Pilot Study of Growth Factors in Colostrum: How Delivery Mode and Maternal Health Impact IGF-1, EGF, NGF, and TGF-β Levels in Polish Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group Design and Sample Collection
2.2. Sample Preparation and Validation Parameters
2.3. Statistical Approach
3. Results
4. Discussion
4.1. Diabetes and Growth Factors in Colostrum
4.2. Hypothyroidism and Growth Factors in Colostrum
4.3. Delivery Method and Growth Factors in Colostrum
4.4. Time of Colostrum Sampling
5. Limitations of This Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Modzelewski, R.; Stefanowicz-Rutkowska, M.M.; Matuszewski, W.; Bandurska-Stankiewicz, E.M. Gestational Diabetes Mellitus—Recent Literature Review. J. Clin. Med. 2022, 11, 5736. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, C.M.; Zhang, Y.; Chen, Q.; Zhang, X.Q.; Li, X.F.; Shao, R.Y.; Gao, Y.M. Factors Associated with Gestational Diabetes Mellitus: A Meta-Analysis. J. Diabetes Res. 2021, 2021, 6692695. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.H.; Jang, H.C. Gestational Diabetes Mellitus: Diagnostic Approaches and Maternal-Offspring Complications. Diabetes Metab. J. 2022, 46, 3–14. [Google Scholar] [CrossRef]
- Lee, S.Y.; Pearce, E.N. Assessment and treatment of thyroid disorders in pregnancy and the postpartum period. Nat. Rev. Endocrinol. 2022, 18, 158–171. [Google Scholar] [CrossRef] [PubMed]
- Joshi, J.S.; Shanoo, A.; Patel, N.; Gupta, A. From Conception to Delivery: A Comprehensive Review of Thyroid Disorders and Their Far-Reaching Impact on Feto-Maternal Health. Cureus 2024, 16, e53362. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, J.; Sasahara, A.; Yoshida, T.; Sira, M.M.; Futatani, T.; Kanegane, H.; Miyawaki, T. Role of transforming growth factor-β in breast milk for initiation of IgA production in newborn infants. Early Hum. Dev. 2004, 77, 67–75. [Google Scholar] [CrossRef]
- Soliman, A.; Ahmad, S.; Alyafei, F.; Alaaraj, N.; Soliman, N. Maternal, placental, and fetal Insulin-Like Growth Factor-I (IGF-1) and IGF Binding proteins (IGFBPs) in Diabetic pregnancies: Effects on fetal growth and birth size. World J. Adv. Res. Rev. 2023, 17, 287–295. [Google Scholar] [CrossRef]
- Lygnos, M.C.; Pappa, K.I.; Papadaki, H.A.; Relakis, C.; Koumantakis, E.; Anagnou, N.P.; Eliopoulos, G.D. Changes in maternal plasma levels of VEGF, bFGF, TGF-beta1, ET-1 and sKL during uncomplicated pregnancy, hypertensive pregnancy and gestational diabetes. In Vivo 2006, 20, 157–163. [Google Scholar]
- Briana, D.D.; Papastavrou, M.; Boutsikou, M.; Marmarinos, A.; Gourgiotis, D.; Malamitsi-Puchner, A. Differential expression of cord blood neurotrophins in gestational diabetes: The impact of fetal growth abnormalities. J. Matern.-Fetal Neonatal. Med. 2018, 31, 278–283. [Google Scholar] [CrossRef]
- Peiker, G.; Glockner, R.; Michels, W.; Hauck, G.; Malsch, C.; Borner, A. Serum Concentrations of Iodine, Thyroxine (T4), Triiodothyronine (T3), Thyrotropin (TSH) and Insulin-like Growth Factor 1 (IGF-1) during the Last Trimester of Pregnancy, during Labour, and in Early Puerperium of Women with Normal Pregnancy or with in. J. Obstet. Gynaecol. 1997, 17, 340–343. [Google Scholar] [CrossRef]
- World Health Organization. Guideline: Protecting, Promoting and Supporting Breastfeeding in Facilities Providing Maternity and Newborn Services; World Health Organization: Geneva, Switzerland, 2017.
- Donald, K.; Petersen, C.; Turvey, S.E.; Finlay, B.B.; Azad, M.B. Secretory IgA: Linking Microbes, Maternal Health, and Infant Health through Human Milk. Cell Host Microbe 2022, 30, 650–659. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Chen, B.; Wu, H.; Gao, J.; Meng, X.; Chen, H. How Maternal Factors Shape the Immune System of Breastfed Infants to Alleviate Food Allergy: A Systematic and Updated Review. Immunology 2025, 174, 1–16. [Google Scholar] [CrossRef]
- Kim, Y.J. Immunomodulatory Effects of Human Colostrum and Milk. Pediatr. Gastroenterol. Hepatol. Nutr. 2021, 24, 337–345. [Google Scholar] [CrossRef]
- Kryczyk-Kozioł, J.; Moniak, P.; Zagrodzki, P.; Lauterbach, R.; Huras, H.; Staśkiewicz, M.; Krośniak, M.; Paśko, P.; Podsiadły, R.; Dobrowolska-Iwanek, J. The Assessment of Iodine Concentrations in Colostrum and Breast Milk Using ICP-MS: The Impact of Delivery Type, Thyroid Function and Gestational Diabetes-A Pilot Study. Foods 2024, 13, 2241. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, M.; Sieroszewski, P.; Oszukowski, P.; Huras, H.; Fuchs, T.; Pawłosek, A. Polish Society of Gynecologists and Obstetricians Recommendations on Supplementation in Pregnancy. Ginekol. Pol. 2020, 91, 644–653. [Google Scholar] [CrossRef]
- Mohsen, A.H.; Sallam, S.; Ramzy, M.M.; Hamed, E.K. Investigating the Relationship between Insulin-like Growth Factor-1 (IGF-1) in diabetic mother’s breast milk and the blood serum of their babies. Electron. Physician 2016, 8, 2546–2550. [Google Scholar] [CrossRef] [PubMed]
- Galante, L.; Lagstrom, H.; Vickers, M.H.; Reynolds, C.M.; Rautava, S.; Milan, A.M.; Cameron-Smith, D.; Pundir, S. Sexually dimorphic associations between maternal factors and human milk hormonal concentrations. Nutrients 2020, 12, 152. [Google Scholar] [CrossRef]
- Lis-Kuberka, J.; Berghausen-Mazur, M.; Orczyk-Pawiłowicz, M. Gestational diabetes mellitus and colostral appetite-regulating adipokines. Int. J. Mol. Sci. 2024, 25, 3853. [Google Scholar] [CrossRef]
- Chen, L.; Wang, J.; Jiang, P.; Ren, F.; Lei, X.; Guo, H. Alteration of the colostrum whey proteome in mothers with gestational hypothyroidism. PLoS ONE 2018, 13, e0205987. [Google Scholar] [CrossRef]
- Jin, D.; Yu, X.; Wang, Q.; Chen, X.; Xiao, M.; Wang, H.; Cui, Y.; Lu, W.; Ge, L.; Yao, Y.; et al. A Study of the Effect of Hypothyroidism during Pregnancy on Human Milk Quality Based on Rheological Properties. J. Dairy Sci. 2024, 107, 3400–3412. [Google Scholar] [CrossRef]
- Gámez-Valdez, J.S.; García-Mazcorro, J.F.; Montoya-Rincón, A.H.; Rodríguez-Reyes, D.L.; Jiménez-Blanco, G.; Rodríguez, M.T.A.; de Vaca, R.P.-C.; Alcorta-García, M.R.; Brunck, M.; Lara-Díaz, V.J.; et al. Differential Analysis of the Bacterial Community in Colostrum Samples from Women with Gestational Diabetes Mellitus and Obesity. Sci. Rep. 2021, 11, 24373. [Google Scholar] [CrossRef] [PubMed]
- Avellar, A.C.d.S.; Oliveira, M.N.; Caixeta, F.; Souza, R.C.V.e.; Teixeira, A.; Faria, A.M.C.; Silveira-Nunes, G.; Faria, E.S.; Maioli, T.U. Gestational Diabetes Mellitus Changes Human Colostrum Immune Composition. Front. Immunol. 2022, 13, 910807. [Google Scholar] [CrossRef]
- Kociszewska-Najman, B.; Sibanda, E.; Radomska-Leśniewska, D.M.; Taradaj, K.; Kociołek, P.; Ginda, T.; Gruszfeld, M.; Jankowska-Steifer, E.; Pietrzak, B.; Wielgoś, M.; et al. Does Caesarean Section or Preterm Delivery Influence TGF-Β2 Concentrations in Human Colostrum? Nutrients 2020, 12, 1095. [Google Scholar] [CrossRef] [PubMed]
- Pawlus, B.; Walczak, M.; Kordek, A.; Gizewska, M.; Czajka, R. Impact of delivery type on EGF and IGF-1 concentration in umbilical blood of newborns and their mothers’ milk. Ginekol. Pol. 2004, 75, 821–824. [Google Scholar] [PubMed]
- Castellote, C.; Casillas, R.; Ramírez-Santana, C.; Pérez-Cano, F.J.; Castell, M.; Moretones, M.G.; López-Sabater, M.C.; Franch, Í. Premature Delivery Influences the Immunological Composition of Colostrum and Transitional and Mature Human Milk. J. Nutr. 2011, 141, 1181–1187. [Google Scholar] [CrossRef]
- Dangat, K.; Kilari, A.; Mehendale, S.; Lalwani, S.; Joshi, S. Higher Levels of Brain Derived Neurotrophic Factor but Similar Nerve Growth Factor in Human Milk in Women with Preeclampsia. Int. J. Dev. Neurosci. 2013, 31, 209–213. [Google Scholar] [CrossRef]
- Moran, J.R.; Courtney, M.E.; Orth, D.N.; Vaughan, R.; Coy, S.; Mount, C.D.; Sherrell, B.J.; Greene, H.L. Epidermal Growth Factor in Human Milk: Daily Production and Diurnal Variation during Early Lactation in Mothers Delivering at Term and at Premature Gestation. J. Pediatr. 1983, 103, 402–405. [Google Scholar] [CrossRef]
- Kalliomäki, M.; Ouwehand, A.; Arvilommi, H.; Kero, P.; Isolauri, E. Transforming Growth Factor-β in Breast Milk: A Potential Regulator of Atopic Disease at an Early Age. J. Allergy Clin. Immunol. 1999, 104, 1251–1257. [Google Scholar] [CrossRef]
- Munblit, D.; Treneva, M.; Peroni, D.; Colicino, S.; Chow, L.; Dissanayeke, S.; Abrol, P.; Sheth, S.; Pampura, A.; Boner, A.; et al. Colostrum and Mature Human Milk of Women from London, Moscow, and Verona: Determinants of Immune Composition. Nutrients 2016, 8, 695. [Google Scholar] [CrossRef]
- Munblit, D.; Abrol, P.; Sheth, S.; Chow, L.; Khaleva, E.; Asmanov, A.; Lauriola, S.; Padovani, E.; Comberiati, P.; Boner, A.; et al. Levels of Growth Factors and IgA in the Colostrum of Women from Burundi and Italy. Nutrients 2018, 10, 1216. [Google Scholar] [CrossRef]
- Hirata, N.; Kiuchi, M.; Pak, K.; Fukuda, R.; Mochimaru, N.; Mitsui, M.; Yoshida, K. Association between Maternal Characteristics and Immune Factors TGF-Β1, TGF-Β2, and IgA in Colostrum: An Exploratory Study in Japan. Nutrients 2022, 14, 3255. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.-D.; Luo, X.; Huang, D.-L.; Xu, C.-Z. Dynamic changes of enzymes activities and growth factors contents in human colostrum. Zhonghua Fu Chan Ke Za Zhi 2004, 39, 449–452. [Google Scholar] [PubMed]
- Lu, M.; Jiang, J.; Wu, K.; Li, D. Epidermal Growth Factor and Transforming Growth Factor-α in Human Milk of Different Lactation Stages and Different Regions and Their Relationship with Maternal Diet. Food Funct. 2018, 9, 1199–1204. [Google Scholar] [CrossRef] [PubMed]
- Nojiri, T.; Yoshizato, T.; Fukami, T.; Obama, H.; Yagi, H.; Yotsumoto, F.; Miyamoto, S. Clinical Significance of Amphiregulin and Epidermal Growth Factor in Colostrum. Arch. Gynecol. Obstet. 2012, 286, 643–647. [Google Scholar] [CrossRef]
- Sinkiewicz-Darol, E.; Łubiech, K.; Adamczyk, I. Influence of Lactation Stage on Content of Neurotrophic Factors, Leptin, and Insulin in Human Milk. Molecules 2024, 29, 4973. [Google Scholar] [CrossRef]
- Dangat, K.; Kilari, A.; Mehendale, S.; Lalwani, S.; Joshi, S. Preeclampsia Alters Milk Neurotrophins and Long Chain Polyunsaturated Fatty Acids. Int. J. Dev. Neurosci. 2014, 33, 115–121. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Female, aged >18 years Physiological pregnancy Term delivery (≥37 weeks of gestation) Singleton pregnancy No fetal genetic disorders Declaration of breastfeeding for at least 3 months Provided informed consent | Use of elimination diet for medical reasons (e.g., phenylketonuria) Use of elimination diet for personal reasons (e.g., veganism, vegetarianism) Cancer diagnosis Urinary or genital tract infection within the past 2 months Multiple pregnancy Use of assisted reproductive technology Active smoker Non-compliance with study protocol Lack of informed consent |
Parameter | Sensitivity | Calibration Curve Range | Intra-Assay CV * [%] | Inter-Assay CV * [%] |
---|---|---|---|---|
IGF-1 | 0.058 ng/mL | 1.5–24 ng/mL | 2.23 | 3.01 |
EGF | 0.28 ng/L | 3.25–120 ng/L | 3.58 | 4.51 |
NGF | 3.48 pg/mL | 8–800 pg/mL | 2.99 | 4.31 |
TGF-β | 2.51 pg/mL | 32.5–600 pg/mL | 4.56 | 5.17 |
Parameter ^ | Mean ± SD # | Median (Min.–Max.) | LQ–UQ |
---|---|---|---|
IGF-1 a (n = 19) | 3.46 ± 0.93 | 3.55 (2.00–5.10) | 2.65–4.35 |
IGF-1 b (n = 17) | 3.52 ± 1.13 | 3.15 (1.85–6.10) | 2.65–4.15 |
EGF a (n = 21) | 13.68 ± 5.34 | 12.55 (5.20–23.30) | 10.25–17.65 |
EGF b (n = 18) | 14.30 ± 5.74 | 13.95 (5.65–24.60) | 10.20–16.10 |
NGF a (n = 20) | 75.2 ± 41.0 | 67.0 (10.2–153.3) | 50.0–111.0 |
NGF b (n = 18) | 78.9 ± 37.9 | 68.1 (28.2–148.2) | 52.6–95.8 |
TGF-β a (n = 20) | 149.9 ± 52.4 | 141.2 (54.8–233.0) | 115.8–182.1 |
TGF-β b (n = 18) | 158.0 ± 62.1 | 150.8 (62.6–283.4) | 117.3–193.3 |
Parameter ^ | Mean ± SD # | Median (Min.–Max.) | LQ–UQ |
---|---|---|---|
IGF-1 a (n = 21) | 3.41 ± 1.01 | 3.50 (1.85–5.35) | 2.50–4.15 |
IGF-1 b (n = 15) | 3.61 ± 1.05 | 3.40 (2.00–6.10) | 3.00–4.35 |
EGF a (n = 22) | 13.86 ± 6.01 | 13.03 (5.40–24.60) | 9.45–17.25 |
EGF b (n = 17) | 14.11 ± 4.84 | 12.55 (5.20–24.45) | 11.85–15.95 |
NGF a (n = 21) | 76.3 ± 42.7 | 61.1 (10.2–148.2) | 45.6–101.0 |
NGF b (n = 17) | 77.8 ± 35.3 | 69.3 (24.0–153.3) | 54.5–93.5 |
TGF-β a (n = 21) | 148.8 ± 61.2 | 133.5 (54.8–261.2) | 94.7–193.3 |
TGF-β b (n = 17) | 159.9 ± 51.4 | 148.7 (67.7–283.4) | 131.3–180.1 |
Parameter ^ | Mean ± SD # | Median (Min.–Max.) | LQ–UQ |
---|---|---|---|
IGF-1 a (n = 19) | 3.67 ± 0.99 | 3.40 (2.15–6.10) | 3.10–4.55 |
IGF-1 b (n = 17) | 3.29 ± 1.03 | 3.50 (1.85–5.35) | 2.45–4.15 |
EGF a (n = 20) | 15.07 ± 5.44 | 12.55 (5.40–24.60) | 11.70–19.18 |
EGF b (n = 19) | 12.81 ± 5.38 | 12.85 (5.20–24.15) | 7.60–17.00 |
NGF a (n = 20) | 84.0 ± 38.8 | 69.6 (21.9–153.3) | 56.3–110.9 |
NGF b (n = 18) | 69.1 ± 38.9 | 58.7 (10.2–146.1) | 36.3–101.0 |
TGF-β a (n = 20) | 159.7 ± 57.4 | 150.8 (54.8–283.4) | 128.0–190.9 |
TGF-β b (n = 18) | 147.1 ± 56.5 | 143.6 (67.7–261.2) | 94.7–192.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paśko, P.; Kryczyk-Kozioł, J.; Zagrodzki, P.; Prochownik, E.; Ziomek, M.; Lauterbach, R.; Huras, H.; Staśkiewicz, M.; Dobrowolska-Iwanek, J. Pilot Study of Growth Factors in Colostrum: How Delivery Mode and Maternal Health Impact IGF-1, EGF, NGF, and TGF-β Levels in Polish Women. Nutrients 2025, 17, 1386. https://doi.org/10.3390/nu17081386
Paśko P, Kryczyk-Kozioł J, Zagrodzki P, Prochownik E, Ziomek M, Lauterbach R, Huras H, Staśkiewicz M, Dobrowolska-Iwanek J. Pilot Study of Growth Factors in Colostrum: How Delivery Mode and Maternal Health Impact IGF-1, EGF, NGF, and TGF-β Levels in Polish Women. Nutrients. 2025; 17(8):1386. https://doi.org/10.3390/nu17081386
Chicago/Turabian StylePaśko, Paweł, Jadwiga Kryczyk-Kozioł, Paweł Zagrodzki, Ewelina Prochownik, Martyna Ziomek, Ryszard Lauterbach, Hubert Huras, Magdalena Staśkiewicz, and Justyna Dobrowolska-Iwanek. 2025. "Pilot Study of Growth Factors in Colostrum: How Delivery Mode and Maternal Health Impact IGF-1, EGF, NGF, and TGF-β Levels in Polish Women" Nutrients 17, no. 8: 1386. https://doi.org/10.3390/nu17081386
APA StylePaśko, P., Kryczyk-Kozioł, J., Zagrodzki, P., Prochownik, E., Ziomek, M., Lauterbach, R., Huras, H., Staśkiewicz, M., & Dobrowolska-Iwanek, J. (2025). Pilot Study of Growth Factors in Colostrum: How Delivery Mode and Maternal Health Impact IGF-1, EGF, NGF, and TGF-β Levels in Polish Women. Nutrients, 17(8), 1386. https://doi.org/10.3390/nu17081386