Dietary Phytic Acid, Dephytinization, and Phytase Supplementation Alter Trace Element Bioavailability—A Narrative Review of Human Interventions
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Phytase Interventions
3.2. Dietary Phytic Acid Interventions
3.3. Dephytinization Interventions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gupta, R.K.; Gangoliya, S.S.; Singh, N.K. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J. Food Sci. Technol. 2015, 52, 676–684. [Google Scholar] [CrossRef]
- Hadi Alkarawi, H.; Zotz, G. Phytic acid in green leaves. Plant Biol. 2014, 16, 697–701. [Google Scholar] [CrossRef] [PubMed]
- Brouns, F. Phytic Acid and Whole Grains for Health Controversy. Nutrients 2021, 14, 25. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Guo, S. Phytic acid and its interactions: Contributions to protein functionality, food processing, and safety. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2081–2105. [Google Scholar] [CrossRef]
- Rimbach, G.; Pallauf, J.; Moehring, J.; Kraemer, K.; Minihane, A.M. Effect of dietary phytate and microbial phytase on mineral and trace element bioavailability—A literature review. Curr. Top. Nutraceutical Res. 2008, 6, 131–144. [Google Scholar]
- Kumar, V.; Sinha, A.K.; Makkar, H.P.; Becker, K. Dietary roles of phytate and phytase in human nutrition: A review. Food Chem. 2010, 120, 945–959. [Google Scholar] [CrossRef]
- Ma, G.; Li, Y.; Jin, Y.; Zhai, F.; Kok, F.J.; Yang, X. Phytate intake and molar ratios of phytate to zinc, iron and calcium in the diets of people in China. Eur. J. Clin. Nutr. 2007, 61, 368–374. [Google Scholar] [CrossRef]
- Dewey, K.G. Increasing iron intake of children through complementary foods. Food Nutr. Bull. 2007, 28 (Suppl. S4), S595–S609. [Google Scholar] [CrossRef]
- Gibson, R.S.; Ferguson, E.L.; Lehrfeld, J. Complementary foods for infant feeding in developing countries: Their nutrient adequacy and improvement. Eur. J. Clin. Nutr. 1998, 52, 764–770. [Google Scholar] [CrossRef]
- Burgos, R.; Bretón, I.; Cereda, E.; Desport, J.C.; Dziewas, R.; Genton, L.; Gomes, F.; Jésus, P.; Leischker, A.; Muscaritoli, M.; et al. ESPEN guideline clinical nutrition in neurology. Clin. Nutr. 2018, 37, 354–396. [Google Scholar] [CrossRef]
- MacMaster, M.J.; Damianopoulou, S.; Thomson, C.; Talwar, D.; Stefanowicz, F.; Catchpole, A.; Gerasimidis, K.; Gaya, D.R. A prospective analysis of micronutrient status in quiescent inflammatory bowel disease. Clin. Nutr. 2021, 40, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Maulana, H.; Widyastuti, Y.; Herlina, N.; Hasbuna, A.; Al-Islahi, A.S.H.; Triratna, L.; Mayasari, N. Bioinformatics study of phytase from Aspergillus niger for use as feed additive in livestock feed. J. Genet. Eng. Biotechnol. 2023, 21, 142. [Google Scholar] [CrossRef]
- Herter-Aeberli, I.; Fischer, M.M.; Egli, I.M.; Zeder, C.; Zimmermann, M.B.; Hurrell, R.F. Addition of Whole Wheat Flour During Injera Fermentation Degrades Phytic Acid and Triples Iron Absorption from Fortified Tef in Young Women. J. Nutr. 2020, 150, 2666–2672. [Google Scholar] [CrossRef] [PubMed]
- Zyba, S.J.; Wegmüller, R.; Woodhouse, L.R.; Ceesay, K.; Prentice, A.M.; Brown, K.H.; Wessells, K.R. Effect of exogenous phytase added to small-quantity lipid-based nutrient supplements (SQ-LNS) on the fractional and total absorption of zinc from a millet-based porridge consumed with SQ-LNS in young Gambian children: A randomized controlled trial. Am. J. Clin. Nutr. 2019, 110, 1465–1475. [Google Scholar] [CrossRef] [PubMed]
- Monnard, A.; Moretti, D.; Zeder, C.; Steingötter, A.; Zimmermann, M.B. The effect of lipids, a lipid-rich ready-to-use therapeutic food, or a phytase on iron absorption from maize-based meals fortified with micronutrient powders. Am. J. Clin. Nutr. 2017, 105, 1521–1527. [Google Scholar] [CrossRef]
- Brnić, M.; Wegmüller, R.; Melse-Boonstra, A.; Stomph, T.; Zeder, C.; Tay, F.M.; Hurrell, R.F. Zinc Absorption by Adults Is Similar from Intrinsically Labeled Zinc-Biofortified Rice and from Rice Fortified with Labeled Zinc Sulfate. J. Nutr. 2016, 146, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Brnić, M.; Wegmüller, R.; Zeder, C.; Senti, G.; Hurrell, R.F. Influence of phytase, EDTA, and polyphenols on zinc absorption in adults from porridges fortified with zinc sulfate or zinc oxide. J. Nutr. 2014, 144, 1467–1473. [Google Scholar] [CrossRef]
- Cercamondi, C.I.; Egli, I.M.; Mitchikpe, E.; Tossou, F.; Hessou, J.; Zeder, C.; Hounhouigan, J.D.; Hurrell, R.F. Iron bioavailability from a lipid-based complementary food fortificant mixed with millet porridge can be optimized by adding phytase and ascorbic acid but not by using a mixture of ferrous sulfate and sodium iron EDTA. J. Nutr. 2013, 143, 1233–1239. [Google Scholar] [CrossRef]
- Troesch, B.; van Stuijvenberg, M.E.; Smuts, C.M.; Kruger, H.S.; Biebinger, R.; Hurrell, R.F.; Baumgartner, J.; Zimmermann, M.B. A micronutrient powder with low doses of highly absorbable iron and zinc reduces iron and zinc deficiency and improves weight-for-age Z-scores in South African children. J. Nutr. 2011, 141, 237–242. [Google Scholar] [CrossRef]
- Troesch, B.; Egli, I.; Zeder, C.; Hurrell, R.F.; de Pee, S.; Zimmermann, M.B. Optimization of a phytase-containing micronutrient powder with low amounts of highly bioavailable iron for in-home fortification of complementary foods. Am. J. Clin. Nutr. 2009, 89, 539–544. [Google Scholar] [CrossRef]
- Bach Kristensen, M.; Tetens, I.; Alstrup Jørgensen, A.B.; Dal Thomsen, A.; Milman, N.; Hels, O.; Sandström, B.; Hansen, M. A decrease in iron status in young healthy women after long-term daily consumption of the recommended intake of fibre-rich wheat bread. Eur. J. Nutr. 2005, 44, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Layrisse, M.; García-Casal, M.N.; Solano, L.; Barón, M.A.; Arguello, F.; Llovera, D.; Ramírez, J.; Leets, I.; Tropper, E. Iron bioavailability in humans from breakfasts enriched with iron bis-glycine chelate, phytates and polyphenols. J. Nutr. 2000, 130, 2195–2199. [Google Scholar] [CrossRef] [PubMed]
- Sandberg, A.S.; Hulthén, L.R.; Türk, M. Dietary Aspergillus niger phytase increases iron absorption in humans. J. Nutr. 1996, 126, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Adams, C.L.; Hambidge, M.; Raboy, V.; Dorsch, J.A.; Sian, L.; Westcott, J.L.; Krebs, N.F. Zinc absorption from a low-phytic acid maize. Am. J. Clin. Nutr. 2002, 76, 556–559. [Google Scholar] [CrossRef]
- Armah, S.M.; Boy, E.; Chen, D.; Candal, P.; Reddy, M.B. Regular Consumption of a High-Phytate Diet Reduces the Inhibitory Effect of Phytate on Nonheme-Iron Absorption in Women with Suboptimal Iron Stores. J. Nutr. 2015, 145, 1735–1739. [Google Scholar] [CrossRef]
- Bohn, T.; Davidsson, L.; Walczyk, T.; Hurrell, R.F. Phytic acid added to white-wheat bread inhibits fractional apparent magnesium absorption in humans. Am. J. Clin. Nutr. 2004, 79, 418–423. [Google Scholar] [CrossRef]
- Brune, M.; Rossander-Hultén, L.; Hallberg, L.; Gleerup, A.; Sandberg, A.S. Iron absorption from bread in humans: Inhibiting effects of cereal fiber, phytate and inositol phosphates with different numbers of phosphate groups. J. Nutr. 1992, 122, 442–449. [Google Scholar] [CrossRef]
- Brune, M.; Rossander, L.; Hallberg, L. Iron absorption: No intestinal adaptation to a high-phytate diet. Am. J. Clin. Nutr. 1989, 49, 542–545. [Google Scholar] [CrossRef]
- Delimont, N.M.; Nickel, S. Salivary cystatin SN is a factor predicting iron bioavailability after phytic acid rich meals in female participants. Int. J. Food Sci. Nutr. 2021, 72, 559–568. [Google Scholar] [CrossRef]
- Egli, I.; Davidsson, L.; Zeder, C.; Walczyk, T.; Hurrell, R. Dephytinization of a complementary food based on wheat and soy increases zinc, but not copper, apparent absorption in adults. J. Nutr. 2004, 134, 1077–1080. [Google Scholar] [CrossRef]
- Fredlund, K.; Isaksson, M.; Rossander-Hulthén, L.; Almgren, A.; Sandberg, A.S. Absorption of zinc and retention of calcium: Dose-dependent inhibition by phytate. J. Trace Elem. Med. Biol. 2006, 20, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Hambidge, K.M.; Miller, L.V.; Mazariegos, M.; Westcott, J.; Solomons, N.W.; Raboy, V.; Kemp, J.F.; Das, A.; Goco, N.; Hartwell, T.; et al. Upregulation of Zinc Absorption Matches Increases in Physiologic Requirements for Zinc in Women Consuming High- or Moderate-Phytate Diets during Late Pregnancy and Early Lactation. J. Nutr. 2017, 147, 1079–1085. [Google Scholar] [CrossRef] [PubMed]
- Hambidge, K.M.; Krebs, N.F.; Westcott, J.L.; Sian, L.; Miller, L.V.; Peterson, K.L.; Raboy, V. Absorption of calcium from tortilla meals prepared from low-phytate maize. Am. J. Clin. Nutr. 2005, 82, 84–87. [Google Scholar] [CrossRef]
- Heaney, R.P.; Weaver, C.M.; Fitzsimmons, M.L. Soybean phytate content: Effect on calcium absorption. Am. J. Clin. Nutr. 1991, 53, 745–747. [Google Scholar] [CrossRef]
- Hoppe, M.; Ross, A.B.; Svelander, C.; Sandberg, A.S.; Hulthén, L. Low-phytate wholegrain bread instead of high-phytate wholegrain bread in a total diet context did not improve iron status of healthy Swedish females: A 12-week, randomized, parallel-design intervention study. Eur. J. Nutr. 2019, 58, 853–864. [Google Scholar] [CrossRef] [PubMed]
- Hunt, J.R.; Beiseigel, J.M. Dietary calcium does not exacerbate phytate inhibition of zinc absorption by women from conventional diets. Am. J. Clin. Nutr. 2009, 89, 839–843. [Google Scholar] [CrossRef]
- Lind, T.; Lönnerdal, B.; Persson, L.A.; Stenlund, H.; Tennefors, C.; Hernell, O. Effects of weaning cereals with different phytate contents on hemoglobin, iron stores, and serum zinc: A randomized intervention in infants from 6 to 12 mo of age. Am. J. Clin. Nutr. 2003, 78, 168–175. [Google Scholar] [CrossRef]
- Mazariegos, M.; Hambidge, K.M.; Krebs, N.F.; Westcott, J.E.; Lei, S.; Grunwald, G.K.; Campos, R.; Barahona, B.; Raboy, V.; Solomons, N.W. Zinc absorption in Guatemalan schoolchildren fed normal or low-phytate maize. Am. J. Clin. Nutr. 2006, 83, 59–64. [Google Scholar] [CrossRef]
- Petry, N.; Rohner, F.; Gahutu, J.B.; Campion, B.; Boy, E.; Tugirimana, P.L.; Zimmerman, M.B.; Zwahlen, C.; Wirth, J.P.; Moretti, D. In Rwandese Women with Low Iron Status, Iron Absorption from Low-Phytic Acid Beans and Biofortified Beans Is Comparable, but Low-Phytic Acid Beans Cause Adverse Gastrointestinal Symptoms. J. Nutr. 2016, 146, 970–975. [Google Scholar] [CrossRef]
- Petry, N.; Egli, I.; Campion, B.; Nielsen, E.; Hurrell, R. Genetic reduction of phytate in common bean (Phaseolus vulgaris L.) seeds increases iron absorption in young women. J. Nutr. 2013, 143, 1219–1224. [Google Scholar] [CrossRef]
- Bokhari, F.; Derbyshire, E.; Li, W.; Brennan, C.S.; Stojceska, V. A study to establish whether food-based approaches can improve serum iron levels in child-bearing aged women. J. Hum. Nutr. Diet. 2012, 25, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Davidsson, L.; Ziegler, E.E.; Kastenmayer, P.; van Dael, P.; Barclay, D. Dephytinisation of soyabean protein isolate with low native phytic acid content has limited impact on mineral and trace element absorption in healthy infants. Br. J. Nutr. 2004, 91, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Davidsson, L.; Galan, P.; Cherouvrier, F.; Kastenmayer, P.; Juillerat, M.A.; Hercberg, S.; Hurrell, R.F. Bioavailability in infants of iron from infant cereals: Effect of dephytinization. Am. J. Clin. Nutr. 1997, 65, 916–920. [Google Scholar] [CrossRef] [PubMed]
- Davidsson, L.; Almgren, A.; Juillerat, M.A.; Hurrell, R.F. Manganese absorption in humans: The effect of phytic acid and ascorbic acid in soy formula. Am. J. Clin. Nutr. 1995, 62, 984–987. [Google Scholar] [CrossRef]
- Hurrell, R.F.; Reddy, M.B.; Juillerat, M.A.; Cook, J.D. Degradation of phytic acid in cereal porridges improves iron absorption by human subjects. Am. J. Clin. Nutr. 2003, 77, 1213–1219. [Google Scholar] [CrossRef]
- Koréissi-Dembélé, Y.; Fanou-Fogny, N.; Moretti, D.; Schuth, S.; Dossa, R.A.; Egli, I.; Zimmermann, M.B.; Brouwer, I.D. Dephytinisation with intrinsic wheat phytase and iron fortification significantly increase iron absorption from fonio (Digitaria exilis) meals in West African women. PLoS ONE 2013, 8, e70613. [Google Scholar] [CrossRef]
- Zhang, H.; Onning, G.; Oste, R.; Gramatkovski, E.; Hulthén, L. Improved iron bioavailability in an oat-based beverage: The combined effect of citric acid addition, dephytinization and iron supplementation. Eur. J. Nutr. 2007, 46, 95–102. [Google Scholar] [CrossRef]
- Manary, M.J.; Krebs, N.F.; Gibson, R.S.; Broadhead, R.L.; Hambidge, K.M. Community-based dietary phytate reduction and its effect on iron status in Malawian children. Ann. Trop. Paediatr. 2002, 22, 133–136. [Google Scholar] [CrossRef]
- Petry, N.; Egli, I.; Zeder, C.; Walczyk, T.; Hurrell, R. Polyphenols and phytic acid contribute to the low iron bioavailability from common beans in young women. J. Nutr. 2010, 140, 1977–1982. [Google Scholar] [CrossRef]
- Couzy, F.; Mansourian, R.; Labate, A.; Guinchard, S.; Montagne, D.H.; Dirren, H. Effect of dietary phytic acid on zinc absorption in the healthy elderly, as assessed by serum concentration curve tests. Br. J. Nutr. 1998, 80, 177–182. [Google Scholar] [CrossRef]
- Davidsson, L.; Galan, P.; Kastenmayer, P.; Cherouvrier, F.; Juillerat, M.A.; Hercberg, S.; Hurrell, R.F. Iron bioavailability studied in infants: The influence of phytic acid and ascorbic acid in infant formulas based on soy isolate. Pediatr. Res. 1994, 36, 816–822. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Paik, H.Y.; Joung, H.; Woodhouse, L.R.; Li, S.; King, J.C. Effect of dietary phytate on zinc homeostasis in young and elderly Korean women. J. Am. Coll. Nutr. 2007, 26, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Manary, M.J.; Hotz, C.; Krebs, N.F.; Gibson, R.S.; Westcott, J.E.; Arnold, T.; Broadhead, R.L.; Hambidge, K.M. Dietary phytate reduction improves zinc absorption in Malawian children recovering from tuberculosis but not in well children. J. Nutr. 2000, 130, 2959–2964. [Google Scholar] [CrossRef] [PubMed]
- Petry, N.; Egli, I.; Gahutu, J.B.; Tugirimana, P.L.; Boy, E.; Hurrell, R. Phytic acid concentration influences iron bioavailability from biofortified beans in Rwandese women with low iron status. J. Nutr. 2014, 144, 1681–1687. [Google Scholar] [CrossRef]
- Davies, N.T.; Warrington, S. The phytic acid mineral, trace element, protein and moisture content of UK Asian immigrant foods. Hum. Nutr. Appl. Nutr. 1986, 40, 49–59. [Google Scholar]
- Heath, A.L.; Roe, M.A.; Oyston, S.L.; Fairweather-Tait, S.J. Meal-based intake assessment tool: Relative validity when determining dietary intake of Fe and Zn and selected absorption modifiers in UK men. Br. J. Nutr. 2005, 93, 403–416. [Google Scholar] [CrossRef]
- Carnovale, E.; Lombardi-Boccia, G.; Lugaro, E. Phytate and zinc content of Italian diets. Hum. Nutr. Appl. Nutr. 1987, 41, 180–186. [Google Scholar]
- Khokhar, S.; Pushpanjali; Fenwick, G.R. Phytate content of Indian foods and intakes by vegetarian Indians of Hisar Region, Haryana State. J. Agric. Food Chem. 1994, 42, 2440–2444. [Google Scholar] [CrossRef]
- Pallauf, J.; Pippig, S.; Most, E.; Rimbach, G. Supplemental sodium phytate and microbial phytase influence iron availability in growing rats. J. Trace Elem. Med. Biol. 1999, 13, 134–140. [Google Scholar] [CrossRef]
- Stahl, C.H.; Han, Y.M.; Roneker, K.R.; House, W.A.; Lei, X.G. Phytase improves iron bioavailability for hemoglobin synthesis in young pigs. J. Anim. Sci. 1999, 77, 2135–2142. [Google Scholar] [CrossRef]
- Rimbach, G.; Walter, A.; Most, E.; Pallauf, J. Effect of supplementary microbial phytase to a maize-soya diet on the availability of calcium, phosphorus, magnesium and zinc: In vitro dialysability in comparison with apparent absorption in growing rats. J. Anim. Physiol. Anim. Nutr. 1997, 77, 198–206. [Google Scholar] [CrossRef]
- Rimbach, G.; Walter, A.; Most, E.; Pallauf, J. Effect of microbial phytase on zinc bioavailability and cadmium and lead accumulation in growing rats. Food Chem. Toxicol. 1998, 36, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.; Ku, P.; Miller, E.; Yokoyama, M. Supplementing corn-soybean meal diets with microbial phytase linearly improves phytate phosphorus utilization by weanling pigs. J. Anim. Sci. 1993, 71, 3359–3367. [Google Scholar] [CrossRef]
- Kies, A.K.; Gerrits, W.J.; Schrama, J.W.; Heetkamp, M.J.; van der Linden, K.L.; Zandstra, T.; Verstegen, M.W. Mineral absorption and excretion as affected by microbial phytase, and their effect on energy metabolism in young piglets. J. Nutr. 2005, 135, 1131–1138. [Google Scholar] [CrossRef]
- Rimbach, G.; Pallauf, J.; Brandt, K.; Most, E. Effect of phytic acid and microbial phytase on Cd accumulation, Zn status, and apparent absorption of Ca, P, Mg, Fe, Zn, Cu, and Mn in growing rats. Ann. Nutr. Metab. 1995, 39, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Shelton, J.; LeMieux, F.; Southern, L.; Bidner, T. Effect of microbial phytase addition with or without the trace mineral premix in nursery, growing, and finishing pig diets. J. Anim. Sci. 2005, 83, 376–385. [Google Scholar] [CrossRef]
- Sharma, J.; Devanathan, S.; Sengupta, A.; Rajeshwari, P. Assessing the prevalence of iron deficiency anemia and risk factors among children and women: A case study of rural Uttar Pradesh. Clin. Epidemiol. Glob. Health 2024, 26, 101545. [Google Scholar] [CrossRef]
- Troesch, B.; Jing, H.; Laillou, A.; Fowler, A. Absorption studies show that phytase from Aspergillus niger significantly increases iron and zinc bioavailability from phytate-rich foods. Food Nutr. Bull. 2013, 34 (Suppl. S1), S90–S101. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, O. Conclusions and recommendations of the WHO Consultation on prevention and control of iron deficiency in infants and young children in malaria-endemic areas. Food Nutr. Bull. 2007, 28, S621. [Google Scholar]
- Hanif, N.; Anwer, F. Chronic Iron Deficiency; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Prasad, A.S. Discovery of human zinc deficiency: Its impact on human health and disease. Adv. Nutr. 2013, 4, 176–190. [Google Scholar] [CrossRef]
- Lambré, C.; Barat Baviera, J.M.; Bolognesi, C.; Cocconcelli, P.S.; Crebelli, R.; Gott, D.M.; Grob, K.; Lampi, E.; Mengelers, M.; Mortensen, A.; et al. Safety evaluation of the food enzyme 3-phytase from the genetically modified Aspergillus niger strain NPH. EFSA J. 2024, 22, e8514. [Google Scholar] [PubMed]
- Choudhuri, S.; DiNovi, M.; dos Santos, L.; Leblanc, J.; Meyland, I.; Mueller, U. 3-Phytase from Aspergillus niger Expressed in Aspergillus niger First draft prepared by. Saf. Eval. Certain. Food Addit. 2012, 19. [Google Scholar]
Study | Phytase Type | Daily Dose (FTU) | Duration | Micronutrient | Population | Country | Bioavailability Effect |
---|---|---|---|---|---|---|---|
[13] | A. niger | 380 | 3 d | Fe | Ad, n = 17 | Switzerland | No effect |
[14] | A. niger | 1176 | 1 d | Zn | Ch, n = 26 | Gambia | Increase |
[15] | A. niger | 190 | 2 d | Fe | Ad, n = 41 | Switzerland | Increase |
[16] | A. niger | 20.5 | 1 d | Zn | Ch, n = 35 | Burkina Faso | Increase |
[17] | A. niger | 190 | 1 d | Zn | Ad, n = 60 | Switzerland | Increase |
[18] | A. niger | 400 | 1 d | Fe | Ch, n = 18 | Natitingou | Increase |
[19] | A. niger | 380 | 113 d | Fe, Zn | Ch, n = 189 | South Africa | Increase |
[20] | A. niger | 190 | 2 d | Fe | Ad, n = 101 | Switzerland | Increase |
[21] | A. niger | 7500 | 16 wk | Fe | Ad, n = 41 | Denmark | No effect |
[22] | Wheat | 304 | 1 d | Fe | Ad, n = 74 | Venezuela | Increase |
[23] | A. niger | 428 | 2 d | Fe | Ad, n = 20 | Sweden | Increase |
Study | Source of Phytic Acid | Duration | Micronutrient | Population | Country | Bioavailability Effect |
---|---|---|---|---|---|---|
[24] | Polenta maize | 2 d | Zn | Ad, n = 5 | USA | Decrease |
[25] | High or low phytic acid diet | 8 wk | Fe | Ad, n = 28 | USA | Increase |
[26] | Wheat bread, phytic acid-free | 2 d | Mn | Ad, n = 20 | Switzerland | Decrease |
[27] | Wheat rolls | 4 d | Fe | Ad, n = 49 | Sweden | Decrease |
[28] | Wheat rolls | 4 d | Fe | Ad, n = 13 | Sweden | No effect |
[29] | Phytic acid powder | 1 d | Fe | Ad, n = 30 | USA | Decrease |
[30] | Dry food | 1 d | Cu, Zn | Ad, n = 10 | Switzerland | Decrease |
[31] | White wheat rolls | 4 d | Ca, Zn | Ad, n = 40 | Sweden | Decrease |
[32] | High or low PA diet | n/m | Zn | Ad, n = 22 | Guatemala | Decrease |
[33] | Maize | 1 d | Ca | Ad, n = 5 | USA | Decrease |
[34] | Soybean | 3 d | Ca | Ad, n = 16 | USA | Decrease |
[35] | Wholegrain rye bread | 12 wk | Fe | Ad, n = 55 | Sweden | Decrease |
[36] | Different 1-day menus | 8 d | Zn | Ad, n = 10 | USA | Decrease |
[37] | Milk-based cereal and porridge | 6 mo | Fe, Zn | Ch, n = 267 | Sweden | No effect |
[38] | Maize | 10 wk | Zn | Ch, n = 60 | Guatemala | No effect |
[39] | Beans | 3 wk | Fe | Ad, n = 25 | Rwanda | Decrease |
[40] | Bean porridge | 2 d | Fe | Ad, n = 20 | Switzerland | Decrease |
Study | Phytase Type | Duration | Micronutrient | Population | Country | Bioavailability Effect |
---|---|---|---|---|---|---|
[41] | n/m | 1 d | Fe | Ad, n = 18 | UK | Increase |
[42] | A. niger | 1 d | Zn, Fe | Ch, n = 9 | USA | Increase |
[43] | A. niger | 2 d | Fe | Ch, n = 12 | France | No effect |
[44] | A. niger | 1 d | Mn | Ad, n = 16 | Switzerland | Increase |
[45] | A. niger | 2 d | Fe | Ad, n = 78 | Switzerland | Increase |
[46] | Wheat | 1 d | Fe | Ad, n = 42 | Benin | Increase |
[47] | A. niger | 2 d | Fe | Ad, n = 15 | Sweden | Increase |
[48] | n/m | 40 d | Zn, Fe | Ch, n = 10 | Malawi | Increase |
[49] | A. niger | 2 d | Fe | Ad, n = 97 | Singapore | Increase |
[50] | n/m | 2 d | Zn | Ad, n = 39 | Switzerland | Increase |
[51] | Finase S40 | 2 d | Fe | Ch, n = 10 | France | Increase |
[52] | A. niger | 9 d | Zn | Ad, n = 17 | Republic of Korea | No effect |
[53] | A. niger | 3–7 d | Zn | Ch, n = 23 | Malawi | Increase |
[54] | A. niger | 42 d | Fe | Ad, n = 22 | Rwanda | Increase |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chondrou, T.; Adamidi, N.; Lygouras, D.; Hirota, S.A.; Androutsos, O.; Svolos, V. Dietary Phytic Acid, Dephytinization, and Phytase Supplementation Alter Trace Element Bioavailability—A Narrative Review of Human Interventions. Nutrients 2024, 16, 4069. https://doi.org/10.3390/nu16234069
Chondrou T, Adamidi N, Lygouras D, Hirota SA, Androutsos O, Svolos V. Dietary Phytic Acid, Dephytinization, and Phytase Supplementation Alter Trace Element Bioavailability—A Narrative Review of Human Interventions. Nutrients. 2024; 16(23):4069. https://doi.org/10.3390/nu16234069
Chicago/Turabian StyleChondrou, Thiresia, Nikoleta Adamidi, Dimosthenis Lygouras, Simon A. Hirota, Odysseas Androutsos, and Vaios Svolos. 2024. "Dietary Phytic Acid, Dephytinization, and Phytase Supplementation Alter Trace Element Bioavailability—A Narrative Review of Human Interventions" Nutrients 16, no. 23: 4069. https://doi.org/10.3390/nu16234069
APA StyleChondrou, T., Adamidi, N., Lygouras, D., Hirota, S. A., Androutsos, O., & Svolos, V. (2024). Dietary Phytic Acid, Dephytinization, and Phytase Supplementation Alter Trace Element Bioavailability—A Narrative Review of Human Interventions. Nutrients, 16(23), 4069. https://doi.org/10.3390/nu16234069