Gut Butyrate Reduction in Blood Pressure Is Associated with Other Vegetables, Whole Fruit, Total Grains, and Sodium Intake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Design
2.3. Blood Pressure and Body Composition Measures
2.4. Diet Measures
2.5. Statistical Analysis
3. Results
3.1. Group Baseline Measurements
3.2. Diet Intake Measures
3.3. Correlations in Diet Measures and Associations with BP Changes After Butyrate Treatment
4. Discussion
4.1. Diet Quality Measures
4.2. Correlations with Normal Diet Measures
4.3. Correlations to BP Changes from the Butyrate Treatment
4.4. Limitations
4.5. Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Centers for Disease Control and Prevention. Estimated Hypertension Prevalence, Treatment, and Control Among U.S. Adults. Million Hearts 2021. Available online: https://millionhearts.hhs.gov/data-reports/hypertension-prevalence.html (accessed on 23 April 2023).
- Centers for Disease Control and Prevention. High Blood Pressure Facts. High Blood Pressure. 2023. Available online: https://www.cdc.gov/high-blood-pressure/data-research/facts-stats/?CDC_AAref_Val=https://www.cdc.gov/bloodpressure/facts.htm (accessed on 23 April 2023).
- Ostchega, Y.; Fryar, C.; Nwankwo, T.; Nguyen, D. Hypertension Prevalence among Adults Aged 18 and Over: United States, 2017–2018; National Center for Health Statistics: Hyattsville, MD, USA, 2020.
- Bakris, G.L.; Ferdinand, K.C.; Douglas, J.G.; Sowers, J.R. Optimal treatment of hypertension in African Americans. Reaching and maintaining target blood pressure goals. Postgrad. Med. 2002, 112, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Dinh, Q.N.; Drummond, G.R.; Sobey, C.G.; Chrissobolis, S. Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension. Biomed Res. Int. 2014, 2014, 406960. [Google Scholar] [CrossRef] [PubMed]
- Kriss, M.; Hazleton, K.Z.; Nusbacher, N.M.; Martin, C.G.; Lozupone, C.A. Low diversity gut microbiota dysbiosis: Drivers, functional implications and recovery. Curr. Opin. Microbiol. 2018, 44, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, J.; Kasubuchi, M.; Nakajima, A.; Irie, J.; Itoh, H.; Kimura, I. The role of short-chain fatty acid on blood pressure regulation. Curr. Opin. Nephrol. Hypertens 2016, 25, 379–383. [Google Scholar] [CrossRef]
- Pluznick, J.L. Microbial Short-Chain Fatty Acids and Blood Pressure Regulation. Curr. Hypertens. Rep. 2017, 19, 25. [Google Scholar] [CrossRef]
- Tilves, C.; Yeh, H.C.; Maruthur, N.; Juraschek, S.P.; Miller, E.; White, K.; Appel, L.J.; Mueller, N.T. Increases in Circulating and Fecal Butyrate are Associated with Reduced Blood Pressure and Hypertension: Results From the SPIRIT Trial. J. Am. Heart Assoc. 2022, 11, e024763. [Google Scholar] [CrossRef]
- Verhaar, B.J.H.; Wijdeveld, M.; Wortelboer, K.; Rampanelli, E.; Levels, J.H.M.; Collard, D.; Cammenga, M.; Nageswaran, V.; Haghikia, A.; Landmesser, U.; et al. Effects of Oral Butyrate on Blood Pressure in Patients with Hypertension: A Randomized, Placebo-Controlled Trial. Hypertension 2024, 81, 2124–2136. [Google Scholar] [CrossRef]
- Bier, A.; Braun, T.; Khasbab, R.; Di Segni, A.; Grossman, E.; Haberman, Y.; Leibowitz, A. A High Salt Diet Modulates the Gut Microbiota and Short Chain Fatty Acids Production in a Salt-Sensitive Hypertension Rat Model. Nutrients 2018, 10, 1154. [Google Scholar] [CrossRef]
- Kaye, D.M.; Shihata, W.A.; Jama, H.A.; Tsyganov, K.; Ziemann, M.; Kiriazis, H.; Horlock, D.; Vijay, A.; Giam, B.; Vinh, A.; et al. Deficiency of Prebiotic Fiber and Insufficient Signaling Through Gut Metabolite-Sensing Receptors Leads to Cardiovascular Disease. Circulation 2020, 141, 1393–1403. [Google Scholar] [CrossRef]
- Chen, L.; He, F.J.; Dong, Y.; Huang, Y.; Wang, C.; Harshfield, G.A.; Zhu, H. Modest Sodium Reduction Increases Circulating Short-Chain Fatty Acids in Untreated Hypertensives A Randomized, Double-Blind, Placebo-Controlled Trial. Hypertension 2020, 76, 73–79. [Google Scholar] [CrossRef]
- Hsu, C.-N.; Yu, H.-R.; Lin, I.-C.; Tiao, M.-M.; Huang, L.-T.; Hou, C.-Y.; Chang-Chien, G.-P.; Lin, S.; Tain, Y.-L. Sodium butyrate modulates blood pressure and gut microbiota in maternal tryptophan-free diet-induced hypertension rat offspring. J. Nutr. Biochem. 2022, 108, 109090. [Google Scholar] [CrossRef] [PubMed]
- Mueller, N.T.; Zhang, M.; Juraschek, S.P.; Miller, E.R., 3rd; Appel, L.J. Effects of high-fiber diets enriched with carbohydrate, protein, or unsaturated fat on circulating short chain fatty acids: Results from the OmniHeart randomized trial. Am. J. Clin. Nutr. 2020, 111, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Gu, Y.; Li, X.; Yang, W.; Jia, L.; Chen, C.; Han, X.; Huang, Y.; Zhao, L.; Li, P.; et al. Alterations of the Gut Microbiome in Hypertension. Front. Cell. Infect. Microbiol. 2017, 7, 381. [Google Scholar] [CrossRef] [PubMed]
- Vanhoutvin, S.A.L.W.; Troost, F.J.; Kilkens, T.O.C.; Lindsey, P.J.; Hamer, H.M.; Jonkers, D.M.A.E.; Venema, K.; Brummer, R.J.M. The effects of butyrate enemas on visceral perception in healthy volunteers. Neurogastroenterol. Motil. 2009, 21, 952-e76. [Google Scholar] [CrossRef]
- Steinhart, A.H.; Hiruki, T.; Brzezinski, A.; Baker, J.P. Treatment of left-sided ulcerative colitis with butyrate enemas: A controlled trial. Aliment. Pharmacol. Ther. 1996, 10, 729–736. [Google Scholar] [CrossRef]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E.; Collins, K.J.; Himmelfarb, C.D.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2018, 71, e13–e115. [Google Scholar] [CrossRef]
- Weiss, W.; Gohlisch, C.; Harsch-Gladisch, C.; Tölle, M.; Zidek, W.; van der Giet, M. Oscillometric estimation of central blood pressure: Validation of the Mobil-O-Graph in comparison with the SphygmoCor device. Blood Press Monit 2012, 17, 128–131. [Google Scholar] [CrossRef]
- Papaioannou, T.G.; Xanthis, D.; Argyris, A.; Vernikos, P.; Mastakoura, G.; Samara, S.; Floros, I.T.; Protogerou, A.D.; Tousoulis, D. Accuracy and precision of cardiac output estimation by an automated, brachial cuff-based oscillometric device in patients with shock. Proc. Inst. Mech. Eng. H 2020, 234, 1330–1336. [Google Scholar] [CrossRef]
- Krebs-Smith, S.M.; Pannucci, T.E.; Subar, A.F.; Kirkpatrick, S.I.; Lerman, J.L.; Tooze, J.A.; Wilson, M.M.; Reedy, J. Update of the healthy eating index: HEI-2015. J. Acad. Nutr. Diet. 2018, 118, 1591–1602. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture; U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025; U.S. Department of Agriculture: Washington, DC, USA, 2020.
- Little, R.B.; Desmond, R.; Carson, T.L. Dietary intake and diet quality by weight category among a racially diverse sample of women in Birmingham, Alabama, USA. J. Nutr. Sci. 2020, 9, e58. [Google Scholar] [CrossRef]
- Farmer, N.; Wallen, G.R.; Yang, L.; Middleton, K.R.; Kazmi, N.; Powell-Wiley, T.M. Household Cooking Frequency of Dinner Among Non-Hispanic Black Adults is Associated with Income and Employment, Perceived Diet Quality and Varied Objective Diet Quality, HEI (Healthy Eating Index): NHANES Analysis 2007–2010. Nutrients 2019, 11, 2057. [Google Scholar] [CrossRef] [PubMed]
- TThompson, T.L.; Singleton, C.R.; Springfield, S.E.; Thorpe, R.J.; Odoms-Young, A. Differences in Nutrient Intake and Diet Quality Between Non-Hispanic Black and Non-Hispanic White Men in the United States. Public Health Rep. 2020, 135, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Goel, R.; Kumar, A.; Qi, Y.; Lobaton, G.; Hosaka, K.; Mohammed, M.; Handberg, E.M.; Richards, E.M.; Pepine, C.J.; et al. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin. Sci. 2018, 132, 701–718. [Google Scholar] [CrossRef] [PubMed]
- Arnoldussen, I.A.C.; Witkamp, R.F. Effects of Nutrients on Platelet Function: A Modifiable Link between Metabolic Syndrome and Neurodegeneration? Biomolecules 2021, 11, 1455. [Google Scholar] [CrossRef]
- Guasch-Ferré, M.; Babio, N.; Martínez-González, M.A.; Corella, D.; Ros, E.; Martín-Peláez, S.; Estruch, R.; Arós, F.; Gómez-Gracia, E.; Fiol, M.; et al. Dietary fat intake and risk of cardiovascular disease and all-cause mortality in a population at high risk of cardiovascular disease1. Am. J. Clin. Nutr. 2015, 102, 1563–1573. [Google Scholar] [CrossRef]
- Hooper, L.; Martin, N.; Jimoh, O.F.; Kirk, C.; Foster, E.; Abdelhamid, A.S. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst. Rev. 2020. [Google Scholar] [CrossRef]
- Vafeiadou, K.; Weech, M.; Altowaijri, H.; Todd, S.; Yaqoob, P.; Jackson, K.G.; Lovegrove, J.A. Replacement of saturated with unsaturated fats had no impact on vascular function but beneficial effects on lipid biomarkers, E-selectin, and blood pressure: Results from the randomized, controlled Dietary Intervention and VAScular function (DIVAS) study. Am. J. Clin. Nutr. 2015, 102, 40–48. [Google Scholar] [CrossRef]
- Hartley, L.; May, M.D.; Loveman, E.; Colquitt, J.L.; Rees, K. Dietary fibre for the primary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2016, 2016, CD011472. [Google Scholar] [CrossRef]
- Reynolds, A.N.; Akerman, A.; Kumar, S.; Diep Pham, H.T.; Coffey, S.; Mann, J. Dietary fibre in hypertension and cardiovascular disease management: Systematic review and meta-analyses. BMC Med. 2022, 20, 139. [Google Scholar] [CrossRef]
- Streppel, M.T.; Arends, L.R.; van’t Veer, P.; Grobbee, D.E.; Geleijnse, J.M. Dietary fiber and blood pressure: A meta-analysis of randomized placebo-controlled trials. Arch. Intern. Med. 2005, 165, 150–156. [Google Scholar] [CrossRef]
- Basdeki, E.D.; Koumi, K.; Tsirimiagkou, C.; Argyris, A.; Chrysostomou, S.; Sfikakis, P.P.; Protogerou, A.D.; Karatzi, K. Late-Night Overeating or Low-Quality Food Choices Late at Night Are Associated with Subclinical Vascular Damage in Patients at Increased Cardiovascular Risk. Nutrients 2022, 14, 470. [Google Scholar] [CrossRef] [PubMed]
- Tzelefa, V.; Tsirimiagkou, C.; Argyris, A.; Moschonis, G.; Perogiannakis, G.; Yannakoulia, M.; Sfikakis, P.; Protogerou, A.D.; Karatzi, K. Associations of dietary patterns with blood pressure and markers of subclinical arterial damage in adults with risk factors for CVD. Public Health Nutr. 2021, 24, 6075–6084. [Google Scholar] [CrossRef] [PubMed]
- Bartley, K.; Jung, M.; Yi, S. Diet and blood pressure: Differences among whites, blacks and Hispanics in New York City 2010. Ethn. Dis. 2014, 24, 175–181. [Google Scholar] [PubMed]
- Chen, X.; Cheskin, L.J.; Shi, L.; Wang, Y. Americans with Diet-Related Chronic Diseases Report Higher Diet Quality Than Those without These Diseases. J. Nutr. 2011, 141, 1543–1551. [Google Scholar] [CrossRef]
- Diaz, V.A.; Mainous, A.G., III; Koopman, R.J.; Carek, P.J.; Geesey, M.E. Race and diet in the overweight: Association with cardiovascular risk in a nationally representative sample. Nutrition 2005, 21, 718–725. [Google Scholar] [CrossRef]
- Forshee, R.A.; Storey, M.L. Demographics, not beverage consumption, is associated with diet quality. Int. J. Food Sci. Nutr. 2006, 57, 494–511. [Google Scholar] [CrossRef]
- Ko, B.-J.; Park, K.H.; Shin, S.; Zaichenko, L.; Davis, C.R.; Crowell, J.A.; Joung, H.; Mantzoros, C.S. Diet quality and diet patterns in relation to circulating cardiometabolic biomarkers. Clin. Nutr. 2016, 35, 484–490. [Google Scholar] [CrossRef]
- Ma, Y.; Weng, X.; Gao, X.; Winkels, R.; Cuffee, Y.; Gupta, S.; Wang, L. Healthy Eating Index Scores Differ by Race/Ethnicity but Not Hypertension Awareness Status among US Adults with Hypertension: Findings from the 2011-2018 National Health and Nutrition Examination Survey. J. Acad. Nutr. Diet. 2022, 122, 1000–1012. [Google Scholar] [CrossRef]
- McCabe-Sellers, B.J.; Bowman, S.; Stuff, J.E.; Champagne, C.M.; Simpson, P.M.; Bogle, M.L. Assessment of the diet quality of US adults in the Lower Mississippi Delta. Am. J. Clin. Nutr. 2007, 86, 697–706. [Google Scholar] [CrossRef]
- Raffensperger, S.; Kuczmarski, M.F.; Hotchkiss, L.; Cotugna, N.; Evans, M.K.; Zonderman, A.B. Effect of Race and Predictors of Socioeconomic Status on Diet Quality in the HANDLS Study Sample. J. Natl. Med. Assoc. 2010, 102, 923–930. [Google Scholar] [CrossRef]
- Rodriguez, L.A.; Jin, Y.; Talegawkar, S.A.; Otto, M.C.d.O.; Kandula, N.R.; Herrington, D.M.; Kanaya, A.M. Differences in Diet Quality among Multiple US Racial/Ethnic Groups from the Mediators of Atherosclerosis in South Asians Living in America (MASALA) Study and the Multi-Ethnic Study of Atherosclerosis (MESA). J. Nutr. 2020, 150, 1509–1515. [Google Scholar] [CrossRef] [PubMed]
- Vadiveloo, M.; Perraud, E.; Parker, H.W.; Juul, F.; Parekh, N. Geographic Differences in the Dietary Quality of Food Purchases among Participants in the Nationally Representative Food Acquisition and Purchase Survey (FoodAPS). Nutrients 2019, 11, 1233. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, X. Between-Group Differences in Nutrition- and Health-Related Psychosocial Factors among US Adults and Their Associations with Diet, Exercise, and Weight Status. J. Acad. Nutr. Diet. 2012, 112, 486–498. [Google Scholar] [CrossRef] [PubMed]
- Bridges, K.M.; Diaz, F.J.; Wang, Z.; Ahmed, I.; Sullivan, D.K.; Umar, S.; Buckles, D.C.; Greiner, K.A.; Hester, C.M. Relating Stool Microbial Metabolite Levels, Inflammatory Markers and Dietary Behaviors to Screening Colonoscopy Findings in a Racially/Ethnically Diverse Patient Population. Genes 2018, 9, 119. [Google Scholar] [CrossRef]
- O’Keefe, S.J.D.; Ou, J.; Aufreiter, S.; O’Connor, D.; Sharma, S.; Sepulveda, J.; Fukuwatari, T.; Shibata, K.; Mawhinney, T. Products of the Colonic Microbiota Mediate the Effects of Diet on Colon Cancer Risk. J. Nutr. 2009, 139, 2044–2048. [Google Scholar] [CrossRef]
- Ojo, B.A.; O’Hara, C.; Wu, L.; El-Rassi, G.D.; Ritchey, J.W.; Chowanadisai, W.; Lin, D.; Smith, B.J.; Lucas, E.A. Wheat Germ Supplementation Increases Lactobacillaceae and Promotes an Anti-inflammatory Gut Milieu in C57BL/6 Mice Fed a High-Fat, High-Sucrose Diet. J. Nutr. 2019, 149, 1107–1115. [Google Scholar] [CrossRef]
- Petit, J.; de Bruijn, I.; Goldman, M.R.G.; van den Brink, E.; Pellikaan, W.F.; Forlenza, M.; Wiegertjes, G.F. β-Glucan-Induced Immuno-Modulation: A Role for the Intestinal Microbiota and Short-Chain Fatty Acids in Common Carp. Front. Immunol. 2022, 12, 761820. [Google Scholar] [CrossRef]
- Tain, Y.-L.; Hou, C.-Y.; Chang-Chien, G.-P.; Lin, S.; Tzeng, H.-T.; Lee, W.-C.; Wu, K.L.H.; Yu, H.-R.; Chan, J.Y.H.; Hsu, C.-N. Reprogramming Effects of Postbiotic Butyrate and Propionate on Maternal High-Fructose Diet-Induced Offspring Hypertension. Nutrients 2023, 15, 1682. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, Q.; Lu, A.; Liu, X.; Zhang, L.; Xu, C.; Liu, X.; Li, H.; Yang, T. Sodium butyrate suppresses angiotensin II-induced hypertension by inhibition of renal (pro)renin receptor and intrarenal renin-angiotensin system. J. Hypertens. 2017, 35, 1899–1908. [Google Scholar] [CrossRef]
Normotensive (n = 10) | Hypertensive (n = 10) | p-Value a | |
---|---|---|---|
Age | 45.6 (9.6) | 40.8 (9.5) | 0.2756 |
Weight (kg) | 85.9 (18.5) | 99.7 (23.0) | 0.1568 |
BMI b | 30.2 (4.9) | 35.4 (7.6) | 0.0837 |
% Fat Mass | 38.0 (6.9) | 38.7 (11.6) | 0.8628 |
WC c | 36.8 (5.6) | 41.1 (7.9) | 0.1726 |
Waist-to-Hip Ratio | 0.85 (0.09) | 0.91 (0.08) | 0.1281 |
REE d | 1679 (326) | 1830 (206) | <0.0001 |
TEE e | 2850 (560) | 3037 (384) | <0.0001 |
Resting SBP f | 118 (4.9) | 135 (6.1) | <0.0001 |
Resting DBP g | 74 (3.5) | 84 (9.0) | 0.0078 |
24 h SBP f | 124 (14.6) | 133 (12.3) | 0.1268 |
24 h DBP g | 77 (7.1) | 85 (9.4) | 0.0535 |
Day SBP f | 128 (16.3) | 138 (13.5) | 0.1820 |
Day DBP g | 80 (7.4) | 89 (9.7) | 0.0313 |
Night SBP f | 114 (12.9) | 123 (13.6) | 0.1370 |
Night DBP g | 69 (7.8) | 73 (8.4) | 0.2223 |
Day HR h | 74 (14.6) | 80 (8.5) | 0.2558 |
Night HR h | 66 (13.7) | 74 (12.4) | 0.1991 |
Day MAP i | 102 (9.5) | 111 (10.6) | 0.0531 |
Night MAP i | 89 (9.5) | 96 (9.8) | 0.1218 |
Day AIx j | 24.7 (6.7) | 24.4 (6.3) | 0.9194 |
Night AIx j | 21.5 (9.6) | 17.4 (11.0) | 0.3867 |
Day PWV k | 6.9 (1.2) | 6.8 (1.3) | 0.9006 |
Night PWV k | 6.4 (1.0) | 6.4 (0.9) | 0.9806 |
Normotensive (n = 10) | Hypertensive (n = 10) | p-Value a | |
---|---|---|---|
Total Energy (kcals) | 1646 (468) | 2687 (734) | 0.0018 |
% Carbohydrates | 42.7 (16.2) | 43.0 (7.8) | 0.9576 |
% Fat | 37.1 (10.9) | 43.1 (5.9) | 0.1516 |
% Protein | 20.0 (6.6) | 15.4 (2.9) | 0.0610 |
Kcals/kg | 8.8 (2.3) | 12.8 (4.6) | 0.0293 |
g Carbohydrates/kg | 1.0 (0.4) | 1.4 (0.6) | 0.0816 |
g Fat/kg | 0.4 (0.1) | 0.6 (0.2) | 0.0095 |
g Protein/kg | 0.4 (0.1) | 0.5 (0.2) | 0.3634 |
Saturated fat (g) | 21.6 (10.0) | 43.2 (20.3) | 0.0096 |
Fiber (g) | 13.1 (7.9) | 17.7 (5.8) | 0.1564 |
Soluble Fiber (g) | 3.3 (2.2) | 5.4 (2.6) | 0.0646 |
Insoluble Fiber (g) | 9.7 (5.6) | 12.1 (4.2) | 0.2866 |
Sodium (mg) | 3902 (1358) | 4494 (1258) | 0.3253 |
Potassium (mg) | 2051 (625) | 2297 (601) | 0.3812 |
Na:K b ratio | 2.0 (0.8) | 2.0 (0.6) | 0.0018 |
Dietary Butyrate (g) | 0.3 (0.3) | 0.4 (0.3) | 0.1516 |
Total Vegetables c | 3.2 (1.7) | 2.4 (1.3) | 0.2569 |
Dark Green Vegetables c | 1.0 (1.3) | 0.5 (0.6) | 0.2552 |
Red and Orange Vegetables c | 0.6 (0.9) | 0.4 (0.3) | 0.5401 |
Beans, Peas, Lentils c | 0.2 (0.4) | 0.1 (0.1) | 0.2540 |
Starchy Vegetables c | 0.4 (0.6) | 0.5 (0.4) | 0.8534 |
Other Vegetables c | 1.0 (1.0) | 1.0 (0.8) | 0.9461 |
Fruits c | 1.0 (0.9) | 0.8 (0.7) | 0.6393 |
Total Grains c | 4.6 (2.8) | 9.1 (5.1) | 0.0278 |
Whole Grains c | 0.7 (0.9) | 1.3 (1.3) | 0.2880 |
Refined Grains c | 3.9 (2.4) | 7.8 (4.8) | 0.0365 |
Dairy c | 0.8 (0.5) | 1.1 (0.9) | 0.2583 |
Total Protein Foods c | 8.2 (4.8) | 9.0 (3.2) | 0.6819 |
Meats, Poultry, Eggs c | 5.9 (4.0) | 8.5 (3.0) | 0.1175 |
Seafood c | 2.0 (2.7) | 0.01 (0.03) | 0.0430 |
Nuts, Seeds, Soy Products c | 0.3 (0.5) | 0.5 (1.0) | 0.6278 |
Normotensive (n = 10) | Hypertensive (n = 10) | p-Value a | |
---|---|---|---|
Total Score | 50.4 (15.6) | 42.6 (12.5) | 0.2308 |
Total Fruits | 1.8 (1.6) | 1.0 (0.7) | 0.2026 |
Whole Fruits | 2.1 (2.2) | 1.5 (1.4) | 0.5004 |
Total Vegetables | 3.7 (1.5) | 2.3 (1.6) | 0.0619 |
Greens and Beans | 3.6 (2.0) | 2.1 (2.0) | 0.1191 |
Whole Grains | 2.3 (3.4) | 2.7 (2.9) | 0.7653 |
Dairy | 3.4 (1.8) | 2.9 (1.8) | 0.5168 |
Total Protein | 4.9 (0.4) | 4.7 (0.6) | 0.4471 |
Seafood and Plant Protein | 3.1 (2.5) | 1.2 (2.0) | 0.0758 |
Fatty Acids | 5.7 (3.2) | 5.2 (4.1) | 0.7351 |
Refined Grains | 5.6 (3.6) | 5.2 (4.1) | 0.8287 |
Sodium | 0.8 (1.6) | 3.7 (3.1) | 0.0217 |
Added Sugars | 7.5 (3.2) | 6.3 (3.8) | 0.4634 |
Saturated Fats | 6.1 (3.8) | 3.8 (3.1) | 0.1657 |
BP Measure | Diet Measure | r a | p-Value |
---|---|---|---|
Baseline Resting SBP b | Total kcals | 0.5858 | 0.0067 |
Baseline Resting SBP b | Dietary Butyrate (g) | 0.4762 | 0.0338 |
Baseline Resting SBP b | Saturated Fat (g) | 0.5963 | 0.0055 |
Baseline Resting SBP b | Soluble Fiber (g) | 0.4486 | 0.0473 |
Baseline 24 h SBP b | Dietary Butyrate (g) | 0.4468 | 0.04823 |
Baseline Day SBP b | Dietary Butyrate (g) | 0.4509 | 0.0460 |
Change in 24 h SBP b | HEI-2015 g Greens and Beans | 0.6437 | 0.0446 |
Change in 24 h SBP b | Total Vegetables (servings) | 0.6441 | 0.0445 |
Change in 24 h SBP b | Other Vegetables (servings) | 0.6441 | 0.0445 |
Change in Day DBP c | Other Vegetables (servings) | 0.6751 | 0.0322 |
Change in Day MAP d | Other Vegetables (servings) | 0.7191 | 0.0191 |
Change in Night AIx e | Total Grains (servings) | −0.7143 | 0.0465 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
San Diego, L.; Hogue, T.; Hampton-Marcell, J.; Carroll, I.M.; Purdom, T.; Colleran, H.; Cook, M.D. Gut Butyrate Reduction in Blood Pressure Is Associated with Other Vegetables, Whole Fruit, Total Grains, and Sodium Intake. Nutrients 2025, 17, 1392. https://doi.org/10.3390/nu17081392
San Diego L, Hogue T, Hampton-Marcell J, Carroll IM, Purdom T, Colleran H, Cook MD. Gut Butyrate Reduction in Blood Pressure Is Associated with Other Vegetables, Whole Fruit, Total Grains, and Sodium Intake. Nutrients. 2025; 17(8):1392. https://doi.org/10.3390/nu17081392
Chicago/Turabian StyleSan Diego, Lauren, Taylor Hogue, Jarrad Hampton-Marcell, Ian M. Carroll, Troy Purdom, Heather Colleran, and Marc D. Cook. 2025. "Gut Butyrate Reduction in Blood Pressure Is Associated with Other Vegetables, Whole Fruit, Total Grains, and Sodium Intake" Nutrients 17, no. 8: 1392. https://doi.org/10.3390/nu17081392
APA StyleSan Diego, L., Hogue, T., Hampton-Marcell, J., Carroll, I. M., Purdom, T., Colleran, H., & Cook, M. D. (2025). Gut Butyrate Reduction in Blood Pressure Is Associated with Other Vegetables, Whole Fruit, Total Grains, and Sodium Intake. Nutrients, 17(8), 1392. https://doi.org/10.3390/nu17081392