based on Genetic Information. Genes. Nutr. 2006, 1, 13–22. [Google Scholar] [CrossRef]
- Ordovas, J.M. Nutrigenetics, Plasma Lipids, and Cardiovascular Risk. J. Am. Diet. Assoc. 2006, 106, 1074–1081. [Google Scholar] [CrossRef]
- Phillips, C.; Lopez-Miranda, J.; Perez-Jimenez, F.; McManus, R.; Roche, H.M. Genetic and Nutrient Determinants of the Metabolic Syndrome. Curr. Opin. Cardiol. 2006, 21, 185–193. [Google Scholar] [CrossRef]
- Roche, H.M. Nutrigenomics—New Approaches for Human Nutrition Research. J. Sci. Food Agric. 2006, 86, 1156–1163. [Google Scholar] [CrossRef]
- Berglund, E.C.; Kiialainen, A.; Syvänen, A.-C. Next-Generation Sequencing Technologies and Applications for Human Genetic History and Forensics. Investig. Genet. 2011, 2, 23. [Google Scholar] [CrossRef]
- Chandran, A. Overview of Next-Generation Sequencing Technologies and Its Application in Chemical Biology. In Advancing Development of Synthetic Gene Regulators; Springer Theses; Springer: Singapore, 2018; pp. 1–41. ISBN 978-981-10-6546-0. [Google Scholar]
- Celis-Morales, C.; Livingstone, K.M.; Marsaux, C.F.M.; Forster, H.; O’Donovan, C.B.; Woolhead, C.; Macready, A.L.; Fallaize, R.; Navas-Carretero, S.; San-Cristobal, R.; et al. Design and Baseline Characteristics of the Food4Me Study: A Web-Based Randomised Controlled Trial of Personalised Nutrition in Seven European Countries. Genes. Nutr. 2015, 10, 450. [Google Scholar] [CrossRef] [PubMed]
- Satam, H.; Joshi, K.; Mangrolia, U.; Waghoo, S.; Zaidi, G.; Rawool, S.; Thakare, R.P.; Banday, S.; Mishra, A.K.; Das, G.; et al. Next-Generation Sequencing Technology: Current Trends and Advancements. Biology 2023, 12, 997. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, K.M.; Celis-Morales, C.; Navas-Carretero, S.; San-Cristobal, R.; O’Donovan, C.B.; Forster, H.; Woolhead, C.; Marsaux, C.F.M.; Macready, A.L.; Fallaize, R.; et al. Profile of European Adults Interested in Internet-Based Personalised Nutrition: The Food4Me Study. Eur. J. Nutr. 2016, 55, 759–769. [Google Scholar] [CrossRef] [PubMed]
- Aldubayan, M.A.; Pigsborg, K.; Gormsen, S.M.O.; Serra, F.; Palou, M.; Galmés, S.; Palou-March, A.; Favari, C.; Wetzels, M.; Calleja, A.; et al. A Double-Blinded, Randomized, Parallel Intervention to Evaluate Biomarker-Based Nutrition Plans for Weight Loss: The PREVENTOMICS Study. Clin. Nutr. 2022, 41, 1834–1844. [Google Scholar] [CrossRef]
- Wilson-Barnes, S.; Gymnopoulos, L.P.; Dimitropoulos, K.; Solachidis, V.; Rouskas, K.; Russell, D.; Oikonomidis, Y.; Hadjidimitriou, S.; María Botana, J.; Brkic, B.; et al. PeRsOnalised nutriTion for hEalthy livINg: The PROTEIN Project. Nutr. Bull. 2021, 46, 77–87. [Google Scholar] [CrossRef]
- Dello Russo, M.; Russo, P.; Rufián-Henares, J.Á.; Hinojosa-Nogueira, D.; Pérez-Burillo, S.; De La Cueva, S.P.; Rohn, S.; Fatouros, A.; Douros, K.; González-Vigil, V.; et al. The Stance4Health Project: Evaluating a Smart Personalised Nutrition Service for Gut Microbiota Modulation in Normal- and Overweight Adults and Children with Obesity, Gluten-Related Disorders or Allergy/Intolerance to Cow’s Milk. Foods 2022, 11, 1480. [Google Scholar] [CrossRef]
- Aviv-Reuven, S.; Rosenfeld, A. Publication Patterns’ Changes Due to the COVID-19 Pandemic: A Longitudinal and Short-Term Scientometric Analysis. Scientometrics 2021, 126, 6761–6784. [Google Scholar] [CrossRef]
- Siebert, J.C.; Stanislawski, M.A.; Zaman, A.; Ostendorf, D.M.; Konigsberg, I.R.; Jambal, P.; Ir, D.; Bing, K.; Wayland, L.; Scorsone, J.J.; et al. Multiomic Predictors of Short-Term Weight Loss and Clinical Outcomes During a Behavioral-Based Weight Loss Intervention. Obesity 2021, 29, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, V.; Kolker, E. Precision Nutrition 4.0: A Big Data and Ethics Foresight Analysis—Convergence of Agrigenomics, Nutrigenomics, Nutriproteomics, and Nutrimetabolomics. OMICS A J. Integr. Biol. 2016, 20, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Lopez, O.; Milagro, F.I.; Allayee, H.; Chmurzynska, A.; Choi, M.S.; Curi, R.; De Caterina, R.; Ferguson, L.R.; Goni, L.; Kang, J.X.; et al. Guide for Current Nutrigenetic, Nutrigenomic, and Nutriepigenetic Approaches for Precision Nutrition Involving the Prevention and Management of Chronic Diseases Associated with Obesity. Lifestyle Genom. 2017, 10, 43–62. [Google Scholar] [CrossRef]
- Sawicki, C.; Haslam, D.; Bhupathiraju, S. Utilising the Precision Nutrition Toolkit in the Path towards Precision Medicine. Proc. Nutr. Soc. 2023, 82, 359–369. [Google Scholar] [CrossRef]
- Martínez-Garay, C.; Djouder, N. Dietary Interventions and Precision Nutrition in Cancer Therapy. Trends Mol. Med. 2023, 29, 489–511. [Google Scholar] [CrossRef] [PubMed]
- Iniesta-Chamorro, J.M.; Sereno-Moyano, M.; Garrido-Rubiales, B.; Moreno-Arribas, V.; De Molina, A.R.; Pérez, M.E.H.; Reglero, G.; Casado, E.; Gómez, E.J. The mHealth ALIBIRD Platform: Supporting Cancer Patient Treatment and Follow-Up. In Proceedings of the 2023 IEEE 36th International Symposium on Computer-Based Medical Systems (CBMS), L’Aquila, Italy, 22–24 June 2023; IEEE: L’Aquila, Italy, 2023; pp. 149–152. [Google Scholar]
- Wang, D.D.; Nguyen, L.H.; Li, Y.; Yan, Y.; Ma, W.; Rinott, E.; Ivey, K.L.; Shai, I.; Willett, W.C.; Hu, F.B.; et al. The Gut Microbiome Modulates the Protective Association between a Mediterranean Diet and Cardiometabolic Disease Risk. Nat. Med. 2021, 27, 333–343. [Google Scholar] [CrossRef]
- Bermingham, K.M.; Mazidi, M.; Franks, P.W.; Maher, T.; Valdes, A.M.; Linenberg, I.; Wolf, J.; Hadjigeorgiou, G.; Spector, T.D.; Menni, C.; et al. Characterisation of Fasting and Postprandial NMR Metabolites: Insights from the ZOE PREDICT 1 Study. Nutrients 2023, 15, 2638. [Google Scholar] [CrossRef]
- Taneja, A.; Nair, G.; Joshi, M.; Sharma, S.; Sharma, S.; Jambrak, A.R.; Roselló-Soto, E.; Barba, F.J.; Castagnini, J.M.; Leksawasdi, N.; et al. Artificial Intelligence: Implications for the Agri-Food Sector. Agronomy 2023, 13, 1397. [Google Scholar] [CrossRef]
- Ramos-Lopez, O.; Cuervo, M.; Goni, L.; Milagro, F.I.; Riezu-Boj, J.I.; Martinez, J.A. Modeling of an Integrative Prototype Based on Genetic, Phenotypic, and Environmental Information for Personalized Prescription of Energy-Restricted Diets in Overweight/Obese Subjects. Am. J. Clin. Nutr. 2020, 111, 459–470. [Google Scholar] [CrossRef]
- Brunkwall, L.; Orho-Melander, M. The Gut Microbiome as a Target for Prevention and Treatment of Hyperglycaemia in Type 2 Diabetes: From Current Human Evidence to Future Possibilities. Diabetologia 2017, 60, 943–951. [Google Scholar] [CrossRef]
- Zeevi, D.; Korem, T.; Zmora, N.; Israeli, D.; Rothschild, D.; Weinberger, A.; Ben-Yacov, O.; Lador, D.; Avnit-Sagi, T.; Lotan-Pompan, M.; et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell 2015, 163, 1079–1094. [Google Scholar] [CrossRef] [PubMed]
- Jardon, K.M.; Canfora, E.E.; Goossens, G.H.; Blaak, E.E. Dietary Macronutrients and the Gut Microbiome: A Precision Nutrition Approach to Improve Cardiometabolic Health. Gut 2022, 71, 1214–1226. [Google Scholar] [CrossRef] [PubMed]
- Greco, A.N. The Future of STM Journals. In The Strategic Marketing of Science, Technology, and Medical Journals; Springer International Publishing: Cham, Switzerland, 2023; pp. 127–151. ISBN 978-3-031-31963-1. [Google Scholar]
- Kaur, J.; Ferrara, E.; Menczer, F.; Flammini, A.; Radicchi, F. Quality versus Quantity in Scientific Impact. J. Informetr. 2015, 9, 800–808. [Google Scholar] [CrossRef]
- McNamara, D.; Wong, P.; Christen, P.; Ng, K.S. Predicting High Impact Academic Papers Using Citation Network Features. In Trends and Applications in Knowledge Discovery and Data Mining; Li, J., Cao, L., Wang, C., Tan, K.C., Liu, B., Pei, J., Tseng, V.S., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7867, pp. 14–25. ISBN 978-3-642-40318-7. [Google Scholar]
- Mendoza, M. Differences in Citation Patterns across Areas, Article Types and Age Groups of Researchers. Publications 2021, 9, 47. [Google Scholar] [CrossRef]
- Ramos-Lopez, O.; Riezu-Boj, J.I.; Milagro, F.I.; Goni, L.; Cuervo, M.; Martinez, J.A. Differential Lipid Metabolism Outcomes Associated with ADRB2 Gene Polymorphisms in Response to Two Dietary Interventions in Overweight/Obese Subjects. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Brouwer-Brolsma, E.M.; Brennan, L.; Drevon, C.A.; Van Kranen, H.; Manach, C.; Dragsted, L.O.; Roche, H.M.; Andres-Lacueva, C.; Bakker, S.J.L.; Bouwman, J.; et al. Combining Traditional Dietary Assessment Methods with Novel Metabolomics Techniques: Present Efforts by the Food Biomarker Alliance. Proc. Nutr. Soc. 2017, 76, 619–627. [Google Scholar] [CrossRef]
- Bashiardes, S.; Godneva, A.; Elinav, E.; Segal, E. Towards Utilization of the Human Genome and Microbiome for Personalized Nutrition. Curr. Opin. Biotechnol. 2018, 51, 57–63. [Google Scholar] [CrossRef]
- Zmora, N.; Elinav, E. Harnessing SmartPhones to Personalize Nutrition in a Time of Global Pandemic. Nutrients 2021, 13, 422. [Google Scholar] [CrossRef]
- Potter, T.; Vieira, R.; De Roos, B. Perspective: Application of N-of-1 Methods in Personalized Nutrition Research. Adv. Nutr. 2021, 12, 579–589. [Google Scholar] [CrossRef]
- Abeltino, A.; Riente, A.; Bianchetti, G.; Serantoni, C.; De Spirito, M.; Capezzone, S.; Esposito, R.; Maulucci, G. Digital Applications for Diet Monitoring, Planning, and Precision Nutrition for Citizens and Professionals: A State of the Art. Nutr. Rev. 2024, 79, nuae035. [Google Scholar] [CrossRef]
- Milani, G.P.; Silano, M.; Mazzocchi, A.; Bettocchi, S.; De Cosmi, V.; Agostoni, C. Personalized Nutrition Approach in Pediatrics: A Narrative Review. Pediatr. Res. 2021, 89, 384–388. [Google Scholar] [CrossRef]
- Liang, X.; Miao, Z.; Lu, S.; Ye, M.; Wang, J.; Zhao, H.; Xiao, C.; Shuai, M.; Gou, W.; Liang, Y.; et al. Integration of Multiomics with Precision Nutrition for Gestational Diabetes: Study Protocol for the Westlake Precision Birth Cohort. iMeta 2023, 2, e96. [Google Scholar] [CrossRef]
- Guest, N.S.; Horne, J.; Vanderhout, S.M.; El-Sohemy, A. Sport Nutrigenomics: Personalized Nutrition for Athletic Performance. Front. Nutr. 2019, 6, 8. [Google Scholar] [CrossRef]
- Mehta, N.H.; Huey, S.L.; Kuriyan, R.; Peña-Rosas, J.P.; Finkelstein, J.L.; Kashyap, S.; Mehta, S. Potential Mechanisms of Precision Nutrition-Based Interventions for Managing Obesity. Adv. Nutr. 2024, 15, 100186. [Google Scholar] [CrossRef]
- Antwi, J. Precision Nutrition to Improve Risk Factors of Obesity and Type 2 Diabetes. Curr. Nutr. Rep. 2023, 12, 679–694. [Google Scholar] [CrossRef] [PubMed]
- Palmnäs, M.; Brunius, C.; Shi, L.; Rostgaard-Hansen, A.; Torres, N.E.; González-Domínguez, R.; Zamora-Ros, R.; Ye, Y.L.; Halkjær, J.; Tjønneland, A.; et al. Perspective: Metabotyping—A Potential Personalized Nutrition Strategy for Precision Prevention of Cardiometabolic Disease. Adv. Nutr. 2020, 11, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Thompson, H.J.; Lutsiv, T.; McGinley, J.N.; Hussan, H.; Playdon, M.C. Dietary Oncopharmacognosy as a Crosswalk between Precision Oncology and Precision Nutrition. Nutrients 2023, 15, 2219. [Google Scholar] [CrossRef] [PubMed]
- Duarte-Silva, E.; Clarke, G.; Dinan, T.G.; Peixoto, C.A. Personalized Nutrition for Depression: Impact on the Unholy Trinity. Neuroimmunomodulation 2021, 28, 47–51. [Google Scholar] [CrossRef]
- Acharjee, A.; Choudhury, S.P. Artificial Intelligence-Based Personalized Nutrition and Prediction of Irritable Bowel Syndrome Patients. Ther. Adv. Gastroenterol. 2022, 15, 175628482211456. [Google Scholar] [CrossRef]
- Murakami, K.; Shinozaki, N.; Masayasu, S.; Livingstone, M.B.E. Web-Based Personalized Nutrition System for Delivering Dietary Feedback Based on Behavior Change Techniques: Development and Pilot Study among Dietitians. Nutrients 2021, 13, 3391. [Google Scholar] [CrossRef]
- Rollo, M.E.; Haslam, R.L.; Collins, C.E. Impact on Dietary Intake of Two Levels of Technology-Assisted Personalized Nutrition: A Randomized Trial. Nutrients 2020, 12, 3334. [Google Scholar] [CrossRef] [PubMed]
- Shyam, S.; Lee, K.X.; Tan, A.S.W.; Khoo, T.A.; Harikrishnan, S.; Lalani, S.A.; Ramadas, A. Effect of Personalized Nutrition on Dietary, Physical Activity, and Health Outcomes: A Systematic Review of Randomized Trials. Nutrients 2022, 14, 4104. [Google Scholar] [CrossRef] [PubMed]
- San-Cristobal, R.; Navas-Carretero, S.; Martínez-González, M.Á.; Ordovas, J.M.; Martínez, J.A. Contribution of Macronutrients to Obesity: Implications for Precision Nutrition. Nat. Rev. Endocrinol. 2020, 16, 305–320. [Google Scholar] [CrossRef] [PubMed]
- Picó, C.; Serra, F.; Rodríguez, A.M.; Keijer, J.; Palou, A. Biomarkers of Nutrition and Health: New Tools for New Approaches. Nutrients 2019, 11, 1092. [Google Scholar] [CrossRef]
- Brlek, P.; Bulić, L.; Bračić, M.; Projić, P.; Škaro, V.; Shah, N.; Shah, P.; Primorac, D. Implementing Whole Genome Sequencing (WGS) in Clinical Practice: Advantages, Challenges, and Future Perspectives. Cells 2024, 13, 504. [Google Scholar] [CrossRef]
- Jain, S.; Eadon, M.T. Spatial Transcriptomics in Health and Disease. Nat. Rev. Nephrol. 2024, 1–13. [Google Scholar] [CrossRef]
- McDonald, M.D.; Owusu-Ansah, C.; Ellenbogen, J.B.; Malone, Z.D.; Ricketts, M.P.; Frolking, S.E.; Ernakovich, J.G.; Ibba, M.; Bagby, S.C.; Weissman, J.L. What Is Microbial Dormancy? Trends Microbiol. 2024, 32, 142–150. [Google Scholar] [CrossRef]
- Pang, Z.; Lu, Y.; Zhou, G.; Hui, F.; Xu, L.; Viau, C.; Spigelman, A.F.; MacDonald, P.E.; Wishart, D.S.; Li, S.; et al. MetaboAnalyst 6.0: Towards a Unified Platform for Metabolomics Data Processing, Analysis and Interpretation. Nucleic Acids Res. 2024, 52, W398–W406. [Google Scholar] [CrossRef]
- Caratti, A.; Squara, S.; Bicchi, C.; Liberto, E.; Vincenti, M.; Reichenbach, S.E.; Tao, Q.; Geschwender, D.; Alladio, E.; Cordero, C. Boosting Comprehensive Two-Dimensional Chromatography with Artificial Intelligence: Application to Food-Omics. TrAC Trends Anal. Chem. 2024, 174, 117669. [Google Scholar] [CrossRef]
- Cuparencu, C.; Bulmuş-Tüccar, T.; Stanstrup, J.; La Barbera, G.; Roager, H.M.; Dragsted, L.O. Towards Nutrition with Precision: Unlocking Biomarkers as Dietary Assessment Tools. Nat. Metab. 2024, 1–16. [Google Scholar] [CrossRef]
- Wang, M.; Yang, Y.; Min, J.; Song, Y.; Tu, J.; Mukasa, D.; Ye, C.; Xu, C.; Heflin, N.; McCune, J.S.; et al. A Wearable Electrochemical Biosensor for the Monitoring of Metabolites and Nutrients. Nat. Biomed. Eng. 2022, 6, 1225–1235. [Google Scholar] [CrossRef] [PubMed]
- Bermingham, K.M.; Linenberg, I.; Polidori, L.; Asnicar, F.; Arrè, A.; Wolf, J.; Badri, F.; Bernard, H.; Capdevila, J.; Bulsiewicz, W.J.; et al. Effects of a Personalized Nutrition Program on Cardiometabolic Health: A Randomized Controlled Trial. Nat. Med. 2024, 30, 1888–1897. [Google Scholar] [CrossRef]
- Lee, B.Y.; Ordovás, J.M.; Parks, E.J.; Anderson, C.A.; Barabási, A.-L.; Clinton, S.K.; De La Haye, K.; Duffy, V.B.; Franks, P.W.; Ginexi, E.M.; et al. Research Gaps and Opportunities in Precision Nutrition: An NIH Workshop Report. Am. J. Clin. Nutr. 2022, 116, 1877–1900. [Google Scholar] [CrossRef] [PubMed]
- Ninkov, A.; Frank, J.R.; Maggio, L.A. Bibliometrics: Methods for Studying Academic Publishing. Perspect. Med. Educ. 2021, 11, 173–176. [Google Scholar] [CrossRef]
- Rajesh, S.; Varanavasiappan, S.; Ramesh, S.V. Nutrigenomics: Insights and Implications for Genome-Based Nutrition. In Conceptualizing Plant-Based Nutrition; Ramesh, S.V., Praveen, S., Eds.; Springer Nature Singapore: Singapore, 2022; pp. 207–230. ISBN 978-981-19458-9-2. [Google Scholar]
- Hart, K.H.; Wilson-Barnes, S.; Stefanidis, K.; Tsatsou, D.; Gymnopoulos, L.; Dimitropoulos, K.; Rouskas, K.; Argiriou, N.; Leoni, R.; Russell, D.; et al. The Suitability of Dietary Recommendations Suggested By Artificial Intelligence Technology via a Novel Personalised Nutrition Mobile Application. Proc. Nutr. Soc. 2022, 81, E37. [Google Scholar] [CrossRef]
- Mierziak, J.; Kostyn, K.; Boba, A.; Czemplik, M.; Kulma, A.; Wojtasik, W. Influence of the Bioactive Diet Components on the Gene Expression Regulation. Nutrients 2021, 13, 3673. [Google Scholar] [CrossRef] [PubMed]
- Escalante-Aburto, A.; Trujillo-de Santiago, G.; Álvarez, M.M.; Chuck-Hernández, C. Advances and Prospective Applications of 3D Food Printing for Health Improvement and Personalized Nutrition. Comp. Rev. Food Sci. Food Safe 2021, 20, 5722–5741. [Google Scholar] [CrossRef]
- Liu, F.; Li, M.; Wang, Q.; Yan, J.; Han, S.; Ma, C.; Ma, P.; Liu, X.; McClements, D.J. Future Foods: Alternative Proteins, Food Architecture, Sustainable Packaging, and Precision Nutrition. Crit. Rev. Food Sci. Nutr. 2023, 63, 6423–6444. [Google Scholar] [CrossRef]
- Balasubramanian, B.; Liu, W.; Pushparaj, K.; Park, S. The Epic of In Vitro Meat Production—A Fiction into Reality. Foods 2021, 10, 1395. [Google Scholar] [CrossRef]
- Mortazavi, B.J.; Gutierrez-Osuna, R. A Review of Digital Innovations for Diet Monitoring and Precision Nutrition. J. Diabetes Sci. Technol. 2023, 17, 217–223. [Google Scholar] [CrossRef]
- Galekop, M.M.J.; Del Bas, J.M.; Calder, P.C.; Uyl-De Groot, C.A.; Redekop, W.K. A Health Technology Assessment of Personalized Nutrition Interventions Using the EUnetHTA HTA Core Model. Int. J. Technol. Assess. Health Care 2024, 40, e15. [Google Scholar] [CrossRef]
- Rahmanti, A.R.; Yang, H.-C.; Bintoro, B.S.; Nursetyo, A.A.; Muhtar, M.S.; Syed-Abdul, S.; Li, Y.-C.J. SlimMe, a Chatbot With Artificial Empathy for Personal Weight Management: System Design and Finding. Front. Nutr. 2022, 9, 870775. [Google Scholar] [CrossRef] [PubMed]
- Adams, S.H.; Anthony, J.C.; Carvajal, R.; Chae, L.; Khoo, C.S.H.; Latulippe, M.E.; Matusheski, N.V.; McClung, H.L.; Rozga, M.; Schmid, C.H.; et al. Perspective: Guiding Principles for the Implementation of Personalized Nutrition Approaches That Benefit Health and Function. Adv. Nutr. 2020, 11, 25–34. [Google Scholar] [CrossRef]
- Ahlgren, J.; Nordgren, A.; Perrudin, M.; Ronteltap, A.; Savigny, J.; Van Trijp, H.; Nordström, K.; Görman, U. Consumers on the Internet: Ethical and Legal Aspects of Commercialization of Personalized Nutrition. Genes. Nutr. 2013, 8, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Nordström, K.; Goossens, J. Personalized Nutrition and Social Justice: Ethical Considerations Within Four Future Scenarios Applying the Perspective of Nussbaum’s Capabilities Approach. J. Agric. Env. Ethics 2016, 29, 5–22. [Google Scholar] [CrossRef]
- Agostoni, C.; Boccia, S.; Banni, S.; Mannucci, P.M.; Astrup, A. Sustainable and Personalized Nutrition: From Earth Health to Public Health. Eur. J. Intern. Med. 2021, 86, 12–16. [Google Scholar] [CrossRef]
- Poínhos, R.; Van Der Lans, I.A.; Rankin, A.; Fischer, A.R.H.; Bunting, B.; Kuznesof, S.; Stewart-Knox, B.; Frewer, L.J. Psychological Determinants of Consumer Acceptance of Personalised Nutrition in 9 European Countries. PLoS ONE 2014, 9, e110614. [Google Scholar] [CrossRef] [PubMed]
Web of Science Categories | % Count | Web of Science Categories | % Count |
---|---|---|---|
Nutrition Dietetics | 32.8 | Health Care Sciences Services | 1.5 |
Food Science Technology | 9.1 | Public Environmental Occupational Health | 1.4 |
Endocrinology Metabolism | 5.5 | Agriculture Dairy Animal Science | 1.4 |
Genetics Heredity | 4.9 | Biotechnology Applied Microbiology | 1.4 |
Biochemistry Molecular Biology | 4.3 | Pharmacology Pharmacy | 1.4 |
Medicine General Internal | 1.7 | Gastroenterology Hepatology | 1.3 |
Microbiology | 1.6 | Cell Biology | 1.3 |
Multidisciplinary Sciences | 1.6 | Others Categories | 29.1 |
By Number of Documents | By Number of Citations |
---|---|
Nutrients (n = 171) | Nutrients (n = 3131) |
Frontiers in Nutrition (n = 96) | Cell (n = 1538) |
Genes and Nutrition (n = 67) | Nature (n = 1393) |
Proceedings of the Nutrition Society (n = 60) | Circulation (n = 1155) |
Annals of Nutrition and Metabolism (n = 58) | Frontiers in Nutrition (n = 1126) |
American Journal of Clinical Nutrition (n = 38) | Gut (n = 1030) |
Advances in Nutrition (n = 36) | American Journal of Clinical Nutrition (n = 1012) |
Critical Reviews in Food Science and Nutrition (n = 26) | Genes and Nutrition (n = 981) |
Journal of Nutrition (n = 24) | Trends in Food Science and Technology (n = 980) |
Molecular Nutrition and Food Research (n = 22) | Journal of the Academy of Nutrition and Diet (n = 873) |
Nutrition Reviews (n = 21) | Advances in Nutrition (n = 866) |
International Journal of Molecular Sciences (n = 20) | Proceedings of the Nutrition Society (n = 769) |
Foods (n = 20) | Molecular Nutrition and Food Research (n = 689) |
BMJ Nutrition, Prevention and Health (n = 19) | Journal of Nutrigenetics and Nutrigenomics (n = 650) |
Trends in Food Science and Technology (n = 18) | PLoS ONE (n = 557) |
By Number of Documents | By Number of Citations |
---|---|
Brennan, Lorraine (n = 50) | Elinav, Eran (n = 2198) |
Alfredo Martinez, J. (n = 43) | Segal, Eran (n = 1769) |
Mathers, John C. (n = 42) | Mathers, John C. (n = 1687) |
Gibney, Eileen R. (n = 39) | Ordovas, Jose M. (n = 1670) |
Navas-Carretero, Santiago (n = 38) | Zmora, Niv (n = 1644) |
San-Cristobal, Rodrigo (n = 38) | Ben-Yacov, Orly (n = 1589) |
Ordovas, Jose M. (n = 37) | Lotan-Pompan, Maya (n = 1588) |
Daniel, Hannelore (n = 35) | Weinberger, Adina (n = 1588) |
Fallaize, Rosalind (n = 35) | Rein, Michal (n = 1587) |
Lovegrove, Julie A. (n = 35) | Brennan, Lorraine (n = 1484) |
Celis-Morales, Carlos (n = 33) | Navas-Carretero, Santiago (n = 1323) |
Livingstone, Katherine M. (n = 31) | Gibney, Eileen R. (n = 1295) |
Kang, Wenyi (n = 30) | San-Cristobal, Rodrigo (n = 1234) |
Walsh, Marianne C. (n = 29) | Alfredo Martinez, J. (n = 1222) |
Macready, Anna L. (n = 29) | Mozaffarian, Dariush (n = 1217) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hinojosa-Nogueira, D.; Subiri-Verdugo, A.; Díaz-Perdigones, C.M.; Rodríguez-Muñoz, A.; Vilches-Pérez, A.; Mela, V.; Tinahones, F.J.; Moreno-Indias, I. Precision or Personalized Nutrition: A Bibliometric Analysis. Nutrients 2024, 16, 2922. https://doi.org/10.3390/nu16172922
Hinojosa-Nogueira D, Subiri-Verdugo A, Díaz-Perdigones CM, Rodríguez-Muñoz A, Vilches-Pérez A, Mela V, Tinahones FJ, Moreno-Indias I. Precision or Personalized Nutrition: A Bibliometric Analysis. Nutrients. 2024; 16(17):2922. https://doi.org/10.3390/nu16172922
Chicago/Turabian StyleHinojosa-Nogueira, Daniel, Alba Subiri-Verdugo, Cristina Mª Díaz-Perdigones, Alba Rodríguez-Muñoz, Alberto Vilches-Pérez, Virginia Mela, Francisco J. Tinahones, and Isabel Moreno-Indias. 2024. "Precision or Personalized Nutrition: A Bibliometric Analysis" Nutrients 16, no. 17: 2922. https://doi.org/10.3390/nu16172922
APA StyleHinojosa-Nogueira, D., Subiri-Verdugo, A., Díaz-Perdigones, C. M., Rodríguez-Muñoz, A., Vilches-Pérez, A., Mela, V., Tinahones, F. J., & Moreno-Indias, I. (2024). Precision or Personalized Nutrition: A Bibliometric Analysis. Nutrients, 16(17), 2922. https://doi.org/10.3390/nu16172922