MARR-GAN: Memristive Attention Recurrent Residual Generative Adversarial Network for Raindrop Removal
Abstract
:1. Introduction
- (1)
- The proposed memristive attention recurrent residual generative adversarial network (MARR-GAN) presents a software and hardware co-design of the image raindrop removal network, which leverages a memristor crossbar array and deep learning technology.
- (2)
- A novel raindrop removal module is designed to construct a network for removing raindrops using the autoencoder architecture. Temporal changes in raindrops within images are effectively captured by this framework while preserving their location and shape information. Furthermore, an attention gate design is introduced to enhance the network’s understanding of both global structure and local details in order to achieve comprehensive raindrop removal across different regions of the image.
- (3)
- A hardware implementation scheme utilizing memristor crossbar arrays for MARR-GAN is presented, integrating deep learning algorithms with neuron computing chips to enhance the speed of processing image data in the real world. Finally, the efficacy and superiority of MARR-GAN have been demonstrated in removing raindrops and restoring fine-grained image details.
2. Related Works
2.1. Rain Streaks Removal
2.2. Snow Removal
2.3. Raindrop Removal
3. Model Design of MARR-GAN
3.1. Comprehensive Network Architecture
3.1.1. Raindrop Feature Extraction Module
3.1.2. Raindrop Removal Network
3.2. Discrminator Network
3.3. Loss Function
4. Memristive Circuit Design of MARR-GAN
4.1. Convlution Calculation Implementation
4.2. RRCL Network
4.2.1. Global Average Pooling Module
4.2.2. Batch Normalization (BN)
4.2.3. Sigmoid
5. Experiments
5.1. Implementation Details
5.1.1. Datasets
5.1.2. Training Details
5.2. Experimental Results
5.2.1. Quantitative Evaluation
5.2.2. Qualitative Evaluation
5.3. Ablation Study
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, W.; Liu, Y.; Li, Z. Subband Differentiated Learning Network for Rain Streak Removal. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 4675–4688. [Google Scholar] [CrossRef]
- Jiang, N.; Luo, J.; Lin, J.; Chen, W.; Zhao, T. Lightweight Semi-Supervised Network for Single Image Rain Removal. Pattern Recognit. 2023, 137, 109277. [Google Scholar] [CrossRef]
- Cheng, B.; Li, J.; Chen, Y.; Zeng, T. Snow Mask Guided Adaptive Residual Network for Image Snow Removal. Comput. Vis. Image Underst. 2023, 236, 103819. [Google Scholar] [CrossRef]
- Wang, H.; Xie, Q.; Wu, Y.; Zhao, Q.; Meng, D. Single image rain streaks removal: A review and an exploration. Int. J. Mach. Learn. Cybern. 2020, 11, 853–872. [Google Scholar] [CrossRef]
- Yang, W.; Tan, R.T.; Feng, J.; Guo, Z.; Yan, S.; Liu, J. Joint Rain Detection and Removal from a Single Image with Contextualized Deep Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 1377–1393. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Y. A De-raining semantic segmentation network for real-time foreground segmentation. J. Real-Time Image Process. 2021, 18, 873–887. [Google Scholar] [CrossRef]
- Huang, S.C.; Jaw, D.W.; Hoang, Q.V.; Le, T.H. 3FL-Net: An Efficient Approach for Improving Performance of Lightweight Detectors in Rainy Weather Conditions. IEEE Trans. Intell. Transp. Syst. 2023, 24, 4293–4305. [Google Scholar] [CrossRef]
- Wu, D.; Guo, Z.; Li, A.; Yu, C.; Gao, C.; Sang, N. Conditional Boundary Loss for Semantic Segmentation. IEEE Trans. Image Process. 2023, 32, 3717–3731. [Google Scholar] [CrossRef]
- Zini, S.; Buzzelli, M. Laplacian encoder-decoder network for raindrop removal. Pattern Recogn. Lett. 2022, 158, 24–33. [Google Scholar] [CrossRef]
- Yan, W.; Xu, L.; Yang, W.; Tan, R.T. Feature-Aligned Video Raindrop Removal with Temporal Constraints. IEEE Trans. Image Process. 2022, 31, 3440–3448. [Google Scholar] [CrossRef]
- Luo, W.; Lai, J.; Xie, X. Weakly Supervised Learning for Raindrop Removal on a Single Image. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 1673–1683. [Google Scholar] [CrossRef]
- Du, S.; Liu, Y.; Ye, M.; Zhao, M.; Li, Z. Rain streaks removal from single image based on texture constraint of background scene. Neurocomputing 2021, 419, 224–238. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, J.; Ren, X.; Wang, A.; Wang, W. Joint Raindrop and Haze Removal from a Single Image. IEEE Trans. Image Process. 2020, 29, 9508–9519. [Google Scholar] [CrossRef]
- Qian, R.; Tan, R.T.; Yang, W.; Su, J.; Liu, J. Attentive Generative Adversarial Network for Raindrop Removal from A Single Image. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 2482–2491. [Google Scholar]
- Shao, M.W.; Li, L.; Meng, D.Y.; Zuo, W.M. Uncertainty guided multi-scale attention network for raindrop removal from a single image. IEEE Trans. Image Process. 2021, 30, 4828–4839. [Google Scholar] [CrossRef]
- Wang, G.; Sun, C.; Sowmya, A. Cascaded attention guidance network for single rainy image restoration. IEEE Trans. Image Process. 2020, 29, 9190–9203. [Google Scholar] [CrossRef]
- Tu, Z.; Talebi, H.; Zhang, H.; Yang, F.; Milanfar, P.; Bovik, A.; Li, Y. MAXIM: Multi-Axis MLP for Image Processing. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 5759–5770. [Google Scholar]
- Guo, Q.; Sun, J.Y.; Jue, F.; Ma, L.; Xie, X.F.; Liu, Y.; Zhao, J.J. Efficient Derain: Learning pixel-wise dilation filtering for high efficiency single-image deraining. In Proceedings of the 2021 AAAI Conference on Artificial Intelligence (AAAI), Vancouver, BC, Canada, 2–9 February 2021; pp. 1487–1495. [Google Scholar]
- Chen, M.; Wang, P.; Shang, D.; Wang, P. Cycle-attention-derain: Unsupervised rain removal with CycleGAN. Vis. Comput. 2023, 39, 3727–3739. [Google Scholar] [CrossRef]
- Wan, Y.; Shao, M.; Bao, Z.; Cheng, Y. Global–local transformer for single-image rain removal. Pattern Anal. Appl. 2023, 26, 1527–1538. [Google Scholar] [CrossRef]
- Xue, P.; He, H. Research of Single Image Rain Removal Algorithm Based on LBP-CGAN Rain Generation Method. Math. Probl. Eng. 2021, 10, 1155. [Google Scholar] [CrossRef]
- Hu, X.; Zhu, L.; Wang, T.; Fu, C.W.; Heng, P.A. Single-Image Real-Time Rain Removal Based on Depth-Guided Non-Local Features. IEEE Trans. Image Process. 2021, 30, 1759–1770. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, H.; Guo, S.-X.; Iu, H.H.C. Generation of Multi-Lobe Chua Corsage Memristor and Its Neural Oscillation. Micromachines 2022, 13, 1330. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Iu, H.H.C. Novel Floating and Grounded Memory Interface Circuits for Constructing Mem-Elements and Their Applications. IEEE Access 2020, 8, 114761–114772. [Google Scholar] [CrossRef]
- Liu, Y.; Iu, H.H.C.; Guo, Z.; Si, G. The Simple Charge-Controlled Grounded/Floating Mem-Element Emulator. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 2177–2181. [Google Scholar] [CrossRef]
- Xie, D.; Xiao, H.; Zhou, Y.; Duan, S.; Hu, X. MWA-MNN: Multi-patch Wavelet Attention Memristive Neural Network for image restoration. Expert Syst. Appl. 2024, 240, 122427. [Google Scholar] [CrossRef]
- Hong, Q.; Li, Y.; Wang, X. Memristive continuous Hopfield neural network circuit for image restoration. Neural Comput. Appl. 2020, 32, 8175–8185. [Google Scholar] [CrossRef]
- Yu, Y.-B.; Zhou, C.; Deng, Q.-X.; Zhong, Y.-J.-Y.; Cheng, M.; Kang, Z.-F. Memristor-based genetic algorithm for image restoration. J. Electron. 2022, 20, 100158. [Google Scholar] [CrossRef]
- Deng, Q.; Wang, C.; Lin, H. Memristive Hopfield neural network dynamics with heterogeneous activation functions and its application. Chaos Solitons Fractals 2024, 178, 114387. [Google Scholar] [CrossRef]
- Wang, C.; Tang, D.; Lin, H.; Yu, F.; Sun, Y. High-dimensional memristive neural network and its application in commercial data encryption communication. Expert Syst. Appl. 2024, 242, 122513. [Google Scholar] [CrossRef]
- Tang, D.; Wang, C.; Lin, H.; Yu, F. Dynamics analysis and hardware implementation of multi-scroll hyperchaotic hidden attractors based on locally active memristive Hopfield neural network. Nonlinear Dyn. 2024, 112, 1511–1527. [Google Scholar] [CrossRef]
- Wang, Z.; Li, C.; Lin, P.; Rao, M.; Nie, Y.; Song, W.; Qiu, Q.; Li, Y.; Yan, P.; Strachan, J.P. In situ training of feed-forward and recurrent convolutional memristor networks. Nat. Mach. Intell. 2019, 1, 434–442. [Google Scholar] [CrossRef]
- Li, C.; Wang, Z.; Rao, M.; Belkin, D.; Song, W.; Jiang, H.; Yan, P.; Li, Y.; Lin, P.; Hu, M. Long short-term memory networks in memristor crossbar arrays. Nat. Mach. Intell. 2019, 1, 49–57. [Google Scholar] [CrossRef]
- Kong, X.; Yu, F.; Yao, W.; Cai, S.; Zhang, J.; Lin, H. Memristor-induced hyperchaos, multiscroll and extreme multistability in fractional-order HNN: Image encryption and FPGA implementation. Neural Netw. 2024, 171, 85–103. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Yu, F.; Yao, W.; Xu, C.; Zhang, J.; Cai, S.; Wang, C. A class of 2n+1 dimensional simplest Hamiltonian conservative chaotic systems and fast image encryption schemes. Appl. Math. Modell. 2024, 125, 351–374. [Google Scholar] [CrossRef]
- Isah, A.; Nguetcho, A.S.; Binczak, S.; Bilbault, J.-M. Comparison of the Performance of the Memristor Models in 2D Cellular Nonlinear Network. Electronics 2021, 10, 1577. [Google Scholar] [CrossRef]
- Hu, X.; Wang, W.; Sun, B.; Wang, Y.; Li, J.; Zhou, G. Refining the negative differential resistance effect in a TiOx-based memristor. J. Phys. Chem. Lett. 2021, 10, 1021. [Google Scholar] [CrossRef] [PubMed]
- Mladenov, V. A unified and open LTSPICE memristor model library. Electronics 2021, 10, 1594. [Google Scholar] [CrossRef]
- Ren, K.; Zhang, K.; Qin, X.; Yang, F.; Sun, B.; Zhao, Y.; Zhang, Y. VETAM-M: A General Model for Voltage-Controlled Memcapacitive-Coupled Memristors. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 1717–1721. [Google Scholar] [CrossRef]
- Cheng, L.; Li, J.C.; Zheng, H.X.; Yuan, P.; Yin, J.H.; Yang, L.; Luo, Q.; Li, Y.; Lv, H.B.; Chang, T.C.; et al. Memristors: In-Memory Hamming Weight Calculation in a 1T1R Memristive Array. Adv. Electron. Mater. 2020, 69, 4920–4923. [Google Scholar]
- Zhuang, J.H.; Luo, Y.S.; Zhao, X.L.; Jiang, T.X.; Chang, Y.; Liu, J. Unsupervised video rain streaks removal with deep foreground–background modeling. J. Comput. Appl. Math. 2024, 436, 115431. [Google Scholar] [CrossRef]
- Luo, Y.; Ling, J. Single-image de-raining using low-rank matrix approximation. Neural Comput. Appl. 2020, 32, 7503–7514. [Google Scholar] [CrossRef]
- Huang, S.; Xu, Y.; Ren, M.; Yang, Y.; Wan, W. Rain Removal of Single Image Based on Directional Gradient Priors. Appl. Sci. 2022, 12, 11628. [Google Scholar] [CrossRef]
- Sun, G.; Leng, J.; Cattani, C. A particular directional multilevel transform-based method for single-image rain removal. Knowl. Based Syst. 2020, 200, 106000. [Google Scholar] [CrossRef]
- Li, M.; Cao, X.; Zhao, Q.; Zhang, L.; Meng, D. Online Rain/Snow Removal from Surveillance Videos. IEEE Trans. Image Process. 2021, 30, 2029–2044. [Google Scholar] [CrossRef] [PubMed]
- Fazlali, H.; Shirani, S.; Bradford, M.; Kirubarajan, T. Single image rain/snow removal using distortion type information. Multimed. Tools Appl. 2022, 81, 14105–14131. [Google Scholar] [CrossRef]
- Li, P.; Yun, M.; Tian, J.; Tang, Y.; Wang, G.; Wu, C. Stacked dense networks for single-image snow removal. Neurocomputing 2019, 367, 152–163. [Google Scholar] [CrossRef]
- Liu, X.; Suganuma, M.; Sun, Z.; Okatani, T. Dual Residual Networks Leveraging the Potential of Paired Operations for Image Restoration. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 7000–7009. [Google Scholar]
- Xu, C.; Gao, J.; Wen, Q.; Wang, B. Generative Adversarial Network for Image Raindrop Removal of Transmission Line Based on Unmanned Aerial Vehicle Inspection. Wirel. Commun. Mob. Comput. 2021, 10, 6668771. [Google Scholar] [CrossRef]
- Xu, Y.; Xie, L.; Xie, C.; Dai, W.; Mei, J.; Qiao, S.; Shen, W.; Xiong, H.; Yuille, A. BNET: Batch Normalization with Enhanced Linear Transformation. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 9225–9232. [Google Scholar] [CrossRef]
- Zuo, Q.; Chen, S.; Wang, Z. R2AU-Net: Attention Recurrent Residual Convolutional Neural Network for Multimodal Medical Image Segmentation. Secur. Commun. Netw. 2021, 10, 6625688. [Google Scholar] [CrossRef]
- Quan, R.; Yu, X.; Liang, Y.; Yang, Y. Removing Raindrops and Rain Streaks in One Go. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 9143–9152. [Google Scholar]
- Quan, Y.; Deng, S.; Chen, Y.; Ji, H. Deep Learning for Seeing through Window with Raindrops. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27–28 November 2019; pp. 2463–2471. [Google Scholar]
- Lin, H.; Jing, C.; Huang, Y.; Ding, X. A2Net: Adjacent Aggregation Networks for Image Raindrop Removal. IEEE Access 2020, 8, 60769–60779. [Google Scholar] [CrossRef]
- Kwon, H.-J.; Lee, S.-H. Raindrop-Removal Image Translation Using Target-Mask Network with Attention Module. Mathematics 2023, 11, 3318. [Google Scholar] [CrossRef]
Dataset | Metric | AGAN | ATT | A2Net | DURN | TMN | MARR-GAN |
---|---|---|---|---|---|---|---|
Testa | PSNR (dB) | 29.569 | 30.808 | 27.961 | 30.1008 | 30.062 | 30.956 |
SSIM | 0.905 | 0.917 | 0.911 | 0.912 | 0.905 | 0.900 | |
PHah | 3 | 1 | 4 | 2 | 2 | 1 | |
Testb | PSNR (dB) | 24.228 | -- 1 | 25.081 | 24.322 | 24.313 | 25.478 |
SSIM | 0.786 | -- 1 | 0.793 | 0.802 | 0.787 | 0.807 | |
PHah | 4 | -- 1 | 2 | 3 | 4 | 2 |
Dataset | Metric | AGAN | ATT | A2Net | DURN | TMN | MARR-GAN |
---|---|---|---|---|---|---|---|
RainDS | PSNR (dB) | 24.298 | -- * | 24.461 | 23.882 | 24.151 | 24.484 |
SSIM | 0.819 | -- * | 0.842 | 0.818 | 0.828 | 0.847 | |
PHah | 4 | -- * | 3 | 4 | 4 | 3 |
Dataset | Metric | Experiment I | Experiment II | Experiment III | MARR-GAN |
---|---|---|---|---|---|
Testa | PSNR (dB) | 29.358 | 29.941 | 28.692 | 30.956 |
SSIM | 0.896 | 0.884 | 0.865 | 0.900 | |
PHah | 3 | 3 | 4 | 1 | |
Testb | PSNR (dB) | 24.376 | 25.310 | 25.327 | 25.478 |
SSIM | 0.792 | 0.801 | 0.783 | 0.807 | |
PHah | 2 | 2 | 2 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chai, Q.; Liu, Y. MARR-GAN: Memristive Attention Recurrent Residual Generative Adversarial Network for Raindrop Removal. Micromachines 2024, 15, 217. https://doi.org/10.3390/mi15020217
Chai Q, Liu Y. MARR-GAN: Memristive Attention Recurrent Residual Generative Adversarial Network for Raindrop Removal. Micromachines. 2024; 15(2):217. https://doi.org/10.3390/mi15020217
Chicago/Turabian StyleChai, Qiuyue, and Yue Liu. 2024. "MARR-GAN: Memristive Attention Recurrent Residual Generative Adversarial Network for Raindrop Removal" Micromachines 15, no. 2: 217. https://doi.org/10.3390/mi15020217
APA StyleChai, Q., & Liu, Y. (2024). MARR-GAN: Memristive Attention Recurrent Residual Generative Adversarial Network for Raindrop Removal. Micromachines, 15(2), 217. https://doi.org/10.3390/mi15020217