Rectum Dose Constraints for Carbon Ion Therapy: Relative Biological Effectiveness Model Dependence in Relation to Clinical Outcomes
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Patient Treatment and Follow-Up
- ▪
- CNAO S16/2012C Approved by referral Ethics Committee “CNAO” on 19 December 2012, “Phase II clinical trial on high risk prostate cancer treated by carbon ions radiation therapy”.
- ▪
- CNAO S13/2012/C Approved on 21 December 2016, by referral Ethics Committee “Area Pavia”, “Phase II clinical trial on trunk sarcoma (of bones and of soft tissues) treated by carbon ions radiation therapy”.
- ▪
- CNAO 33 2016 C “Sacral Chordoma: a Randomized & Observational study on surgery versus definitive radiation therapy in primary localized disease (SACRO)” approved on 24 November 2016, by referral Ethics Committee “Area Pavia”.
4.2. Dose Recalculation and Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kamada, T.; Tsujii, H.; Blakely, E.A.; Debus, J.; De Neve, W.; Durante, M.; Jäkel, O.; Mayer, R.; Orecchia, R.; Pötter, R.; et al. Carbon ion radiotherapy in Japan: An assessment of 20 years of clinical experience. Lancet Oncol. 2015, 16, e93–e100. [Google Scholar] [CrossRef] [Green Version]
- Steinsträter, O.; Grün, R.; Scholz, U.; Friedrich, T.; Durante, M.; Scholz, M. Mapping of RBE-weighted doses between HIMAC- and LEM-based treatment planning systems for carbon ion therapy. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, 854–860. [Google Scholar] [CrossRef]
- Fossati, P.; Molinelli, S.; Matsufuji, N.; Ciocca, M.; Mirandola, A.; Mairani, A.; Mizoe, J.; Hasegawa, A.; Imai, R.; Kamada, T.; et al. Dose prescription in carbon ion radiotherapy: A planning study to compare NIRS and LEM approaches with a clinically-oriented strategy. Phys. Med. Biol. 2012, 57, 7543–7554. [Google Scholar] [CrossRef]
- Fossati, P.; Matsufuji, N.; Kamada, T.; Karger, C.P. Radiobiological issues in prospective carbon ion therapy trials. Med. Phys. 2018, 45, e1096–e1110. [Google Scholar] [CrossRef] [Green Version]
- Molinelli, S.; Magro, G.; Mairani, A.; Matsufuji, N.; Kanematsu, N.; Inaniwa, T.; Mirandola, A.; Russo, S.; Mastella, E.; Hasegawa, A.; et al. Dose prescription in carbon ion radiotherapy: How to compare two different RBE-weighted dose calculation systems. Radiother. Oncol. 2016, 120, 307–312. [Google Scholar] [CrossRef]
- Scholz, M.; Kellerer, A.M.; Kraft-Weyrather, W.; Kraft, G. Computation of cell survival in heavy ion beams for therapy. Radiat. Environ. Biophys. 1997, 36, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Kramer, M.; Scholz, M. Treatment planning for heavy-ion radiotherapy: Calculation and optimization of biologically effective dose. Phys. Med. Biol. 2000, 45, 3319–3330. [Google Scholar] [CrossRef] [PubMed]
- Kanai, T.; Endo, M.; Minohara, S.; Miyahara, N.; Koyama-ito, H.; Tomura, H.; Matsufuji, N.; Futami, Y.; Fukumura, A.; Hiraoka, T.; et al. Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 1999, 44, 201–210. [Google Scholar] [CrossRef]
- Inaniwa, T.; Furukawa, T.; Kase, Y.; Matsufuji, N.; Toshito, T.; Matsumoto, Y.; Furusawa, Y.; Noda, K. Treatment planning for a scanned carbon beam with a modified microdosimetric kinetic model. Phys. Med. Biol. 2010, 55, 6721–6737. [Google Scholar] [CrossRef]
- Inaniwa, T.; Kanematsu, N.; Matsufuji, N.; Kanai, T.; Shirai, T.; Noda, K.; Tsuji, H.; Kamada, T.; Tsujii, H. Reformulation of a clinical-dose system for carbon-ion radiotherapy treatment planning at the National Institute of Radiological Sciences, Japan. Phys. Med. Biol. 2015, 60, 3271–3286. [Google Scholar] [CrossRef] [Green Version]
- Michalski, J.M.; Gay, H.; Jackson, A.; Tucker, S.L.; Deasy, J.O. Radiation Dose-Volume Effects in Radiation-Induced Rectal Injury. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, S123–S129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katoh, H.; Tsuji, H.; Ishikawa, H.; Kamada, T.; Wakatsuki, M.; Hirasawa, N.; Suzuki, H.; Akakura, K.; Nakano, T.; Shimazaki, J.; et al. Health-related quality of life after carbon-ion radiotherapy for prostate cancer: A 3-year prospective study. Int. J. Urol. 2014, 21, 370–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaake, W.; van der Schaaf, A.; van Dijk, L.V.; Bongaerts, A.H.; van den Bergh, A.C.; Langendijk, J.A. Normal tissue complication probability (NTCP) models for late rectal bleeding, stool frequency and fecal incontinence after radiotherapy in prostate cancer patients. Radiother. Oncol. 2016, 119, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Magro, G.; Dahle, T.J.; Molinelli, S.; Ciocca, M.; Fossati, P.; Ferrari, A.; Inaniwa, T.; Matsufuji, N.; Ytre-Hauge, K.S.; Mairani, A. The FLUKA Monte Carlo code coupled with the NIRS approach for clinical dose calculations in carbon ion therapy. Phys. Med. Biol. 2017, 62, 3814–3827. [Google Scholar] [CrossRef] [PubMed]
- Dale, J.E.; Molinelli, S.; Vitolo, V.; Vischioni, B.; Bonora, M.; Magro, G.; Pettersen, H.E.S.; Mairani, A.; Hasegawa, A.; Dahl, O.; et al. Optic nerve constraints for carbon ion RT at CNAO-reporting and relating outcome to European and Japanese RBE. Radiother. Oncol. 2019, 140, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Fukahori, M.; Matsufuji, N.; Himukai, T.; Kanematsu, N.; Mizuno, H.; Fukumura, A.; Tsuji, H.; Kamada, T. Estimation of late rectal normal tissue complication probability parameters in carbon ion therapy for prostate cancer. Radiother. Oncol. 2016, 118, 136–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okonogi, N.; Fukahori, M.; Wakatsuki, M.; Ohkubo, Y.; Kato, S.; Miyasaka, Y.; Tsuji, H.; Nakano, T.; Kamada, T. Dose constraints in the rectum and bladder following carbon-ion radiotherapy for uterus carcinoma: A retrospective pooled analysis. Radiat. Oncol. 2018, 13, 119. [Google Scholar] [CrossRef]
- Choi, K.; Mein, S.B.; Kopp, B.; Magro, G.; Molinelli, S.; Ciocca, M.; Mairani, A. FRoG—A new calculation engine for clinical investigations with proton and carbon ion beams at CNAO. Cancers 2018, 10, 395. [Google Scholar] [CrossRef] [Green Version]
- Mein, S.; Choi, K.; Kopp, B.; Tessonnier, T.; Bauer, J.; Ferrari, A.; Haberer, T.; Debus, J.; Abdollahi, A.; Mairani, A. Fast robust dose calculation on GPU for high-precision 1H, 4He, 12C and 16O ion therapy: The FRoG platform. Sci. Rep. 2018, 8, 14829. [Google Scholar] [CrossRef]
- Tsujii, H.; Mizoe, J.E.; Kamada, T.; Baba, M.; Kato, S.; Kato, H.; Tsuji, H.; Yamada, S.; Yasuda, S.; Ohno, T.; et al. Overview of clinical experiences on carbon ion radiotherapy at NIRS. Radiother. Oncol. 2004, 73, S41–S49. [Google Scholar] [CrossRef]
- Hasegawa, A.; Mizoe, J.; Jingu, K.; Bessho, H.; Morikawa, T.; Kamada, T.; Tsujii, H. Carbon Ion Radiotherapy for Malignant Head-and-Neck Tumors Invading the Skull Base. Int. J. Radiat. Oncol. Biol. Phys. 2010, 78, 173. [Google Scholar] [CrossRef]
- NCI National Cancer Institute (US). Common Terminology Criteria for Adverse Events (CTCAE) Version 4.03; NIH Publication: Bethesda, MD, USA, 2010. [Google Scholar]
- Bauer, J.; Sommerer, F.; Mairani, A.; Unholtz, D.; Farook, R.; Handrack, J.; Frey, K.; Marcelos, T.; Tessonnier, T.; Ecker, S.; et al. Integration and evaluation of automated Monte Carlo simulations in the clinical practice of scanned proton and carbon ion beam therapy. Phys. Med. Biol. 2014, 59, 4635–4659. [Google Scholar] [CrossRef] [PubMed]
- Marks, L.B.; Yorke, E.D.; Jackson, A.; Ten Haken, R.K.; Constine, L.S.; Eisbruch, A.; Bentzen, S.M.; Nam, J.; Deasy, J.O. Use of normal tissue complication probability models in the clinic. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, S10–S19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uhl, M.; Edler, L.; Jensen, A.D.; Habl, G.; Oelmann, J.; Röder, F.; Jäckel, O.; Debus, J.; Herfarth, K. Randomized phase II trial of hypofractionated proton versus carbon ion radiation therapy in patients with sacrococcygeal chordoma-the ISAC trial protocol. Radiat. Oncol. 2014, 9, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gay, H.A.; Barthold, H.J.; O’Meara, E.; Bosch, W.R.; El Naqa, I.; Al-Lozi, R.; Rosenthal, S.A.; Lawton, C.; Lee, W.R.; Sandler, H.; et al. Pelvic normal tissue contouring guidelines for radiation therapy: A radiation therapy oncology group consensus panel atlas. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, e353–e562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, J.D.; Stetz, J.; Pajak, T.F. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Int. J. Radiat. Oncol. Biol. Phys. 1995, 31, 1341–1346. [Google Scholar] [CrossRef]
- Scipy.org. Available online: http://www.scipy.org/ (accessed on 16 September 2019).
- Lyman, J.T. Complication Probability as Assessed from Dose-Volume Histograms. Radiat. Res. Suppl. 1985, 8, S13–S19. [Google Scholar] [CrossRef]
- Burman, C.; Kutcher, G.J.; Emami, B.; Goitein, M. Fitting of normal tissue tolerance data to an analytic function. Int. J. Radiat. Oncol. Biol. Phys. 1991, 21, 123–135. [Google Scholar] [CrossRef]
Case | Rectum Volume (cc) | DLEM|20% (38.7 Gy(RBE)) | DMKM|20% (28.8 Gy(RBE)) | DLEM|10% (54.7 Gy(RBE)) | DMKM|10% (46.4 Gy(RBE)) | DLEM|5% (65.1 Gy(RBE)) | DMKM|5% (60.0 Gy(RBE)) | DLEM|1% (69.3 Gy(RBE)) | DMKM|1% (66.0 Gy(RBE)) |
---|---|---|---|---|---|---|---|---|---|
Prostate 1 | 68.6 | 26.3 | 14.0 | 50.9 | 38.1 | 61.4 | 50.7 | 67.1 | 63.3 |
Prostate 2 | 58.3 | 37.2 | 23.6 | 54.8 | 41.8 | 61.1 | 49.3 | 64.5 | 55.0 |
LSAC 1 | 146.2 | 47.2 | 35.1 | 59.9 | 50.8 | 63.8 | 56.3 | 67.9 | 62.7 |
LSAC 2 | 53.5 | 25.6 | 11.7 | 47.7 | 32.7 | 59.8 | 49.7 | 67.2 | 60.5 |
HSAC 1 | 86.0 | 48.6 | 37.0 | 58.8 | 49.4 | 63.3 | 54.8 | 67.7 | 60.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, K.; Molinelli, S.; Russo, S.; Mirandola, A.; Fiore, M.R.; Vischioni, B.; Fossati, P.; Petrucci, R.; Turturici, I.; Dale, J.E.; et al. Rectum Dose Constraints for Carbon Ion Therapy: Relative Biological Effectiveness Model Dependence in Relation to Clinical Outcomes. Cancers 2020, 12, 46. https://doi.org/10.3390/cancers12010046
Choi K, Molinelli S, Russo S, Mirandola A, Fiore MR, Vischioni B, Fossati P, Petrucci R, Turturici I, Dale JE, et al. Rectum Dose Constraints for Carbon Ion Therapy: Relative Biological Effectiveness Model Dependence in Relation to Clinical Outcomes. Cancers. 2020; 12(1):46. https://doi.org/10.3390/cancers12010046
Chicago/Turabian StyleChoi, Kyungdon, Silvia Molinelli, Stefania Russo, Alfredo Mirandola, Maria Rosaria Fiore, Barbara Vischioni, Piero Fossati, Rachele Petrucci, Irene Turturici, Jon Espen Dale, and et al. 2020. "Rectum Dose Constraints for Carbon Ion Therapy: Relative Biological Effectiveness Model Dependence in Relation to Clinical Outcomes" Cancers 12, no. 1: 46. https://doi.org/10.3390/cancers12010046
APA StyleChoi, K., Molinelli, S., Russo, S., Mirandola, A., Fiore, M. R., Vischioni, B., Fossati, P., Petrucci, R., Turturici, I., Dale, J. E., Valvo, F., Ciocca, M., & Mairani, A. (2020). Rectum Dose Constraints for Carbon Ion Therapy: Relative Biological Effectiveness Model Dependence in Relation to Clinical Outcomes. Cancers, 12(1), 46. https://doi.org/10.3390/cancers12010046