The Relationship between Visceral Fat Accumulation and Risk of Cardiometabolic Multimorbidity: The Roles of Accelerated Biological Aging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. BRI Definition
2.3. Ascertainment of Outcome
2.4. Definitions of Covariates
2.5. Biological Aging Assessment
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. BRI Serves as an Effective Predictor for CMM
3.3. Association Between BRI and Biological Aging
3.4. Association of Biological Aging with Risk of CMM
3.5. Role of Accelerated Biological Aging in the Association of BRI with CMM
3.6. Additional and Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Emerging Risk Factors, C.; Di Angelantonio, E.; Kaptoge, S.; Wormser, D.; Willeit, P.; Butterworth, A.S.; Bansal, N.; O’Keeffe, L.M.; Gao, P.; Wood, A.M.; et al. Association of Cardiometabolic Multimorbidity With Mortality. JAMA 2015, 314, 52–60. [Google Scholar] [CrossRef]
- Zhang, D.; Tang, X.; Shen, P.; Si, Y.; Liu, X.; Xu, Z.; Wu, J.; Zhang, J.; Lu, P.; Lin, H.; et al. Multimorbidity of cardiometabolic diseases: Prevalence and risk for mortality from one million Chinese adults in a longitudinal cohort study. BMJ Open 2019, 9, e024476. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Liang, J.; Hong, C.; Liang, R.; Luo, Y. Cardiometabolic multimorbidity, lifestyle behaviours, and cognitive function: A multicohort study. Lancet Healthy Longev. 2023, 4, e265–e273. [Google Scholar] [CrossRef]
- Dibato, J.E.; Montvida, O.; Zaccardi, F.; Sargeant, J.A.; Davies, M.J.; Khunti, K.; Paul, S.K. Association of Cardiometabolic Multimorbidity and Depression with Cardiovascular Events in Early-Onset Adult Type 2 Diabetes: A Multiethnic Study in the U.S. Diabetes Care 2021, 44, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Gerdts, E.; Regitz-Zagrosek, V. Sex differences in cardiometabolic disorders. Nat. Med. 2019, 25, 1657–1666. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Zhang, Q.; Yu, K.; Meng, X.; Kan, H.; Chen, R. Long-term exposure to ambient air pollution is a risk factor for trajectory of cardiometabolic multimorbidity: A prospective study in the UK Biobank. EBioMedicine 2022, 84, 104282. [Google Scholar] [CrossRef]
- Han, Y.; Hu, Y.; Yu, C.; Guo, Y.; Pei, P.; Yang, L.; Chen, Y.; Du, H.; Sun, D.; Pang, Y.; et al. Lifestyle, cardiometabolic disease, and multimorbidity in a prospective Chinese study. Eur. Heart J. 2021, 42, 3374–3384. [Google Scholar] [CrossRef]
- Kivimaki, M.; Kuosma, E.; Ferrie, J.E.; Luukkonen, R.; Nyberg, S.T.; Alfredsson, L.; Batty, G.D.; Brunner, E.J.; Fransson, E.; Goldberg, M.; et al. Overweight, obesity, and risk of cardiometabolic multimorbidity: Pooled analysis of individual-level data for 120 813 adults from 16 cohort studies from the USA and Europe. Lancet Public Health 2017, 2, e277–e285. [Google Scholar] [CrossRef]
- Koenen, M.; Hill, M.A.; Cohen, P.; Sowers, J.R. Obesity, Adipose Tissue and Vascular Dysfunction. Circ. Res. 2021, 128, 951–968. [Google Scholar] [CrossRef]
- Khan, I.; Chong, M.; Le, A.; Mohammadi-Shemirani, P.; Morton, R.; Brinza, C.; Kiflen, M.; Narula, S.; Akhabir, L.; Mao, S.; et al. Surrogate Adiposity Markers and Mortality. JAMA Netw. Open 2023, 6, e2334836. [Google Scholar] [CrossRef]
- Thomas, D.M.; Bredlau, C.; Bosy-Westphal, A.; Mueller, M.; Shen, W.; Gallagher, D.; Maeda, Y.; McDougall, A.; Peterson, C.M.; Ravussin, E.; et al. Relationships between body roundness with body fat and visceral adipose tissue emerging from a new geometrical model. Obesity 2013, 21, 2264–2271. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, X.; Guan, H.; Zhang, S.; Zhu, Q.; Fu, X.; Chen, H.; Tang, S.; Feng, Y.; Kuang, J. Body Roundness Index Is a Superior Obesity Index in Predicting Diabetes Risk Among Hypertensive Patients: A Prospective Cohort Study in China. Front. Cardiovasc. Med. 2021, 8, 736073. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Fan, Y.; Gao, H.; Wang, B. Body roundness index as a predictor of all-cause and cardiovascular mortality in patients with diabetes and prediabetes. Diabetes Res. Clin. Pract. 2025, 219, 111958. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ma, N.; Lin, Q.; Chen, K.; Zheng, F.; Wu, J.; Dong, X.; Niu, W. Body Roundness Index and All-Cause Mortality Among US Adults. JAMA Netw. Open 2024, 7, e2415051. [Google Scholar] [CrossRef]
- Kennedy, B.K.; Berger, S.L.; Brunet, A.; Campisi, J.; Cuervo, A.M.; Epel, E.S.; Franceschi, C.; Lithgow, G.J.; Morimoto, R.I.; Pessin, J.E.; et al. Geroscience: Linking aging to chronic disease. Cell 2014, 159, 709–713. [Google Scholar] [CrossRef]
- Li, X.; Ploner, A.; Wang, Y.; Magnusson, P.K.; Reynolds, C.; Finkel, D.; Pedersen, N.L.; Jylhava, J.; Hagg, S. Longitudinal trajectories, correlations and mortality associations of nine biological ages across 20-years follow-up. Elife 2020, 9, e51507. [Google Scholar] [CrossRef]
- Klemera, P.; Doubal, S. A new approach to the concept and computation of biological age. Mech. Ageing Dev. 2006, 127, 240–248. [Google Scholar] [CrossRef]
- Levine, M.E. Modeling the rate of senescence: Can estimated biological age predict mortality more accurately than chronological age? J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 667–674. [Google Scholar] [CrossRef]
- He, Y.; Jia, Y.; Li, Y.; Wan, Z.; Lei, Y.; Liao, X.; Zhao, Q.; Li, D. Accelerated biological aging: Unveiling the path to cardiometabolic multimorbidity, dementia, and mortality. Front. Public Health 2024, 12, 1423016. [Google Scholar] [CrossRef]
- Wang, J.C.; Bennett, M. Aging and atherosclerosis: Mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ. Res. 2012, 111, 245–259. [Google Scholar] [CrossRef]
- Zhernakova, D.V.; Sinha, T.; Andreu-Sanchez, S.; Prins, J.R.; Kurilshikov, A.; Balder, J.W.; Sanna, S.; Lifelines Cohort, S.; Franke, L.; Kuivenhoven, J.A.; et al. Age-dependent sex differences in cardiometabolic risk factors. Nat. Cardiovasc. Res. 2022, 1, 844–854. [Google Scholar] [CrossRef] [PubMed]
- Trim, W.; Turner, J.E.; Thompson, D. Parallels in Immunometabolic Adipose Tissue Dysfunction with Ageing and Obesity. Front. Immunol. 2018, 9, 169. [Google Scholar] [CrossRef]
- Tchkonia, T.; Morbeck, D.E.; Von Zglinicki, T.; Van Deursen, J.; Lustgarten, J.; Scrable, H.; Khosla, S.; Jensen, M.D.; Kirkland, J.L. Fat tissue, aging, and cellular senescence. Aging Cell 2010, 9, 667–684. [Google Scholar] [CrossRef] [PubMed]
- Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015, 12, e1001779. [Google Scholar] [CrossRef]
- Xie, H.; Li, J.; Zhu, X.; Li, J.; Yin, J.; Ma, T.; Luo, Y.; He, L.; Bai, Y.; Zhang, G.; et al. Association between healthy lifestyle and the occurrence of cardiometabolic multimorbidity in hypertensive patients: A prospective cohort study of UK Biobank. Cardiovasc. Diabetol. 2022, 21, 199. [Google Scholar] [CrossRef]
- Townsend, P. Deprivation. J. Soc. Policy 1987, 16, 125–146. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, X.; Wang, L.; Zhang, Y.; Xiang, Y.; Cai, J.; Xu, H.; Xiao, X.; Zhao, X. Lifestyle factors and their relative contributions to longitudinal progression of cardio-renal-metabolic multimorbidity: A prospective cohort study. Cardiovasc. Diabetol. 2024, 23, 265. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, S.; Chen, K.; Wu, Y.; Zeng, P.; Wang, T. Long-term influence of air pollutants on morbidity and all-cause mortality of cardiometabolic multi-morbidity: A cohort analysis of the UK Biobank participants. Environ. Res. 2023, 237, 116873. [Google Scholar] [CrossRef]
- Liu, Z.; Kuo, P.L.; Horvath, S.; Crimmins, E.; Ferrucci, L.; Levine, M. A new aging measure captures morbidity and mortality risk across diverse subpopulations from NHANES IV: A cohort study. PLoS Med. 2018, 15, e1002718. [Google Scholar] [CrossRef]
- Kwon, D.; Belsky, D.W. A toolkit for quantification of biological age from blood chemistry and organ function test data: BioAge. Geroscience 2021, 43, 2795–2808. [Google Scholar] [CrossRef]
- Gao, X.; Geng, T.; Jiang, M.; Huang, N.; Zheng, Y.; Belsky, D.W.; Huang, T. Accelerated biological aging and risk of depression and anxiety: Evidence from 424,299 UK Biobank participants. Nat. Commun. 2023, 14, 2277. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wu, B.; Mo, L.; Chen, H.; Zhao, Y.; Tan, T.; Chen, L.; Li, Y.; Yao, P.; Tang, Y. Associations between biological ageing and the risk of, genetic susceptibility to, and life expectancy associated with rheumatoid arthritis: A secondary analysis of two observational studies. Lancet Healthy Longev. 2024, 5, e45–e55. [Google Scholar] [CrossRef] [PubMed]
- Hosmer, D.W.; Lemeshow, S. Confidence interval estimation of interaction. Epidemiology 1992, 3, 452–456. [Google Scholar] [CrossRef]
- VanderWeele, T.J. Causal mediation analysis with survival data. Epidemiology 2011, 22, 582–585. [Google Scholar] [CrossRef]
- Tian, X.; Chen, S.; Wang, P.; Xu, Q.; Zhang, Y.; Luo, Y.; Wu, S.; Wang, A. Insulin resistance mediates obesity-related risk of cardiovascular disease: A prospective cohort study. Cardiovasc. Diabetol. 2022, 21, 289. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; Choirat, C.; Coull, B.A.; VanderWeele, T.J.; Valeri, L. CMAverse: A Suite of Functions for Reproducible Causal Mediation Analyses. Epidemiology 2021, 32, e20–e22. [Google Scholar] [CrossRef]
- Austin, P.C.; Lee, D.S.; Fine, J.P. Introduction to the Analysis of Survival Data in the Presence of Competing Risks. Circulation 2016, 133, 601–609. [Google Scholar] [CrossRef]
- Liang, R.; Fan, L.; Lai, X.; Shi, D.; Wang, H.; Shi, W.; Liu, W.; Yu, L.; Song, J.; Wang, B. Air pollution exposure, accelerated biological aging, and increased thyroid dysfunction risk: Evidence from a nationwide prospective study. Environ. Int. 2024, 188, 108773. [Google Scholar] [CrossRef] [PubMed]
- Heshka, S.; Ruggiero, A.; Bray, G.A.; Foreyt, J.; Kahn, S.E.; Lewis, C.E.; Saad, M.; Schwartz, A.V.; Look, A.R.G. Altered body composition in type 2 diabetes mellitus. Int. J. Obes. 2008, 32, 780–787. [Google Scholar] [CrossRef]
- Choi, S.I.; Chung, D.; Lim, J.S.; Lee, M.Y.; Shin, J.Y.; Chung, C.H.; Huh, J.H. Relationship between Regional Body Fat Distribution and Diabetes Mellitus: 2008 to 2010 Korean National Health and Nutrition Examination Surveys. Diabetes Metab. J. 2017, 41, 51–59. [Google Scholar] [CrossRef]
- Belsky, D.W.; Huffman, K.M.; Pieper, C.F.; Shalev, I.; Kraus, W.E. Change in the Rate of Biological Aging in Response to Caloric Restriction: CALERIE Biobank Analysis. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 73, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Fabbiano, S.; Suarez-Zamorano, N.; Rigo, D.; Veyrat-Durebex, C.; Stevanovic Dokic, A.; Colin, D.J.; Trajkovski, M. Caloric Restriction Leads to Browning of White Adipose Tissue through Type 2 Immune Signaling. Cell Metab. 2016, 24, 434–446. [Google Scholar] [CrossRef] [PubMed]
- Mason, A.E.; Hecht, F.M.; Daubenmier, J.J.; Sbarra, D.A.; Lin, J.; Moran, P.J.; Schleicher, S.G.; Acree, M.; Prather, A.A.; Epel, E.S. Weight Loss Maintenance and Cellular Aging in the Supporting Health Through Nutrition and Exercise Study. Psychosom. Med. 2018, 80, 609–619. [Google Scholar] [CrossRef]
- Petersen, C.L.; Christensen, B.C.; Batsis, J.A. Weight management intervention identifies association of decreased DNA methylation age with improved functional age measures in older adults with obesity. Clin. Epigenetics 2021, 13, 46. [Google Scholar] [CrossRef]
- Jiang, M.; Tian, S.; Liu, S.; Wang, Y.; Guo, X.; Huang, T.; Lin, X.; Belsky, D.W.; Baccarelli, A.A.; Gao, X. Accelerated biological aging elevates the risk of cardiometabolic multimorbidity and mortality. Nat. Cardiovasc. Res. 2024, 3, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Piche, M.E.; Tchernof, A.; Despres, J.P. Obesity Phenotypes, Diabetes, and Cardiovascular Diseases. Circ. Res. 2020, 126, 1477–1500. [Google Scholar] [CrossRef]
- Neeland, I.J.; Turer, A.T.; Ayers, C.R.; Powell-Wiley, T.M.; Vega, G.L.; Farzaneh-Far, R.; Grundy, S.M.; Khera, A.; McGuire, D.K.; de Lemos, J.A. Dysfunctional adiposity and the risk of prediabetes and type 2 diabetes in obese adults. JAMA 2012, 308, 1150–1159. [Google Scholar] [CrossRef]
- Grundy, S.M. Obesity, metabolic syndrome, and cardiovascular disease. J. Clin. Endocrinol. Metab. 2004, 89, 2595–2600. [Google Scholar] [CrossRef]
- Pan, L.; Liu, Y.; Huang, C.; Huang, Y.; Lin, R.; Wei, K.; Yao, Y.; Qin, G.; Yu, Y. Association of accelerated phenotypic aging, genetic risk, and lifestyle with progression of type 2 diabetes: A prospective study using multi-state model. BMC Med. 2025, 23, 62. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, Y.; Liu, F.; Chen, H.; Tan, T.; Yao, P.; Tang, Y. Biological aging mediates the associations between urinary metals and osteoarthritis among U.S. adults. BMC Med. 2022, 20, 207. [Google Scholar] [CrossRef]
- Costa, D.G.; Ferreira-Marques, M.; Cavadas, C. Lipodystrophy as a target to delay premature aging. Trends. Endocrinol. Metab. 2024, 35, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Pietri, P.; Stefanadis, C. Cardiovascular Aging and Longevity: JACC State-of-the-Art Review. J. Am. Coll Cardiol. 2021, 77, 189–204. [Google Scholar] [CrossRef] [PubMed]
- Ungvari, Z.; Tarantini, S.; Sorond, F.; Merkely, B.; Csiszar, A. Mechanisms of Vascular Aging, A Geroscience Perspective: JACC Focus Seminar. J. Am. Coll Cardiol. 2020, 75, 931–941. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.L.; Pilling, L.C.; Liu, Z.; Atkins, J.L.; Levine, M.E. Genetic associations for two biological age measures point to distinct aging phenotypes. Aging Cell 2021, 20, e13376. [Google Scholar] [CrossRef]
Characteristics | Overall (N = 342,437) | Incident CMM (N = 6156) | No Incident CMM (N = 336,281) | p-Value |
---|---|---|---|---|
Age, n (%) | ||||
<60 years | 208,483 (60.88) | 2088 (33.92) | 206,395 (61.38) | <0.001 |
≥60 years | 133,954 (39.12) | 4068 (66.08) | 129,886 (38.62) | |
Sex, n (%) | ||||
Female | 185,760 (54.25) | 2203 (35.79) | 183,557 (54.58) | <0.001 |
Male | 156,677 (45.75) | 3953 (64.21) | 152,724 (45.42) | |
Race, n (%) | 0.151 | |||
White | 312,134 (91.15) | 5579 (90.63) | 306,555 (91.16) | |
Others | 30,303 (8.85) | 577 (9.37) | 29,726 (8.84) | |
Socioeconomic status Δ, n (%) | ||||
Low economic level | 171,737 (50.15) | 3473 (56.42) | 168,264 (50.04) | <0.001 |
High economic level | 170,700 (49.85) | 2683 (43.58) | 168,017 (49.96) | |
Education, n (%) | <0.001 | |||
High school or below | 164,308 (47.98) | 3707 (60.22) | 160,601 (47.76) | |
College degree or above | 178,129 (52.02) | 2449 (39.78) | 175,680 (52.24) | |
Smoking status, n (%) | <0.001 | |||
Never | 192,965 (56.35) | 2628 (42.69) | 190,337 (56.60) | |
Previous | 115,621 (33.76) | 2492 (40.48) | 113,129 (33.64) | |
Current | 33,851 (9.89) | 1036 (16.83) | 32,815 (9.76) | |
Moderate alcohol intake, n (%) | <0.001 | |||
Yes | 172,207 (50.29) | 2740 (44.51) | 169,467 (50.39) | |
No | 170,230 (49.71) | 3416 (55.49) | 166,814 (49.61) | |
Physical activity, n (%) | <0.001 | |||
Low | 61,044 (17.83) | 1367 (22.21) | 59,677 (17.75) | |
Moderate | 139,634 (40.78) | 2393 (38.87) | 137,241 (40.81) | |
High | 141,759 (41.40) | 2396 (38.92) | 139,363 (41.44) | |
Baseline hypertension, n (%) | <0.001 | |||
Yes | 81,425 (23.78) | 3134 (50.91) | 78,291 (23.28) | |
No | 261,012 (76.22) | 3022 (49.09) | 257,990 (76.72) | |
Baseline dyslipidemia, n (%) | <0.001 | |||
Yes | 35,734 (10.44) | 1601 (26.01) | 34,133 (10.15) | |
No | 306,703 (89.56) | 4555 (73.99) | 302,148 (89.85) | |
KDM-BA, years * | 51.92 (12.50) | 61.82 (11.82) | 51.75 (12.44) | <0.001 |
PhenoAge, years * | 49.12 (9.16) | 56.33 (8.32) | 49.00 (9.12) | <0.001 |
KDM-BA acceleration, years * | −3.71 (9.83) | 1.06 (11.00) | −3.79 (9.79) | <0.001 |
PhenoAge acceleration, years * | −6.51 (4.28) | −4.43 (5.09) | −6.54 (4.25) | <0.001 |
Body Roundness Index | Case | Model I | Model II | Model III | |||
---|---|---|---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | ||
Q1 | 443 | Reference | - | Reference | - | Reference | - |
Q2 | 940 | 1.70 (1.52, 1.91) | <0.001 | 1.66 (1.48, 1.86) | <0.001 | 1.57 (1.40, 1.76) | <0.001 |
Q3 | 1592 | 2.61 (2.34, 2.90) | <0.001 | 2.45 (2.20, 2.73) | <0.001 | 2.16 (1.94, 2.41) | <0.001 |
Q4 | 3181 | 5.28 (4.77, 5.84) | <0.001 | 4.69 (4.24, 5.20) | <0.001 | 3.72 (3.35, 4.13) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, T.; Tian, Y.; Wang, J.; Wu, Z.; Xie, W.; Liu, H.; Li, X.; Tao, L.; Guo, X. The Relationship between Visceral Fat Accumulation and Risk of Cardiometabolic Multimorbidity: The Roles of Accelerated Biological Aging. Nutrients 2025, 17, 1397. https://doi.org/10.3390/nu17081397
Zhu T, Tian Y, Wang J, Wu Z, Xie W, Liu H, Li X, Tao L, Guo X. The Relationship between Visceral Fat Accumulation and Risk of Cardiometabolic Multimorbidity: The Roles of Accelerated Biological Aging. Nutrients. 2025; 17(8):1397. https://doi.org/10.3390/nu17081397
Chicago/Turabian StyleZhu, Tianyu, Yixing Tian, Jinqi Wang, Zhiyuan Wu, Wenhan Xie, Haotian Liu, Xia Li, Lixin Tao, and Xiuhua Guo. 2025. "The Relationship between Visceral Fat Accumulation and Risk of Cardiometabolic Multimorbidity: The Roles of Accelerated Biological Aging" Nutrients 17, no. 8: 1397. https://doi.org/10.3390/nu17081397
APA StyleZhu, T., Tian, Y., Wang, J., Wu, Z., Xie, W., Liu, H., Li, X., Tao, L., & Guo, X. (2025). The Relationship between Visceral Fat Accumulation and Risk of Cardiometabolic Multimorbidity: The Roles of Accelerated Biological Aging. Nutrients, 17(8), 1397. https://doi.org/10.3390/nu17081397