Predicting Weight Loss Success After Gastric Sleeve Surgery: A Machine Learning-Based Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Description
2.2. Variables
- 1 (Success): Patients who achieved a body weight loss greater than 30%.
- 0 (No success): Patients who did not reach this threshold.
2.3. Data Preprocessing
2.4. Machine Learning Algorithms, Cross-Validation, and Model Evaluation
- Random Forest (RF): A supervised learning algorithm that combines multiple decision trees to produce a single prediction. It is efficient in analyzing complex, high-dimensional data, offers fast learning, and helps reduce overfitting [16].
- Support Vector Machine (SVM): This algorithm finds a hyperplane that separates classes in a high-dimensional space. It can be linear or nonlinear, depending on the selected kernel parameter [17].
- Multilayer Perceptron (MLP): A type of artificial neural network composed of multiple layers of neurons arranged sequentially. It includes an input layer, one or more hidden layers, and an output layer, all fully connected. During training, it adjusts connection weights using backpropagation to minimize errors [18].
- Extreme Gradient Boosting (XGBoost): An ensemble algorithm that applies the boosting techniques to enhance the performance of decision tree-based models. It focuses on minimizing errors through gradient reduction [19].
- Decision Tree (DT): A machine learning algorithm that splits data into branches based on feature-based rules. It allows for an intuitive visualization of the decision-making process [20].
- Logistic Regression (LR): A regression method used to predict the probability of a binary dependent variable. It applies a sigmoid function to transform the output into probabilities between 0 and 1 [21].
3. Results
3.1. Dataset
3.2. Predictor Variables and Class Balancing
3.3. Model Evaluation
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMI | Body Mass Index |
ML | Machine Learning |
AI | Artificial Intelligence |
RF | Random Forest |
SVM | Support Vector Machine |
MLP | Multilayer Perceptron |
XGBoost | Extreme Gradient Boosting |
DT | Decision Tree |
LR | Logistic Regression |
CNN | Convolutional Neural Network |
RNN_LSTM | Recurrent Neural Network with Long Short-Term Memory |
WAD | Wide and Deep Learning |
SMOTE | Synthetic Minority Over-sampling Technique |
ROC-AUC | Receiver Operating Characteristic Area Under Curve |
References
- Nopour, R. Comparison of machine learning models to predict complications of bariatric surgery: A systematic review. Health Inform. J. 2024, 30, 14604582241285794. [Google Scholar] [CrossRef]
- Nadal, E.; Benito, E.; Ródenas-Navarro, A.M.; Palanca, A.; Martinez-Hervas, S.; Civera, M.; Ortega, J.; Alabadi, B.; Piqueras, L.; Ródenas, J.J.; et al. Machine Learning Model in Obesity to Predict Weight Loss One Year after Bariatric Surgery: A Pilot Study. Biomedicines 2024, 12, 1175. [Google Scholar] [CrossRef]
- Saux, P.; Bauvin, P.; Raverdy, V.; Teigny, J.; Verkindt, H.; Soumphonphakdy, T.; Debert, M.; Jacobs, A.; Jacobs, D.; Monpellier, V.; et al. Development and validation of an interpretable machine learning-based calculator for predicting 5-year weight trajectories after bariatric surgery: A multinational retrospective cohort SOPHIA study. Lancet Digit. Health 2023, 5, e692–e702. [Google Scholar] [CrossRef] [PubMed]
- Bektaş, M.; Reiber, B.M.M.; Pereira, J.C.; Burchell, G.L.; van der Peet, D.L. Artificial Intelligence in Bariatric Surgery: Current Status and Future Perspectives. Obes. Surg. 2022, 32, 2772–2783. [Google Scholar] [CrossRef] [PubMed]
- Benítez-Andrades, J.A.; Prada-García, C.; García-Fernández, R.; Ballesteros-Pomar, M.D.; González-Alonso, M.I.; Serrano-García, A. Application of machine learning algorithms in classifying postoperative success in metabolic bariatric surgery: Acomprehensive study. Digit. Health 2024, 10, 20552076241239274. [Google Scholar] [CrossRef]
- Cao, Y.; Näslund, I.; Näslund, E.; Ottosson, J.; Montgomery, S.; Stenberg, E. Using a Convolutional Neural Network to Predict Remission of Diabetes After Gastric Bypass Surgery: Machine Learning Study From the Scandinavian Obesity Surgery Register. JMIR Med. Inform. 2021, 9, e25612. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Raoof, M.; Szabo, E.; Ottosson, J.; Näslund, I. Using Bayesian Networks to Predict Long-Term Health-Related Quality of Life and Comorbidity after Bariatric Surgery: A Study Based on the Scandinavian Obesity Surgery Registry. J. Clin. Med. 2020, 9, 1895. [Google Scholar] [CrossRef]
- Vannucci, M.; Niyishaka, P.; Collins, T.; Rodríguez-Luna, M.R.; Mascagni, P.; Hostettler, A.; Marescaux, J.; Perretta, S. Machine learning models to predict success of endoscopic sleeve gastroplasty using total and excess weight loss percent achievement: A multicentre study. Surg. Endosc. 2024, 38, 229–239. [Google Scholar] [CrossRef]
- Park, J.; Park, S.; Lee, K.S.; Kwon, Y. Predictive and Explainable Artificial Intelligence for Weight Loss After Sleeve Gastrectomy: Insights from Wide and Deep Learning with Medical Image and Non-Image Data. Appl. Sci. 2025, 15, 2457. [Google Scholar] [CrossRef]
- Ochs, V.; Tobler, A.; Wolleb, J.; Bieder, F.; Saad, B.; Enodien, B.; Fischer, L.E.; Honaker, M.D.; Drews, S.; Rosenblum, I.; et al. Development of predictive model for predicting postoperative BMI and optimize bariatric surgery: A single center pilot study. Surg Obes Relat Dis. 2024, 20, 1234–1243. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. arXiv 2017, arXiv:1706.03762. [Google Scholar]
- Marchitelli, S.; Mazza, C.; Ricci, E.; Faia, V.; Biondi, S.; Colasanti, M.; Cardinale, A.; Roma, P.; Tambelli, R. Identification of Psychological Treatment Dropout Predictors Using Machine Learning Models on Italian Patients Living with Overweight and Obesity Ineligible for Bariatric Surgery. Nutrients 2024, 16, 2605. [Google Scholar] [CrossRef]
- Potdar, K.; Pardawala, T.S.; Pai, C.D. A Comparative Study of Categorical Variable Encoding Techniques for Neural Network Classifiers. Int. J. Comput. Appl. 2017, 175, 7–9. [Google Scholar] [CrossRef]
- Yazici, B.; Yolacan, S. A comparison of various tests of normality. J. Stat. Comput. Simul. 2007, 77, 175–183. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Random Forests, 1–122. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Marius-Constantin, P.; Balas, V.E.; Perescu-Popescu, L.; Mastorakis, N. Multilayer perceptron and neural networks. WSEAS Trans. Circuits Syst. 2009, 8, 579–588. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef]
- Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Enodien, B.; Taha-Mehlitz, S.; Saad, B.; Nasser, M.; Frey, D.M.; Taha, A. The development of machine learning in bariatric surgery. Front Surg. 2023, 10, 1102711. [Google Scholar] [CrossRef]
- Palmer, B.F. Managing Hyperkalemia Caused by Inhibitors of the Renin–Angiotensin–Aldosterone System. N. Engl. J. Med. 2004, 351, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Krupenko, N.I.; Sharma, J.; Pediaditakis, P.; Helke, K.L.; Hall, M.S.; Du, X.; Sumner, S.; Krupenko, S.A. Aldh1l2 knockout mouse metabolomics links the loss of the mitochondrial folate enzyme to deregulation of a lipid metabolism observed in rare human disorder. Hum. Genom. 2020, 14, 41. [Google Scholar] [CrossRef] [PubMed]
- Pantsari, M.W.; Harrison, S.A. Nonalcoholic Fatty Liver Disease Presenting With an Isolated Elevated Alkaline Phosphatase. J. Clin. Gastroenterol. 2006, 40, 633–635. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; Smith, B.; Dahle, J.; Kennedy, S.; Fearnbach, N.; Thomas, D.M.; Bosy-Westphal, A.; Müller, M.J. Resting Energy Expenditure: From Cellular to Whole-Body Level, a Mechanistic Historical Perspective. Obesity 2021, 29, 500–511. [Google Scholar] [CrossRef]
- Wlazlo, N.I.C.K.; van Greevenbroek, M.M.; Ferreira, I.S.A.B.E.L.; Jansen, E.H.J.M.; Feskens, E.J.; van der Kallen, C.J.; Schalkwijk, C.G.; Bravenboer, B.E.R.T.; Stehouwer, C.D. Iron Metabolism Is Associated With Adipocyte Insulin Resistance and Plasma Adiponectin. Diabetes Care 2013, 36, 309–315. [Google Scholar] [CrossRef]
- Despres, J.P. Treatment of obesity: Need to focus on high risk abdominally obese patients. BMJ 2001, 322, 716–720. [Google Scholar] [CrossRef] [PubMed]
- Blackstone, R.; Bunt, J.C.; Cortés, M.C.; Sugerman, H.J. Type 2 diabetes after gastric bypass: Remission in five models using HbA1c, fasting blood glucose, and medication status. Surg. Obes. Relat. Dis. 2012, 8, 548–555. [Google Scholar] [CrossRef]
- Ivezaj, V.; Barnes, R.D.; Grilo, C.M. Validity and Clinical Utility of Subtyping by the Beck Depression Inventory in Women Seeking Gastric Bypass Surgery. Obes. Surg. 2016, 26, 2068–2073. [Google Scholar] [CrossRef]
Category | Variables |
Clinical and epidemiological |
|
Biochemical |
|
Anthropometric |
|
Treatment-related and postoperative complications |
|
Psychological and quality of life |
|
Variable | Success (n = 31) | Non-Success (n = 63) | p-Value |
---|---|---|---|
Age (years) | 45.4 ± 8.0 | 45.8 ± 9.8 | 0.729 |
Height (cm) | 166.2 ± 11.9 | 164.2 ± 10.2 | 0.357 |
Body mass index (BMI, kg/m2) | 49.3 ± 6.4 | 46.4 ± 5.8 | 0.033 |
Body weight (kg) | 137.0 ± 27.2 | 125.3 ± 22.0 | 0.043 |
Waist circumference (cm) | 133.2 ± 12.5 | 129.7 ± 13.8 | 0.292 |
Blood glucose (mg/dL) | 101.3 ± 11.6 | 115.3 ± 53.5 | 0.502 |
Glycated hemoglobin (HbA1C) | 5.8 ± 0.4 | 6.1 ± 1.6 | 0.744 |
Homeostasis model assessment (HOMA) | 7.1 ± 3.4 | 7.1 ± 4.0 | 0.464 |
Total cholesterol (TC) (mg/dL) | 189.3 ± 30.0 | 185.9 ± 37.8 | 0.647 |
Triglycerides (Tg) (mg/dL) | 125.0 ± 46.3 | 157.3 ± 74.8 | 0.012 |
Low-density lipoproteins (LDL) (mg/dL) | 116.0 ± 27.3 | 110.5 ± 34.5 | 0.236 |
High-density lipoproteins (HDL) (mg/dL) | 48.3 ± 11.3 | 46.5 ± 10.9 | 0.688 |
Bulimia test total score (points) | 9.8 ± 5.6 | 9.7 ± 4.4 | 0.831 |
Beck depression inventory (points) | 13.9 ± 8.7 | 11.1 ± 6.6 | 0.194 |
SF-36 test mean score (points) | 47.9 ± 23.0 | 47.2 ± 24.8 | 0.866 |
Sex (male) | 10 (32.3%) | 16 (25.4%) | 0.650 |
Hypertension (HTN) | 16 (51.6%) | 24 (38.1%) | 0.306 |
Diabetes mellitus (DM) | 5 (16.1%) | 26 (41.3%) | 0.028 |
Hypercholesterolemia | 4 (12.9%) | 16 (25.4%) | 0.261 |
Hypertriglyceridemia | 2 (6.5%) | 4 (6.3%) | 1.000 |
Model | Hyperparameter Optimization |
RF |
|
SVM |
|
MLP |
|
XGBoost |
|
DT |
|
LR |
|
Model | Metrics | ||||
---|---|---|---|---|---|
Accuracy | Precision | Recall | F1-Score | AUC | |
RF | 0.758621 | 0.767241 | 0.758621 | 0.732424 | 0.636842 |
MLP | 0.758621 | 0.752575 | 0.758621 | 0.746153 | 0.705263 |
XGBoost | 0.655172 | 0.617931 | 0.655172 | 0.604792 | 0.668421 |
DT | 0.655172 | 0.628186 | 0.655172 | 0.628489 | 0.513158 |
LG | 0.724138 | 0.714143 | 0.724138 | 0.702791 | 0.694737 |
SVM | 0.862069 | 0.886057 | 0.862069 | 0.851396 | 0.757895 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casas Domínguez, M.; Herrena Montano, I.; López Gómez, J.J.; Ramos Bachiller, B.; de Luis Román, D.A.; Díez, I.d.l.T. Predicting Weight Loss Success After Gastric Sleeve Surgery: A Machine Learning-Based Approach. Nutrients 2025, 17, 1391. https://doi.org/10.3390/nu17081391
Casas Domínguez M, Herrena Montano I, López Gómez JJ, Ramos Bachiller B, de Luis Román DA, Díez IdlT. Predicting Weight Loss Success After Gastric Sleeve Surgery: A Machine Learning-Based Approach. Nutrients. 2025; 17(8):1391. https://doi.org/10.3390/nu17081391
Chicago/Turabian StyleCasas Domínguez, Mónica, Isabel Herrena Montano, Juan José López Gómez, Beatriz Ramos Bachiller, Daniel Antonio de Luis Román, and Isabel de la Torre Díez. 2025. "Predicting Weight Loss Success After Gastric Sleeve Surgery: A Machine Learning-Based Approach" Nutrients 17, no. 8: 1391. https://doi.org/10.3390/nu17081391
APA StyleCasas Domínguez, M., Herrena Montano, I., López Gómez, J. J., Ramos Bachiller, B., de Luis Román, D. A., & Díez, I. d. l. T. (2025). Predicting Weight Loss Success After Gastric Sleeve Surgery: A Machine Learning-Based Approach. Nutrients, 17(8), 1391. https://doi.org/10.3390/nu17081391