Weighted Matrix Decomposition for Small Surface Defect Detection
Abstract
:1. Introduction
2. Weighted Matrix Decomposition Model
2.1. Overall Network Architecture
2.2. Weighted Matrix Construction
2.3. Matrix Decomposition
2.4. Pixels Segmentation
3. Results and Discussions
3.1. Experimental Setup
3.1.1. Datasets
3.1.2. Parameter Settings
3.1.3. Comparison Algorithms
3.1.4. Evaluation Metrics
3.2. Comparison With the State-of-the-Art
3.2.1. Visual Comparison
3.2.2. Performance Comparison
3.3. Verify the Effectiveness of Weighted Matrix Decomposition
3.3.1. Visual Effect Verification
3.3.2. Performance Metrics Verification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, J.; Qiao, Z.; Wang, Q.; Kong, X.; Yuan, Y. Investigation on SMT Product Defect Recognition Based on Multi-Source and Multi-Dimensional Data Reconstruction. Micromachines 2022, 13, 860. [Google Scholar] [CrossRef] [PubMed]
- Okunkova, A.A.; Volosova, M.A.; Kropotkina, E.Y.; Hamdy, K.; Grigoriev, S.N. Electrical Discharge Machining of Alumina Using Ni-Cr Coating and SnO Powder-Mixed Dielectric Medium. Metals 2022, 12, 1749. [Google Scholar] [CrossRef]
- Wang, J.; Li, Q.; Gan, J.; Yu, H.; Yang, X. Surface Defect Detection via Entity Sparsity Pursuit With Intrinsic Priors. IEEE Trans. Ind. Inform. 2020, 16, 141–150. [Google Scholar] [CrossRef]
- Olanipekun, A.T.; Maledi, N.B.; Mashinini, P.M. The synergy between powder metallurgy processes and welding of metallic alloy: A review. Powder Metall. 2020, 63, 254–267. [Google Scholar] [CrossRef]
- Zhong, Z.; Ma, Z. A novel defect detection algorithm for flexible integrated circuit package substrates. IEEE Trans. Ind. Electron. 2022, 69, 2117–2126. [Google Scholar] [CrossRef]
- Niu, M.; Song, K.; Huang, L.; Wang, Q.; Yan, Y.; Meng, Q. Unsupervised Saliency Detection of Rail Surface Defects Using Stereoscopic Images. IEEE Trans. Ind. Inform. 2021, 17, 2271–2281. [Google Scholar] [CrossRef]
- Yapi, D.; Allili, M.S.; Baaziz, N. Automatic Fabric Defect Detection Using Learning-Based Local Textural Distributions in the Contourlet Domain. IEEE Trans. Autom. Sci. Eng. 2018, 15, 1014–1026. [Google Scholar] [CrossRef]
- Liu, K.; Luo, N.; Li, A.; Tian, Y.; Sajid, H.; Chen, H. A New Self-Reference Image Decomposition Algorithm for Strip Steel Surface Defect Detection. IEEE Trans. Instrum. Meas. 2020, 69, 4732–4741. [Google Scholar] [CrossRef]
- Tzu, F.M. Effectiveness of electrical and optical detection at pixel circuit on thin-film transistors. Micromachines 2021, 12, 135. [Google Scholar] [CrossRef]
- Yu, J.; Yang, Y.; Zhang, H.; Sun, H.; Zhang, Z.; Xia, Z.; Zhu, J.; Dai, M.; Wen, H. Spectrum Analysis Enabled Periodic Feature Reconstruction Based Automatic Defect Detection System for Electroluminescence Images of Photovoltaic Modules. Micromachines 2022, 13, 332. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Z.; Yin, W.; Chen, H.; Liu, Y. Defect Detection Method for CFRP Based on Line Laser Thermography. Micromachines 2022, 13, 612. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikäinen, M. Texture classification. In CVonline: The Evolving, Distributed, Non-Proprietary, On-Line Compendium of Computer Vision. 2001. Available online: https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OJALA1/texclas.htm (accessed on 10 December 2022).
- Win, M.; Bushroa, A.; Hassan, M.; Hilman, N.; Ide-Ektessabi, A. A contrast adjustment thresholding method for surface defect detection based on mesoscopy. IEEE Trans. Ind. Inform. 2015, 11, 642–649. [Google Scholar] [CrossRef]
- Yang, H.; Chen, Y.; Song, K.; Yin, Z. Multiscale Feature-Clustering-Based Fully Convolutional Autoencoder for Fast Accurate Visual Inspection of Texture Surface Defects. IEEE Trans. Autom. Sci. Eng. 2019, 16, 1450–1467. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikainen, M.; Silven, O. Edge-based texture measures for surface inspection. In Proceedings of the 11th IAPR International Conference on Pattern Recognition. Vol. II. Conference B: Pattern Recognition Methodology and Systems, The Hague, The Netherlands, 30 August–3 September 1992; Volume 1, pp. 594–595. [Google Scholar]
- Zhiznyakov, A.; Privezentsev, D.; Zakharov, A. Using fractal features of digital images for the detection of surface defects. Pattern Recognit. Image Anal. 2015, 25, 122–131. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Q.; Zhou, Y.; He, F.; Xi, S. A surface defects inspection method based on multidirectional gray-level fluctuation. Int. J. Adv. Robot. Syst. 2017, 14, 1729881417703114. [Google Scholar] [CrossRef] [Green Version]
- Pastor-López, I.; Sanz, B.; Puerta, J.G.d.l.; Bringas, P.G. Surface defect modelling using co-occurrence matrix and fast fourier transformation. In Hybrid Artificial Intelligence Systems; Springer: Cham, Switzerland, 2019; pp. 745–757. [Google Scholar]
- Song, K.; Yan, Y. A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects. Appl. Surf. Sci. 2013, 285, 858–864. [Google Scholar] [CrossRef]
- Nieniewski, M. Morphological Detection and Extraction of Rail Surface Defects. IEEE Trans. Instrum. Meas. 2020, 69, 6870–6879. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Bradley, D.; Roth, G. Adaptive thresholding using the integral image. J. Graph. Tools 2007, 12, 13–21. [Google Scholar] [CrossRef]
- Ng, H.F. Automatic thresholding for defect detection. Pattern Recognit. Lett. 2006, 27, 1644–1649. [Google Scholar] [CrossRef]
- Ng, H.F.; Jargalsaikhan, D.; Tsai, H.C.; Lin, C.Y. An improved method for image thresholding based on the valley-emphasis method. In Proceedings of the 2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, Kaohsiung, Taiwan, 29 October–1 November 2013; pp. 1–4. [Google Scholar]
- Truong, M.T.N.; Kim, S. Automatic image thresholding using Otsu’s method and entropy weighting scheme for surface defect detection. Soft Comput. 2018, 22, 4197–4203. [Google Scholar] [CrossRef]
- Fan, J.L.; Lei, B. A modified valley-emphasis method for automatic thresholding. Pattern Recognit. Lett. 2012, 33, 703–708. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J.; Zhao, Q.; Li, C. A fabric defect detection algorithm based on improved valley-emphasis method. Res. J. Appl. Sci. Eng. Technol. 2014, 7, 2427–2431. [Google Scholar] [CrossRef]
- Wang, H.; Peng, J.; Yue, S. A directionally selective small target motion detecting visual neural network in cluttered backgrounds. IEEE Trans. Cybern. 2018, 50, 1541–1555. [Google Scholar] [CrossRef]
- Wang, H.; Peng, J.; Zheng, X.; Yue, S. A robust visual system for small target motion detection against cluttered moving backgrounds. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 839–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zorić, B.; Matić, T.; Hocenski, Ž. Classification of biscuit tiles for defect detection using Fourier transform features. ISA Trans. 2022, 125, 400–414. [Google Scholar] [CrossRef] [PubMed]
- Tsa, D.M.; Wu, S.K. Automated surface inspection using Gabor filters. Int. J. Adv. Manuf. Technol. 2000, 16, 474–482. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A. Inspection of surface defects using optimal FIR filters. In Proceedings of the 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, Hong Kong, China, 6–10 April 2003. [Google Scholar]
- Zhou, X.; Wang, Y.; Zhu, Q.; Mao, J.; Xiao, C.; Lu, X.; Zhang, H. A surface defect detection framework for glass bottle bottom using visual attention model and wavelet transform. IEEE Trans. Ind. Inform. 2019, 16, 2189–2201. [Google Scholar] [CrossRef]
- Bonnaillie-Noël, V.; Brancherie, D.; Dambrine, M.; Hérau, F.; Tordeux, S.; Vial, G. Multiscale expansion and numerical approximation for surface defects. In ESAIM: Proceedings; EDP Sciences: Les Ulis, France, 2011; Volume 33, pp. 22–35. [Google Scholar]
- Li, W.C.; Tsai, D.M. Defect inspection in low-contrast LCD images using Hough transform-based nonstationary line detection. IEEE Trans. Ind. Inform. 2009, 7, 136–147. [Google Scholar] [CrossRef]
- Tsai, D.M.; Hsieh, C.Y. Automated surface inspection for directional textures. Image Vis. Comput. 1999, 18, 49–62. [Google Scholar] [CrossRef]
- Hu, G.H.; Wang, Q.H.; Zhang, G.H. Unsupervised defect detection in textiles based on Fourier analysis and wavelet shrinkage. Appl. Opt. 2015, 54, 2963–2980. [Google Scholar] [CrossRef] [PubMed]
- Aiger, D.; Talbot, H. The phase only transform for unsupervised surface defect detection. In Emerging Topics in Computer Vision and Its Applications; World Scientific: Singapore, 2012; pp. 215–232. [Google Scholar]
- Choi, J.; Kim, C. Unsupervised detection of surface defects: A two-step approach. In Proceedings of the 2012 19th IEEE International Conference on Image Processing, Orlando, FL, USA, 30 September–3 October 2012; pp. 1037–1040. [Google Scholar]
- Luo, Q.; Fang, X.; Liu, L.; Yang, C.; Sun, Y. Automated visual defect detection for flat steel surface: A survey. IEEE Trans. Instrum. Meas. 2020, 69, 626–644. [Google Scholar] [CrossRef] [Green Version]
- Cross, G.R.; Jain, A.K. Markov random field texture models. IEEE Trans. Pattern Anal. Mach. Intell. 1983, PAMI-5, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Susan, S.; Sharma, M. Automatic texture defect detection using Gaussian mixture entropy modeling. Neurocomputing 2017, 239, 232–237. [Google Scholar] [CrossRef]
- Liu, K.; Wang, H.; Chen, H.; Qu, E.; Tian, Y.; Sun, H. Steel Surface Defect Detection Using a New Haar–Weibull-Variance Model in Unsupervised Manner. IEEE Trans. Instrum. Meas. 2017, 66, 2585–2596. [Google Scholar] [CrossRef]
- Liu, K.; Yan, H.; Meng, K.; Chen, H.; Sajid, H. Iterating tensor voting: A perceptual grouping approach for crack detection on el images. IEEE Trans. Autom. Sci. Eng. 2020, 18, 831–839. [Google Scholar] [CrossRef]
- Yan, H.; Paynabar, K.; Shi, J. Anomaly detection in images with smooth background via smooth-sparse decomposition. Technometrics 2017, 59, 102–114. [Google Scholar] [CrossRef]
- Yan, H.; Paynabar, K.; Shi, J. Real-time monitoring of high-dimensional functional data streams via spatio-temporal smooth sparse decomposition. Technometrics 2018, 60, 181–197. [Google Scholar] [CrossRef]
- Yu, H.; Li, Q.; Tan, Y.; Gan, J.; Wang, J.; Geng, Y.A.; Jia, L. A Coarse-to-Fine Model for Rail Surface Defect Detection. IEEE Trans. Instrum. Meas. 2019, 68, 656–666. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, J.; Wen, Z.; Wang, N.; Liu, X. Fabric defect inspection using prior knowledge guided least squares regression. Multimed. Tools Appl. 2017, 76, 4141–4157. [Google Scholar] [CrossRef]
- Qu, T.; Zou, L.; Zhang, Q.; Chen, X.; Fan, C. Defect detection on the fabric with complex texture via dual-scale over-complete dictionary. J. Text. Inst. 2016, 107, 743–756. [Google Scholar] [CrossRef]
- Aydin, I.; Akin, E.; Karakose, M. Defect classification based on deep features for railway tracks in sustainable transportation. Appl. Soft Comput. 2021, 111, 107706. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Y.; Hu, J.; He, J.; Yao, Z.; Bi, Q. Deep learning and machine vision-based inspection of rail surface defects. IEEE Trans. Instrum. Meas. 2021, 71, 1–14. [Google Scholar] [CrossRef]
- Block, S.B.; da Silva, R.D.; Dorini, L.B.; Minetto, R. Inspection of imprint defects in stamped metal surfaces using deep learning and tracking. IEEE Trans. Ind. Electron. 2020, 68, 4498–4507. [Google Scholar] [CrossRef]
- Liu, L.; Ouyang, W.; Wang, X.; Fieguth, P.; Chen, J.; Liu, X.; Pietikäinen, M. Deep learning for generic object detection: A survey. Int. J. Comput. Vis. 2020, 128, 261–318. [Google Scholar] [CrossRef] [Green Version]
- Song, K.; Yan, Y. Micro surface defect detection method for silicon steel strip based on saliency convex active contour model. Math. Probl. Eng. 2013, 2013, 429094. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, M.W.; Cowan, W.B.; Beatty, J.C. An experimental comparison of RGB, YIQ, LAB, HSV, and opponent color models. ACM Trans. Graph. 1987, 6, 123–158. [Google Scholar] [CrossRef]
- Candès, E.J.; Li, X.; Ma, Y.; Wright, J. Robust principal component analysis? J. ACM 2011, 58, 1–37. [Google Scholar] [CrossRef]
- Lin, Z.; Ganesh, A.; Wright, J.; Wu, L.; Chen, M.; Ma, Y. Fast Convex Optimization Algorithms for Exact Recovery of a corrupted Low-Rank Matrix. Coordinated Science Laboratory Report No. UILU-ENG-09-2214, DC-246. 2009. Available online: https://core.ac.uk/download/pdf/158319805.pdf (accessed on 10 December 2022).
- Achanta, R.; Hemami, S.; Estrada, F.; Susstrunk, S. Frequency-tuned salient region detection. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 1597–1604. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Fan, D.P.; Gong, C.; Cao, Y.; Ren, B.; Cheng, M.M.; Borji, A. Enhanced-alignment measure for binary foreground map evaluation. arXiv 2018, arXiv:1805.10421. [Google Scholar]
(%) | (%) | (%) | (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
EnOtsu | 0.45013 | 0.19990 | 100 | 0.25123 | 0.00399 | 0.00200 | 0.50008 | 0.86746 | 0.00130 |
VE | 10.49514 | 0.22229 | 100 | 10.31631 | 0.00444 | 0.00222 | 0.50031 | 0.88316 | 0.23347 |
NVE | 0.27837 | 0.19956 | 100 | 0.07913 | 0.00398 | 0.00200 | 0.50004 | 0.86711 | 0.02549 |
GVE | 0.27837 | 0.19956 | 100 | 0.07913 | 0.00398 | 0.00200 | 0.50004 | 0.86711 | 0.02549 |
IVE | 0.27837 | 0.19956 | 100 | 0.07913 | 0.00398 | 0.00200 | 0.50004 | 0.86711 | 0.02549 |
PHOT | 99.66240 | 8.33333 | 6.93069 | 99.84768 | 0.07568 | 0.03933 | 0.50745 | 0.99984 | 0.58086 |
SSD | 99.84009 | 79.41176 | 26.73267 | 99.98615 | 0.40000 | 0.25000 | 0.59021 | 0.99992 | 0.64337 |
Ostu | 36.86725 | 0.30245 | 96.03960 | 36.74903 | 0.00603 | 0.00302 | 0.50046 | 0.92478 | 0.24855 |
MT | 50.75417 | 0.38346 | 95.04950 | 50.66566 | 0.00764 | 0.00383 | 0.50072 | 0.94407 | 0.25117 |
WMD | 99.86378 | 94.44444 | 33.66337 | 99.99604 | 0.49635 | 0.33010 | 0.62883 | 0.99994 | 0.66594 |
Methods | (%) | (%) | (%) | (%) | |||||
---|---|---|---|---|---|---|---|---|---|
EnOtsu | 0.55279 | 0.20011 | 100 | 0.35410 | 0.00399 | 0.00200 | 0.50009 | 0.86766 | 0.00655 |
VE | 80.78457 | 0.63551 | 61.38614 | 80.82333 | 0.01258 | 0.00633 | 0.50085 | 0.97779 | 0.25874 |
NVE | 0.28627 | 0.19957 | 100 | 0.08704 | 0.00398 | 0.00200 | 0.50004 | 0.86712 | 0.01858 |
GVE | 0.28627 | 0.19957 | 100 | 0.08704 | 0.00398 | 0.00200 | 0.50004 | 0.86712 | 0.01858 |
IVE | 0.28627 | 0.19957 | 100 | 0.08704 | 0.00398 | 0.00200 | 0.50004 | 0.86712 | 0.01858 |
PHOT | 99.77691 | 0 | 0 | 99.97626 | 0 | 0 | 0.50001 | 0.99987 | 0.38060 |
SSD | 99.60317 | 27.67857 | 61.38614 | 99.67953 | 0.38154 | 0.23574 | 0.57370 | 0.99986 | 0.66337 |
Ostu | 62.84056 | 0.48664 | 91.08911 | 62.78412 | 0.00968 | 0.00486 | 0.50095 | 0.95823 | 0.25334 |
MT | 49.19450 | 0.36789 | 94.05941 | 49.10486 | 0.00733 | 0.00368 | 0.50064 | 0.94140 | 0.25088 |
WMD | 99.86378 | 94.44444 | 33.66337 | 99.99604 | 0.49635 | 0.33010 | 0.62883 | 0.99994 | 0.66594 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, Z.; Wang, H.; Xiang, D. Weighted Matrix Decomposition for Small Surface Defect Detection. Micromachines 2023, 14, 92. https://doi.org/10.3390/mi14010092
Zhong Z, Wang H, Xiang D. Weighted Matrix Decomposition for Small Surface Defect Detection. Micromachines. 2023; 14(1):92. https://doi.org/10.3390/mi14010092
Chicago/Turabian StyleZhong, Zhiyan, Hongxin Wang, and Dan Xiang. 2023. "Weighted Matrix Decomposition for Small Surface Defect Detection" Micromachines 14, no. 1: 92. https://doi.org/10.3390/mi14010092
APA StyleZhong, Z., Wang, H., & Xiang, D. (2023). Weighted Matrix Decomposition for Small Surface Defect Detection. Micromachines, 14(1), 92. https://doi.org/10.3390/mi14010092