Molecular Markers to Predict Prognosis and Treatment Response in Uterine Cervical Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Clinical Parameters to Predict Outcome and Response
Hematological Parameters
3. Human Papillomavirus in Cervical Cancer
3.1. HPV-DNA Integration
3.2. Prognostic Impact of HPV Viral Load
3.3. Genetic Alterations, Immune Responses and Angiogenesis in HPV+ Cervical Cancer
3.4. Oncoproteins E6 and E7 Increase Radiosensitivity of HPV-Positive Cervical Cancer Cells
4. Molecular Protein Markers
5. MicroRNA, Long-Non-Coding RNA and Circular RNA
5.1. MicroRNAs
5.2. Long-Non-Coding RNAs
5.3. Circular RNAs
6. Circulating Tumor Cells (CTC), Circulating Cell-Free DNA (cfDNA) and miRNA in Cervical Cancer
6.1. Circulating Tumor Cells (CTCs)
6.2. Circulating Cell-Free Tumor DNA (ctDNA)
6.3. Circulating HPV DNA
6.4. Circulating miRNAs
7. Tumor Microenvironment in Cervical Cancer
8. Microbiota in Cervical Cancer
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chesson, H.W.; Dunne, E.F.; Hariri, S.; Markowitz, L.E. The Estimated Lifetime Probability of Acquiring Human Papillomavirus in the United States. Sex. Transm. Dis. 2014, 41, 660–664. [Google Scholar] [CrossRef]
- Ho, G.Y.; Bierman, R.; Beardsley, L.; Chang, C.J.; Burk, R.D. Natural History of Cervicovaginal Papillomavirus Infection in Young Women. N. Engl. J. Med. 1998, 338, 423–428. [Google Scholar] [CrossRef]
- Walboomers, J.M.; Jacobs, M.V.; Manos, M.M.; Bosch, F.X.; Kummer, J.A.; Shah, K.V.; Snijders, P.J.; Peto, J.; Meijer, C.J.; Muñoz, N. Human Papillomavirus Is a Necessary Cause of Invasive Cervical Cancer Worldwide. J. Pathol. 1999, 189, 12–19. [Google Scholar] [CrossRef]
- Rodriguez, N.M. Participatory Innovation for Human Papillomavirus Screening to Accelerate the Elimination of Cervical Cancer. Lancet Glob. Health 2021, 9, e582–e583. [Google Scholar] [CrossRef]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the Global Cancer Incidence and Mortality in 2018: GLOBOCAN Sources and Methods. Int. J. Cancer 2019, 144, 1941–1953. [Google Scholar] [CrossRef] [Green Version]
- Small, W.; Bacon, M.A.; Bajaj, A.; Chuang, L.T.; Fisher, B.J.; Harkenrider, M.M.; Jhingran, A.; Kitchener, H.C.; Mileshkin, L.R.; Viswanathan, A.N.; et al. Cervical Cancer: A Global Health Crisis. Cancer 2017, 123, 2404–2412. [Google Scholar] [CrossRef] [Green Version]
- Cohen, P.A.; Jhingran, A.; Oaknin, A.; Denny, L. Cervical Cancer. Lancet 2019, 393, 169–182. [Google Scholar] [CrossRef]
- Pötter, R.; Tanderup, K.; Kirisits, C.; de Leeuw, A.; Kirchheiner, K.; Nout, R.; Tan, L.T.; Haie-Meder, C.; Mahantshetty, U.; Segedin, B.; et al. The EMBRACE II Study: The Outcome and Prospect of Two Decades of Evolution within the GEC-ESTRO GYN Working Group and the EMBRACE Studies. Clin. Transl. Radiat. Oncol. 2018, 9, 48–60. [Google Scholar] [CrossRef] [Green Version]
- Han, K.; Milosevic, M.; Fyles, A.; Pintilie, M.; Viswanathan, A.N. Trends in the Utilization of Brachytherapy in Cervical Cancer in the United States. Int. J. Radiat. Oncol. Biol. Phys. 2013, 87, 111–119. [Google Scholar] [CrossRef]
- Gill, B.S.; Lin, J.F.; Krivak, T.C.; Sukumvanich, P.; Laskey, R.A.; Ross, M.S.; Lesnock, J.L.; Beriwal, S. National Cancer Data Base Analysis of Radiation Therapy Consolidation Modality for Cervical Cancer: The Impact of New Technological Advancements. Int. J. Radiat. Oncol. Biol. Phys. 2014, 90, 1083–1090. [Google Scholar] [CrossRef]
- Pötter, R.; Tanderup, K.; Schmid, M.P.; Jürgenliemk-Schulz, I.; Haie-Meder, C.; Fokdal, L.U.; Sturdza, A.E.; Hoskin, P.; Mahantshetty, U.; Segedin, B.; et al. MRI-Guided Adaptive Brachytherapy in Locally Advanced Cervical Cancer (EMBRACE-I): A Multicentre Prospective Cohort Study. Lancet Oncol. 2021, 22, 538–547. [Google Scholar] [CrossRef]
- Morris, M.; Eifel, P.J.; Lu, J.; Grigsby, P.W.; Levenback, C.; Stevens, R.E.; Rotman, M.; Gershenson, D.M.; Mutch, D.G. Pelvic Radiation with Concurrent Chemotherapy Compared with Pelvic and Para-Aortic Radiation for High-Risk Cervical Cancer. N. Engl. J. Med. 1999, 340, 1137–1143. [Google Scholar] [CrossRef]
- Eifel, P.J.; Winter, K.; Morris, M.; Levenback, C.; Grigsby, P.W.; Cooper, J.; Rotman, M.; Gershenson, D.; Mutch, D.G. Pelvic Irradiation with Concurrent Chemotherapy versus Pelvic and Para-Aortic Irradiation for High-Risk Cervical Cancer: An Update of Radiation Therapy Oncology Group Trial (RTOG) 90-01. J. Clin. Oncol. 2004, 22, 872–880. [Google Scholar] [CrossRef]
- Rose, P.G.; Ali, S.; Watkins, E.; Thigpen, J.T.; Deppe, G.; Clarke-Pearson, D.L.; Insalaco, S.; Gynecologic Oncology Group. Long-Term Follow-up of a Randomized Trial Comparing Concurrent Single Agent Cisplatin, Cisplatin-Based Combination Chemotherapy, or Hydroxyurea during Pelvic Irradiation for Locally Advanced Cervical Cancer: A Gynecologic Oncology Group Study. J. Clin. Oncol. 2007, 25, 2804–2810. [Google Scholar] [CrossRef]
- Shrivastava, S.; Mahantshetty, U.; Engineer, R.; Chopra, S.; Hawaldar, R.; Hande, V.; Kerkar, R.A.; Maheshwari, A.; Shylasree, T.S.; Ghosh, J.; et al. Cisplatin Chemoradiotherapy vs. Radiotherapy in FIGO Stage IIIB Squamous Cell Carcinoma of the Uterine Cervix: A Randomized Clinical Trial. JAMA Oncol. 2018, 4, 506–513. [Google Scholar] [CrossRef]
- Tewari, K.S.; Sill, M.W.; Long, H.J.; Penson, R.T.; Huang, H.; Ramondetta, L.M.; Landrum, L.M.; Oaknin, A.; Reid, T.J.; Leitao, M.M.; et al. Improved Survival with Bevacizumab in Advanced Cervical Cancer. N. Engl. J. Med. 2014, 370, 734–743. [Google Scholar] [CrossRef] [Green Version]
- Tewari, K.S.; Sill, M.W.; Penson, R.T.; Huang, H.; Ramondetta, L.M.; Landrum, L.M.; Oaknin, A.; Reid, T.J.; Leitao, M.M.; Michael, H.E.; et al. Bevacizumab for Advanced Cervical Cancer: Final Overall Survival and Adverse Event Analysis of a Randomised, Controlled, Open-Label, Phase 3 Trial (Gynecologic Oncology Group 240). Lancet 2017, 390, 1654–1663. [Google Scholar] [CrossRef] [Green Version]
- Chung, H.C.; Ros, W.; Delord, J.-P.; Perets, R.; Italiano, A.; Shapira-Frommer, R.; Manzuk, L.; Piha-Paul, S.A.; Xu, L.; Zeigenfuss, S.; et al. Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Cervical Cancer: Results From the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2019, 37, 1470–1478. [Google Scholar] [CrossRef]
- De Felice, F.; Marchetti, C.; Fagotti, A.; Scambia, G. Immunotherapy in Cervical Cancer: The Advent of Precision Medicine. Ann. Transl. Med. 2020, 8, 773. [Google Scholar] [CrossRef]
- Coleman, R.L.; Lorusso, D.; Gennigens, C.; González-Martín, A.; Randall, L.; Cibula, D.; Lund, B.; Woelber, L.; Pignata, S.; Forget, F.; et al. Efficacy and safety of tisotumab vedotin in previously treated recurrent or metastatic cervical cancer (innovaTV 204/GOG-3023/ENGOT-cx6): A multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2021, 22, 609–619. [Google Scholar] [CrossRef]
- Koh, W.-J.; Abu-Rustum, N.R.; Bean, S.; Bradley, K.; Campos, S.M.; Cho, K.R.; Chon, H.S.; Chu, C.; Clark, R.; Cohn, D.; et al. Cervical Cancer, Version 3.2019, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2019, 17, 64–84. [Google Scholar] [CrossRef] [Green Version]
- Pickel, H.; Haas, J.; Lahousen, M. Prognostic Factors in Cervical Cancer. Eur. J. Obstet. Gynecol. Reprod. Biol. 1997, 71, 209–213. [Google Scholar] [CrossRef]
- Ho, C.-M.; Chien, T.-Y.; Huang, S.-H.; Wu, C.-J.; Shih, B.-Y.; Chang, S.-C. Multivariate Analysis of the Prognostic Factors and Outcomes in Early Cervical Cancer Patients Undergoing Radical Hysterectomy. Gynecol. Oncol. 2004, 93, 458–464. [Google Scholar] [CrossRef]
- Sedlis, A.; Bundy, B.N.; Rotman, M.Z.; Lentz, S.S.; Muderspach, L.I.; Zaino, R.J. A Randomized Trial of Pelvic Radiation Therapy versus No Further Therapy in Selected Patients with Stage IB Carcinoma of the Cervix after Radical Hysterectomy and Pelvic Lymphadenectomy: A Gynecologic Oncology Group Study. Gynecol. Oncol. 1999, 73, 177–183. [Google Scholar] [CrossRef]
- Peters, W.A.; Liu, P.Y.; Barrett, R.J.; Stock, R.J.; Monk, B.J.; Berek, J.S.; Souhami, L.; Grigsby, P.; Gordon, W.; Alberts, D.S. Concurrent Chemotherapy and Pelvic Radiation Therapy Compared with Pelvic Radiation Therapy Alone as Adjuvant Therapy after Radical Surgery in High-Risk Early-Stage Cancer of the Cervix. J. Clin. Oncol. 2000, 18, 1606–1613. [Google Scholar] [CrossRef]
- Rotman, M.; Sedlis, A.; Piedmonte, M.R.; Bundy, B.; Lentz, S.S.; Muderspach, L.I.; Zaino, R.J. A Phase III Randomized Trial of Postoperative Pelvic Irradiation in Stage IB Cervical Carcinoma with Poor Prognostic Features: Follow-up of a Gynecologic Oncology Group Study. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 169–176. [Google Scholar] [CrossRef]
- Rogers, L.; Siu, S.S.N.; Luesley, D.; Bryant, A.; Dickinson, H.O. Radiotherapy and Chemoradiation after Surgery for Early Cervical Cancer. Cochrane Database Syst. Rev. 2012, 5, CD007583. [Google Scholar] [CrossRef] [Green Version]
- Kasuya, G.; Ogawa, K.; Iraha, S.; Nagai, Y.; Hirakawa, M.; Toita, T.; Kakinohana, Y.; Kudaka, W.; Inamine, M.; Ariga, T.; et al. Postoperative Radiotherapy for Uterine Cervical Cancer: Impact of Lymph Node and Histological Type on Survival. Anticancer Res. 2013, 33, 2199–2204. [Google Scholar]
- Nugent, E.K.; Case, A.S.; Hoff, J.T.; Zighelboim, I.; DeWitt, L.L.; Trinkhaus, K.; Mutch, D.G.; Thaker, P.H.; Massad, L.S.; Rader, J.S. Chemoradiation in Locally Advanced Cervical Carcinoma: An Analysis of Cisplatin Dosing and Other Clinical Prognostic Factors. Gynecol. Oncol. 2010, 116, 438–441. [Google Scholar] [CrossRef]
- Teh, J.; Yap, S.P.; Tham, I.; Sethi, V.K.; Chua, E.J.; Yeo, R.; Ho, T.H.; Tay, E.H.; Chia, Y.N.; Soh, L.T.; et al. Concurrent Chemoradiotherapy Incorporating High-Dose Rate Brachytherapy for Locally Advanced Cervical Carcinoma: Survival Outcomes, Patterns of Failure, and Prognostic Factors. Int. J. Gynecol. Cancer 2010, 20, 428–433. [Google Scholar] [CrossRef]
- Kim, T.-E.; Park, B.-J.; Kwack, H.-S.; Kwon, J.-Y.; Kim, J.-H.; Yoon, S.-C. Outcomes and Prognostic Factors of Cervical Cancer after Concurrent Chemoradiation. J. Obstet. Gynaecol. Res. 2012, 38, 1315–1320. [Google Scholar] [CrossRef] [Green Version]
- Rose, P.G.; Java, J.; Whitney, C.W.; Stehman, F.B.; Lanciano, R.; Thomas, G.M.; DiSilvestro, P.A. Nomograms Predicting Progression-Free Survival, Overall Survival, and Pelvic Recurrence in Locally Advanced Cervical Cancer Developed From an Analysis of Identifiable Prognostic Factors in Patients From NRG Oncology/Gynecologic Oncology Group Randomized Trials of Chemoradiotherapy. J. Clin. Oncol. 2015, 33, 2136–2142. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-C.; Wang, L.; Lin, J.-C.; Jan, J.-S. The Prognostic Factors for Locally Advanced Cervical Cancer Patients Treated by Intensity-Modulated Radiation Therapy with Concurrent Chemotherapy. J. Formos. Med. Assoc. 2015, 114, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Perez, C.A.; Grigsby, P.W.; Castro-Vita, H.; Lockett, M.A. Carcinoma of the Uterine Cervix. I. Impact of Prolongation of Overall Treatment Time and Timing of Brachytherapy on Outcome of Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 1995, 32, 1275–1288. [Google Scholar] [CrossRef]
- Tanderup, K.; Fokdal, L.U.; Sturdza, A.; Haie-Meder, C.; Mazeron, R.; van Limbergen, E.; Jürgenliemk-Schulz, I.; Petric, P.; Hoskin, P.; Dörr, W.; et al. Effect of Tumor Dose, Volume and Overall Treatment Time on Local Control after Radiochemotherapy Including MRI Guided Brachytherapy of Locally Advanced Cervical Cancer. Radiother. Oncol. 2016, 120, 441–446. [Google Scholar] [CrossRef]
- Fields, E.C.; Hazell, S.; Morcos, M.; Schmidt, E.J.; Chargari, C.; Viswanathan, A.N. Image-Guided Gynecologic Brachytherapy for Cervical Cancer. Semin. Radiat. Oncol. 2020, 30, 16–28. [Google Scholar] [CrossRef]
- Pötter, R.; Dimopoulos, J.; Georg, P.; Lang, S.; Waldhäusl, C.; Wachter-Gerstner, N.; Weitmann, H.; Reinthaller, A.; Knocke, T.H.; Wachter, S.; et al. Clinical Impact of MRI Assisted Dose Volume Adaptation and Dose Escalation in Brachytherapy of Locally Advanced Cervix Cancer. Radiother. Oncol. 2007, 83, 148–155. [Google Scholar] [CrossRef]
- Schernberg, A.; Bockel, S.; Annede, P.; Fumagalli, I.; Escande, A.; Mignot, F.; Kissel, M.; Morice, P.; Bentivegna, E.; Gouy, S.; et al. Tumor Shrinkage During Chemoradiation in Locally Advanced Cervical Cancer Patients: Prognostic Significance, and Impact for Image-Guided Adaptive Brachytherapy. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 362–372. [Google Scholar] [CrossRef]
- Tang, X.; Mu, X.; Zhao, Z.; Zhao, H.; Mao, Z. Dose-Effect Response in Image-Guided Adaptive Brachytherapy for Cervical Cancer: A Systematic Review and Meta-Regression Analysis. Brachytherapy 2020, 19, 438–446. [Google Scholar] [CrossRef]
- Gandhi, A.K.; Sharma, D.N.; Rath, G.K.; Julka, P.K.; Subramani, V.; Sharma, S.; Manigandan, D.; Laviraj, M.A.; Kumar, S.; Thulkar, S. Early Clinical Outcomes and Toxicity of Intensity Modulated versus Conventional Pelvic Radiation Therapy for Locally Advanced Cervix Carcinoma: A Prospective Randomized Study. Int. J. Radiat. Oncol. Biol. Phys. 2013, 87, 542–548. [Google Scholar] [CrossRef]
- Naik, A.; Gurjar, O.P.; Gupta, K.L.; Singh, K.; Nag, P.; Bhandari, V. Comparison of Dosimetric Parameters and Acute Toxicity of Intensity-Modulated and Three-Dimensional Radiotherapy in Patients with Cervix Carcinoma: A Randomized Prospective Study. Cancer Radiother. 2016, 20, 370–376. [Google Scholar] [CrossRef]
- Yu, C.; Zhu, W.; Ji, Y.; Guo, J.; Pan, P.; Han, J.; Zhou, X. A Comparative Study of Intensity-Modulated Radiotherapy and Standard Radiation Field with Concurrent Chemotherapy for Local Advanced Cervical Cancer. Eur. J. Gynaecol. Oncol. 2015, 36, 278–282. [Google Scholar]
- Koulis, T.A.; Kornaga, E.N.; Banerjee, R.; Phan, T.; Ghatage, P.; Magliocco, A.M.; Lees-Miller, S.P.; Doll, C.M. Anemia, Leukocytosis and Thrombocytosis as Prognostic Factors in Patients with Cervical Cancer Treated with Radical Chemoradiotherapy: A Retrospective Cohort Study. Clin. Transl. Radiat. Oncol. 2017, 4, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Dunst, J.; Kuhnt, T.; Strauss, H.G.; Krause, U.; Pelz, T.; Koelbl, H.; Haensgen, G. Anemia in Cervical Cancers: Impact on Survival, Patterns of Relapse, and Association with Hypoxia and Angiogenesis. Int. J. Radiat. Oncol. Biol. Phys. 2003, 56, 778–787. [Google Scholar] [CrossRef]
- Bishop, A.J.; Allen, P.K.; Klopp, A.H.; Meyer, L.A.; Eifel, P.J. Relationship between Low Hemoglobin Levels and Outcomes after Treatment with Radiation or Chemoradiation in Patients with Cervical Cancer: Has the Impact of Anemia Been Overstated? Int. J. Radiat. Oncol. Biol. Phys. 2015, 91, 196–205. [Google Scholar] [CrossRef]
- Shinko, D.; Diakos, C.I.; Clarke, S.J.; Charles, K.A. Cancer-Related Systemic Inflammation: The Challenges and Therapeutic Opportunities for Personalized Medicine. Clin. Pharmacol. Ther. 2017, 102, 599–610. [Google Scholar] [CrossRef]
- Singh, N.; Baby, D.; Rajguru, J.P.; Patil, P.B.; Thakkannavar, S.S.; Pujari, V.B. Inflammation and Cancer. Ann. Afr. Med. 2019, 18, 121–126. [Google Scholar] [CrossRef]
- Zou, P.; Yang, E.; Li, Z. Neutrophil-to-Lymphocyte Ratio Is an Independent Predictor for Survival Outcomes in Cervical Cancer: A Systematic Review and Meta-Analysis. Sci. Rep. 2020, 10, 21917. [Google Scholar] [CrossRef]
- Huang, H.; Liu, Q.; Zhu, L.; Zhang, Y.; Lu, X.; Wu, Y.; Liu, L. Prognostic Value of Preoperative Systemic Immune-Inflammation Index in Patients with Cervical Cancer. Sci. Rep. 2019, 9, 3284. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.M.; Yang, M.; Xu, H.X.; Li, W.; Fu, Z.M.; Lin, Y.; Shi, Y.Y.; Song, C.H.; Shi, H.P.; Guo, Z.Q.; et al. Association between Serum C-Reactive Protein Concentration and Nutritional Status of Malignant Tumor Patients. Nutr. Cancer 2019, 71, 240–245. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, K.; Ye, B.; Liang, W.; Ren, Y. Pretreatment C-Reactive Protein/Albumin Ratio Is Associated with Poor Survival in Patients with Stage IB-IIA Cervical Cancer. Cancer Med. 2018, 7, 105–113. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Li, J.-P.; Liu, X.-H.; Zhang, J.-P.; Zeng, Q.-Y.; Chen, H.; Chen, S.-L. Prognostic Value of C-Reactive Protein/Albumin Ratio in Predicting Overall Survival of Chinese Cervical Cancer Patients Overall Survival: Comparison among Various Inflammation Based Factors. J. Cancer 2018, 9, 1877–1884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haraga, J.; Nakamura, K.; Omichi, C.; Nishida, T.; Haruma, T.; Kusumoto, T.; Seki, N.; Masuyama, H.; Katayama, N.; Kanazawa, S.; et al. Pretreatment Prognostic Nutritional Index Is a Significant Predictor of Prognosis in Patients with Cervical Cancer Treated with Concurrent Chemoradiotherapy. Mol. Clin. Oncol. 2016, 5, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Gangopadhyay, A. Prognostic Nutritional Index and Clinical Response in Locally Advanced Cervical Cancer. Nutr. Cancer 2020, 72, 1438–1442. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, H.; Nakamura, K.; Matsubara, Y.; Ida, N.; Nishida, T.; Ogawa, C.; Katsi, K.; Kanazawa, S.; Masuyama, H. Sarcopenia Is Not a Prognostic Factor of Outcome in Patients with Cervical Cancer Undergoing Concurrent Chemoradiotherapy or Radiotherapy. Anticancer Res. 2019, 39, 933–939. [Google Scholar] [CrossRef] [PubMed]
- Kiyotoki, T.; Nakamura, K.; Haraga, J.; Omichi, C.; Ida, N.; Saijo, M.; Nishida, T.; Kusumoto, T.; Masuyama, H. Sarcopenia Is an Important Prognostic Factor in Patients With Cervical Cancer Undergoing Concurrent Chemoradiotherapy. Int. J. Gynecol. Cancer 2018, 28, 168–175. [Google Scholar] [CrossRef]
- Lee, J.; Chang, C.-L.; Lin, J.-B.; Wu, M.-H.; Sun, F.-J.; Jan, Y.-T.; Hsu, S.-M.; Chen, Y.-J. Skeletal Muscle Loss Is an Imaging Biomarker of Outcome after Definitive Chemoradiotherapy for Locally Advanced Cervical Cancer. Clin. Cancer Res. 2018, 24, 5028–5036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryu, H.K.; Baek, J.S.; Kang, W.D.; Kim, S.M. The Prognostic Value of Squamous Cell Carcinoma Antigen for Predicting Tumor Recurrence in Cervical Squamous Cell Carcinoma Patients. Obstet. Gynecol. Sci. 2015, 58, 368–376. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Wang, D.; Wang, S.; Tian, Y.; Long, Z.; Ren, X. Correlation Between Squamous Cell Carcinoma Antigen Level and the Clinicopathological Features of Early-Stage Cervical Squamous Cell Carcinoma and the Predictive Value of Squamous Cell Carcinoma Antigen Combined With Computed Tomography Scan for Lymph Node Metastasis. Int. J. Gynecol. Cancer 2017, 27, 1935–1942. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.H.; Lee, S.W.; Yu, M.; Jeong, S.; Lee, J.W.; Lee, J.H. Significance of Elevated SCC-Ag Level on Tumor Recurrence and Patient Survival in Patients with Squamous-Cell Carcinoma of Uterine Cervix Following Definitive Chemoradiotherapy: A Multi-Institutional Analysis. J. Gynecol. Oncol. 2019, 30, e1. [Google Scholar] [CrossRef]
- Fu, J.; Wang, W.; Wang, Y.; Liu, C.; Wang, P. The Role of Squamous Cell Carcinoma Antigen (SCC Ag) in Outcome Prediction after Concurrent Chemoradiotherapy and Treatment Decisions for Patients with Cervical Cancer. Radiat. Oncol. 2019, 14, 146. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Shi, H. Prognostic Role of Squamous Cell Carcinoma Antigen in Cervical Cancer: A Meta-Analysis. Dis. Markers 2019, 2019, 6710352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiffman, M.; Doorbar, J.; Wentzensen, N.; de Sanjosé, S.; Fakhry, C.; Monk, B.J.; Stanley, M.A.; Franceschi, S. Carcinogenic Human Papillomavirus Infection. Nat. Rev. Dis. Primers 2016, 2, 16086. [Google Scholar] [CrossRef] [PubMed]
- Oyervides-Muñoz, M.A.; Pérez-Maya, A.A.; Rodríguez-Gutiérrez, H.F.; Gómez-Macias, G.S.; Fajardo-Ramírez, O.R.; Treviño, V.; Barrera-Saldaña, H.A.; Garza-Rodríguez, M.L. Understanding the HPV Integration and Its Progression to Cervical Cancer. Infect. Genet. Evol. 2018, 61, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Lindel, K.; Rieken, S.; Daffinger, S.; Weber, K.J.; de Villiers, E.-M.; Debus, J. The Transcriptional Regulator Gene E2 of the Human Papillomavirus (HPV) 16 Influences the Radiosensitivity of Cervical Keratinocytes. Radiat. Oncol. 2012, 7, 187. [Google Scholar] [CrossRef] [Green Version]
- Vernon, S.D.; Unger, E.R.; Miller, D.L.; Lee, D.R.; Reeves, W.C. Association of Human Papillomavirus Type 16 Integration in the E2 Gene with Poor Disease-Free Survival from Cervical Cancer. Int. J. Cancer 1997, 74, 50–56. [Google Scholar] [CrossRef]
- Lindel, K.; de Villiers, E.-M.; Burri, P.; Studer, U.; Altermatt, H.J.; Greiner, R.H.; Gruber, G. Impact of Viral E2-Gene Status on Outcome after Radiotherapy for Patients with Human Papillomavirus 16-Positive Cancer of the Uterine Cervix. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 760–765. [Google Scholar] [CrossRef]
- Ren, S.; Gaykalova, D.A.; Guo, T.; Favorov, A.V.; Fertig, E.J.; Tamayo, P.; Callejas-Valera, J.L.; Allevato, M.; Gilardi, M.; Santos, J.; et al. HPV E2, E4, E5 Drive Alternative Carcinogenic Pathways in HPV Positive Cancers. Oncogene 2020, 39, 6327–6339. [Google Scholar] [CrossRef]
- Kamal, M.; Lameiras, S.; Deloger, M.; Morel, A.; Vacher, S.; Lecerf, C.; Dupain, C.; Jeannot, E.; Girard, E.; Baulande, S.; et al. Human Papilloma Virus (HPV) Integration Signature in Cervical Cancer: Identification of MACROD2 Gene as HPV Hot Spot Integration Site. Br. J. Cancer 2021, 124, 777–785. [Google Scholar] [CrossRef]
- Huang, Y.; He, Q.; Xu, K.; Zhou, J.; Yin, J.; Li, F.; Feng, M.; Lang, J. A New Marker Based on Risk Stratification of Human Papillomavirus DNA and Tumor Size to Predict Survival of Locally Advanced Cervical Cancer. Int. J. Gynecol. Cancer 2019, 29, 459–465. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Park, S.; Nam, B.-H.; Roh, J.-W.; Lee, C.H.; Kim, Y.-H.; Shin, H.-J.; Lee, S.-K.; Kong, S.-Y.; Seong, M.-W.; et al. Low Initial Human Papilloma Viral Load Implicates Worse Prognosis in Patients with Uterine Cervical Cancer Treated with Radiotherapy. J. Clin. Oncol. 2009, 27, 5088–5093. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.J.; Kim, J.-Y.; Lee, S.-K.; Lim, H.-S.; Lim, M.C.; Seo, S.-S.; Kang, S.; Lee, D.O.; Park, S.-Y. Persistent Human Papillomavirus DNA Is Associated with Local Recurrence after Radiotherapy of Uterine Cervical Cancer. Int. J. Cancer 2011, 129, 896–902. [Google Scholar] [CrossRef] [PubMed]
- Zuo, J.; Huang, Y.; An, J.; Yang, X.; Li, N.; Huang, M.; Wu, L. Nomograms Based on HPV Load for Predicting Survival in Cervical Squamous Cell Carcinoma: An Observational Study with a Long-Term Follow-Up. Chin. J. Cancer Res. 2019, 31, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Wang, Y.; Wang, D.; Duan, Y.; Hong, W.; Zhang, N.; Shah, W.; Wang, Y.; Chen, H. Increased High-Risk Human Papillomavirus Viral Load Is Associated With Immunosuppressed Microenvironment and Predicts a Worse Long-Term Survival in Cervical Cancer Patients. Am. J. Clin. Pathol. 2020, 153, 502–512. [Google Scholar] [CrossRef]
- Narisawa-Saito, M.; Kiyono, T. Basic Mechanisms of High-Risk Human Papillomavirus-Induced Carcinogenesis: Roles of E6 and E7 Proteins. Cancer Sci 2007, 98, 1505–1511. [Google Scholar] [CrossRef]
- Yuan, Y.; Cai, X.; Shen, F.; Ma, F. HPV Post-Infection Microenvironment and Cervical Cancer. Cancer Lett. 2021, 497, 243–254. [Google Scholar] [CrossRef]
- Bowden, S.J.; Bodinier, B.; Kalliala, I.; Zuber, V.; Vuckovic, D.; Doulgeraki, T.; Whitaker, M.D.; Wielscher, M.; Cartwright, R.; Tsilidis, K.K.; et al. Genetic Variation in Cervical Preinvasive and Invasive Disease: A Genome-Wide Association Study. Lancet Oncol. 2021, 22, 548–557. [Google Scholar] [CrossRef]
- Chen, D.; Juko-Pecirep, I.; Hammer, J.; Ivansson, E.; Enroth, S.; Gustavsson, I.; Feuk, L.; Magnusson, P.K.E.; McKay, J.D.; Wilander, E.; et al. Genome-Wide Association Study of Susceptibility Loci for Cervical Cancer. J. Natl. Cancer Inst. 2013, 105, 624–633. [Google Scholar] [CrossRef] [Green Version]
- Leo, P.J.; Madeleine, M.M.; Wang, S.; Schwartz, S.M.; Newell, F.; Pettersson-Kymmer, U.; Hemminki, K.; Hallmans, G.; Tiews, S.; Steinberg, W.; et al. Defining the Genetic Susceptibility to Cervical Neoplasia-A Genome-Wide Association Study. PLoS Genet. 2017, 13, e1006866. [Google Scholar] [CrossRef] [Green Version]
- Nunes, R.A.L.; Morale, M.G.; Silva, G.Á.F.; Villa, L.L.; Termini, L. Innate Immunity and HPV: Friends or Foes. Clinics 2018, 73 (Suppl. 1). [Google Scholar] [CrossRef]
- Zhou, C.; Tuong, Z.K.; Frazer, I.H. Papillomavirus Immune Evasion Strategies Target the Infected Cell and the Local Immune System. Front. Oncol. 2019, 9, 682. [Google Scholar] [CrossRef] [Green Version]
- Hasan, U.A.; Zannetti, C.; Parroche, P.; Goutagny, N.; Malfroy, M.; Roblot, G.; Carreira, C.; Hussain, I.; Müller, M.; Taylor-Papadimitriou, J.; et al. The Human Papillomavirus Type 16 E7 Oncoprotein Induces a Transcriptional Repressor Complex on the Toll-like Receptor 9 Promoter. J. Exp. Med. 2013, 210, 1369–1387. [Google Scholar] [CrossRef] [PubMed]
- Starnes, T.; Rasila, K.K.; Robertson, M.J.; Brahmi, Z.; Dahl, R.; Christopherson, K.; Hromas, R. The Chemokine CXCL14 (BRAK) Stimulates Activated NK Cell Migration: Implications for the Downregulation of CXCL14 in Malignancy. Exp. Hematol. 2006, 34, 1101–1105. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, M.H.; Bortnik, V.; McMillan, N.A.; Idris, A. CGAS-STING Responses Are Dampened in High-Risk HPV Type 16 Positive Head and Neck Squamous Cell Carcinoma Cells. Microb. Pathog. 2019, 132, 162–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bortnik, V.; Wu, M.; Julcher, B.; Salinas, A.; Nikolic, I.; Simpson, K.J.; McMillan, N.A.; Idris, A. Loss of HPV Type 16 E7 Restores CGAS-STING Responses in Human Papilloma Virus-Positive Oropharyngeal Squamous Cell Carcinomas Cells. J. Microbiol. Immunol. Infect. 2021, 54, 733–739. [Google Scholar] [CrossRef]
- Gutiérrez-Hoya, A.; Soto-Cruz, I. Role of the JAK/STAT Pathway in Cervical Cancer: Its Relationship with HPV E6/E7 Oncoproteins. Cells 2020, 9, 2297. [Google Scholar] [CrossRef]
- Toussaint-Smith, E.; Donner, D.B.; Roman, A. Expression of Human Papillomavirus Type 16 E6 and E7 Oncoproteins in Primary Foreskin Keratinocytes Is Sufficient to Alter the Expression of Angiogenic Factors. Oncogene 2004, 23, 2988–2995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, N.; Zhan, T.; Ke, T.; Huang, X.; Ke, D.; Wang, Q.; Li, H. Increased Expression of RRM2 by Human Papillomavirus E7 Oncoprotein Promotes Angiogenesis in Cervical Cancer. Br. J. Cancer 2014, 110, 1034–1044. [Google Scholar] [CrossRef] [Green Version]
- Lindel, K.; Burri, P.; Studer, H.U.; Altermatt, H.J.; Greiner, R.H.; Gruber, G. Human Papillomavirus Status in Advanced Cervical Cancer: Predictive and Prognostic Significance for Curative Radiation Treatment. Int. J. Gynecol. Cancer 2005, 15, 278–284. [Google Scholar] [CrossRef]
- Li, P.; Tan, Y.; Zhu, L.-X.; Zhou, L.-N.; Zeng, P.; Liu, Q.; Chen, M.-B.; Tian, Y. Prognostic Value of HPV DNA Status in Cervical Cancer before Treatment: A Systematic Review and Meta-Analysis. Oncotarget 2017, 8, 66352–66359. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.-C.; Chuang, I.-C.; Yang, Y.-C.; Chuang, P.-C.; Lin, H.; Ou, Y.-C.; Chang Chien, C.-C.; Huang, H.-S.; Kang, H.-Y. Low P16INK4A Expression Associated with High Expression of Cancer Stem Cell Markers Predicts Poor Prognosis in Cervical Cancer after Radiotherapy. Int. J. Mol. Sci. 2018, 19, 2541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rödel, F.; Martin, D.; Balermpas, P.; Wieland, U.; Winkelmann, R.; Riekmann, T.; Falk, S.; Rödel, C.; Fokas, E. Modulation of Radiation Sensitivity and Antitumor Immunity by Viral Pathogenic Factors: Implications for Radio-Immunotherapy. Biochim. Biophys. Acta Rev. Cancer 2019, 1871, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Scheffner, M.; Werness, B.A.; Huibregtse, J.M.; Levine, A.J.; Howley, P.M. The E6 Oncoprotein Encoded by Human Papillomavirus Types 16 and 18 Promotes the Degradation of P53. Cell 1990, 63, 1129–1136. [Google Scholar] [CrossRef]
- Song, S.; Liem, A.; Miller, J.A.; Lambert, P.F. Human Papillomavirus Types 16 E6 and E7 Contribute Differently to Carcinogenesis. Virology 2000, 267, 141–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergeron, C.; Ronco, G.; Reuschenbach, M.; Wentzensen, N.; Arbyn, M.; Stoler, M.; von Knebel Doeberitz, M. The Clinical Impact of Using P16(INK4a) Immunochemistry in Cervical Histopathology and Cytology: An Update of Recent Developments. Int. J. Cancer 2015, 136, 2741–2751. [Google Scholar] [CrossRef]
- Dok, R.; Kalev, P.; Van Limbergen, E.J.; Asbagh, L.A.; Vázquez, I.; Hauben, E.; Sablina, A.; Nuyts, S. P16INK4a Impairs Homologous Recombination-Mediated DNA Repair in Human Papillomavirus-Positive Head and Neck Tumors. Cancer Res. 2014, 74, 1739–1751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molkentine, J.M.; Molkentine, D.P.; Bridges, K.A.; Xie, T.; Yang, L.; Sheth, A.; Heffernan, T.P.; Clump, D.A.; Faust, A.Z.; Ferris, R.L.; et al. Targeting DNA Damage Response in Head and Neck Cancers through Abrogation of Cell Cycle Checkpoints. Int. J. Radiat. Biol. 2021, 97, 1121–1128. [Google Scholar] [CrossRef]
- Lightfoot, M.; Montemorano, L.; Bixel, K. PARP Inhibitors in Gynecologic Cancers: What Is the Next Big Development? Curr. Oncol. Rep. 2020, 22, 29. [Google Scholar] [CrossRef] [PubMed]
- IJff, M.; van Bochove, G.G.W.; Whitton, D.; Winiarczyk, R.; Honhoff, C.; Rodermond, H.; Crezee, J.; Stalpers, L.J.A.; Franken, N.A.P.; Oei, A.L. PARP1-Inhibition Sensitizes Cervical Cancer Cell Lines for Chemoradiation and Thermoradiation. Cancers 2021, 13, 2092. [Google Scholar] [CrossRef]
- Iftner, T.; Elbel, M.; Schopp, B.; Hiller, T.; Loizou, J.I.; Caldecott, K.W.; Stubenrauch, F. Interference of Papillomavirus E6 Protein with Single-Strand Break Repair by Interaction with XRCC1. EMBO J. 2002, 21, 4741–4748. [Google Scholar] [CrossRef] [Green Version]
- Shin, K.-H.; Ahn, J.H.; Kang, M.K.; Lim, P.K.; Yip, F.K.; Baluda, M.A.; Park, N.-H. HPV-16 E6 Oncoprotein Impairs the Fidelity of DNA End-Joining via P53-Dependent and -Independent Pathways. Int. J. Oncol. 2006, 28, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Lombard, I.; Vincent-Salomon, A.; Validire, P.; Zafrani, B.; de la Rochefordière, A.; Clough, K.; Favre, M.; Pouillart, P.; Sastre-Garau, X. Human Papillomavirus Genotype as a Major Determinant of the Course of Cervical Cancer. J. Clin. Oncol. 1998, 16, 2613–2619. [Google Scholar] [CrossRef]
- Okonogi, N.; Kobayashi, D.; Suga, T.; Imai, T.; Wakatsuki, M.; Ohno, T.; Kato, S.; Nakano, T.; Kamada, T. Human Papillomavirus Genotype Affects Metastatic Rate Following Radiotherapy in Patients with Uterine Cervical Cancer. Oncol. Lett. 2018, 15, 459–466. [Google Scholar] [CrossRef] [Green Version]
- Onuki, M.; Matsumoto, K.; Tenjimbayashi, Y.; Tasaka, N.; Akiyama, A.; Sakurai, M.; Minaguchi, T.; Oki, A.; Satoh, T.; Yoshikawa, H. Human Papillomavirus Genotype and Prognosis of Cervical Cancer: Favorable Survival of Patients with HPV16-Positive Tumors. Papillomavirus Res. 2018, 6, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Sample, K.M. DNA Repair Gene Expression Is Associated with Differential Prognosis between HPV16 and HPV18 Positive Cervical Cancer Patients Following Radiation Therapy. Sci. Rep. 2020, 10, 2774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cancer Genome Atlas Research Network; Albert Einstein College of Medicine; Analytical Biological Services; Barretos Cancer Hospital; Baylor College of Medicine; Beckman Research Institute of City of Hope; Buck Institute for Research on Aging; Canada’s Michael Smith Genome Sciences Centre; Harvard Medical School; Helen F. Graham Cancer Center; et al. Integrated Genomic and Molecular Characterization of Cervical Cancer. Nature 2017, 543, 378–384. [Google Scholar] [CrossRef]
- Ojesina, A.I.; Lichtenstein, L.; Freeman, S.S.; Pedamallu, C.S.; Imaz-Rosshandler, I.; Pugh, T.J.; Cherniack, A.D.; Ambrogio, L.; Cibulskis, K.; Bertelsen, B.; et al. Landscape of Genomic Alterations in Cervical Carcinomas. Nature 2014, 506, 371–375. [Google Scholar] [CrossRef]
- Scholl, S.; Popovic, M.; de la Rochefordiere, A.; Girard, E.; Dureau, S.; Mandic, A.; Koprivsek, K.; Samet, N.; Craina, M.; Margan, M.; et al. Clinical and Genetic Landscape of Treatment Naive Cervical Cancer: Alterations in PIK3CA and in Epigenetic Modulators Associated with Sub-Optimal Outcome. EBioMedicine 2019, 43, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Vivanco, I.; Sawyers, C.L. The Phosphatidylinositol 3-Kinase AKT Pathway in Human Cancer. Nat. Rev. Cancer 2002, 2, 489–501. [Google Scholar] [CrossRef]
- Samuels, Y.; Wang, Z.; Bardelli, A.; Silliman, N.; Ptak, J.; Szabo, S.; Yan, H.; Gazdar, A.; Powell, S.M.; Riggins, G.J.; et al. High Frequency of Mutations of the PIK3CA Gene in Human Cancers. Science 2004, 304, 554. [Google Scholar] [CrossRef] [Green Version]
- Schuurbiers, O.C.J.; Kaanders, J.H.A.M.; van der Heijden, H.F.M.; Dekhuijzen, R.P.N.; Oyen, W.J.G.; Bussink, J. The PI3-K/AKT-Pathway and Radiation Resistance Mechanisms in Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2009, 4, 761–767. [Google Scholar] [CrossRef]
- Millis, S.Z.; Ikeda, S.; Reddy, S.; Gatalica, Z.; Kurzrock, R. Landscape of Phosphatidylinositol-3-Kinase Pathway Alterations Across 19 784 Diverse Solid Tumors. JAMA Oncol. 2016, 2, 1565–1573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millis, S.Z.; Jardim, D.L.; Albacker, L.; Ross, J.S.; Miller, V.A.; Ali, S.M.; Kurzrock, R. Phosphatidylinositol 3-Kinase Pathway Genomic Alterations in 60,991 Diverse Solid Tumors Informs Targeted Therapy Opportunities. Cancer 2019, 125, 1185–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Wu, J.; Ling, M.T.; Zhao, L.; Zhao, K.-N. The Role of the PI3K/Akt/MTOR Signalling Pathway in Human Cancers Induced by Infection with Human Papillomaviruses. Mol. Cancer 2015, 14, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arjumand, W.; Merry, C.D.; Wang, C.; Saba, E.; McIntyre, J.B.; Fang, S.; Kornaga, E.; Ghatage, P.; Doll, C.M.; Lees-Miller, S.P. Phosphatidyl Inositol-3 Kinase (PIK3CA) E545K Mutation Confers Cisplatin Resistance and a Migratory Phenotype in Cervical Cancer Cells. Oncotarget 2016, 7, 82424–82439. [Google Scholar] [CrossRef] [Green Version]
- Murakami, N.; Asami, Y.; Yoshida, H.; Takayanagi, D.; Hirose, S.; Kuno, I.; Takahashi, K.; Matsuda, M.; Shimada, Y.; Yamano, S.; et al. Distribution of Genetic Alterations in High-Risk Early-Stage Cervical Cancer Patients Treated with Postoperative Radiation Therapy. Sci. Rep. 2021, 11, 10567. [Google Scholar] [CrossRef]
- Martell, K.; McIntyre, J.B.; Kornaga, E.N.; Chan, A.M.Y.; Phan, T.; Köbel, M.; Enwere, E.K.; Dean, M.L.; Ghatage, P.; Lees-Miller, S.P.; et al. PIK3CA Mutation and CNV Status and Post-Chemoradiotherapy Survival in Patients with Cervical Cancer. Gynecol. Oncol. 2020, 158, 776–784. [Google Scholar] [CrossRef]
- Pergialiotis, V.; Nikolaou, C.; Haidopoulos, D.; Frountzas, M.; Thomakos, N.; Bellos, I.; Papapanagiotou, A.; Rodolakis, A. PIK3CA Mutations and Their Impact on Survival Outcomes of Patients with Cervical Cancer: A Systematic Review. Acta Cytol. 2020, 64, 547–555. [Google Scholar] [CrossRef]
- Noordhuis, M.G.; Eijsink, J.J.H.; Roossink, F.; de Graeff, P.; Pras, E.; Schuuring, E.; Wisman, G.B.A.; de Bock, G.H.; van der Zee, A.G.J. Prognostic Cell Biological Markers in Cervical Cancer Patients Primarily Treated with (Chemo)Radiation: A Systematic Review. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 325–334. [Google Scholar] [CrossRef]
- Pezzuto, A.; Carico, E. Role of HIF-1 in Cancer Progression: Novel Insights. A Review. Curr. Mol. Med. 2018, 18, 343–351. [Google Scholar] [CrossRef]
- Lee, S.; Shin, H.-J.; Han, I.-O.; Hong, E.-K.; Park, S.-Y.; Roh, J.-W.; Shin, K.H.; Kim, T.H.; Kim, J.-Y. Tumor Carbonic Anhydrase 9 Expression Is Associated with the Presence of Lymph Node Metastases in Uterine Cervical Cancer. Cancer Sci. 2007, 98, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Chen, Q.; Xiao, J.; Yao, T.; Bian, L.; Liu, C.; Lin, Z. Overexpression of Hypoxia-Inducible Factor-1α Is a Predictor of Poor Prognosis in Cervical Cancer: A Clinicopathologic Study and a Meta-Analysis. Int. J. Gynecol. Cancer 2014, 24, 1054–1064. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Chen, D.; Cheng, H.; Wang, F. Hypoxia-Inducible Factor-1α Protects Cervical Carcinoma Cells from Apoptosis Induced by Radiation via Modulation of Vascular Endothelial Growth Factor and P53 under Hypoxia. Med. Sci. Monit. 2015, 21, 318–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Liu, J.; Zhu, C.; He, J.; Chen, J.; Liang, Y.; Yang, F.; Wu, X.; Ma, X. Prognostic Role of Vascular Endothelial Growth Factor in Cervical Cancer: A Meta-Analysis. Oncotarget 2017, 8, 24797–24803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, J.A.; Larkin, S.; Williams, T.J. Cyclooxygenase-2: Regulation and Relevance in Inflammation. Biochem. Pharmacol. 1995, 50, 1535–1542. [Google Scholar] [CrossRef]
- Kulkarni, S.; Rader, J.S.; Zhang, F.; Liapis, H.; Koki, A.T.; Masferrer, J.L.; Subbaramaiah, K.; Dannenberg, A.J. Cyclooxygenase-2 Is Overexpressed in Human Cervical Cancer. Clin. Cancer Res. 2001, 7, 429–434. [Google Scholar]
- Masunaga, R.; Kohno, H.; Dhar, D.K.; Ohno, S.; Shibakita, M.; Kinugasa, S.; Yoshimura, H.; Tachibana, M.; Kubota, H.; Nagasue, N. Cyclooxygenase-2 Expression Correlates with Tumor Neovascularization and Prognosis in Human Colorectal Carcinoma Patients. Clin. Cancer Res. 2000, 6, 4064–4068. [Google Scholar]
- Hashemi Goradel, N.; Najafi, M.; Salehi, E.; Farhood, B.; Mortezaee, K. Cyclooxygenase-2 in Cancer: A Review. J. Cell. Physiol. 2019, 234, 5683–5699. [Google Scholar] [CrossRef]
- Chen, H.H.W.; Su, W.-C.; Chou, C.-Y.; Guo, H.-R.; Ho, S.-Y.; Que, J.; Lee, W.-Y. Increased Expression of Nitric Oxide Synthase and Cyclooxygenase-2 Is Associated with Poor Survival in Cervical Cancer Treated with Radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2005, 63, 1093–1100. [Google Scholar] [CrossRef]
- Kim, G.E.; Kim, Y.B.; Cho, N.H.; Chung, H.-C.; Pyo, H.R.; Lee, J.D.; Park, T.K.; Koom, W.S.; Chun, M.; Suh, C.O. Synchronous Coexpression of Epidermal Growth Factor Receptor and Cyclooxygenase-2 in Carcinomas of the Uterine Cervix: A Potential Predictor of Poor Survival. Clin. Cancer Res. 2004, 10, 1366–1374. [Google Scholar] [CrossRef] [Green Version]
- Hoellen, F.; Waldmann, A.; Banz-Jansen, C.; Rody, A.; Heide, M.; Köster, F.; Ribbat-Idel, J.; Thorns, C.; Gebhard, M.; Oberländer, M.; et al. Expression of Cyclooxygenase-2 in Cervical Cancer Is Associated with Lymphovascular Invasion. Oncol. Lett. 2016, 12, 2351–2356. [Google Scholar] [CrossRef] [Green Version]
- Doll, C.M.; Winter, K.; Gaffney, D.K.; Ryu, J.K.; Jhingran, A.; Dicker, A.P.; Weidhaas, J.B.; Miller, B.E.; Magliocco, A.M. COX-2 Expression and Survival in Patients with Locally Advanced Cervical Cancer Treated with Chemoradiotherapy and Celecoxib: A Quantitative Immunohistochemical Analysis of RTOG C0128. Int. J. Gynecol. Cancer 2013, 23, 176–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaffney, D.K.; Winter, K.; Dicker, A.P.; Miller, B.; Eifel, P.J.; Ryu, J.; Avizonis, V.; Fromm, M.; Greven, K. A Phase II Study of Acute Toxicity for Celebrex (Celecoxib) and Chemoradiation in Patients with Locally Advanced Cervical Cancer: Primary Endpoint Analysis of RTOG 0128. Int. J. Radiat. Oncol. Biol. Phys. 2007, 67, 104–109. [Google Scholar] [CrossRef] [Green Version]
- Lemmon, M.A.; Schlessinger, J. Cell Signaling by Receptor Tyrosine Kinases. Cell 2010, 141, 1117–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noordhuis, M.G.; Eijsink, J.J.H.; Ten Hoor, K.A.; Roossink, F.; Hollema, H.; Arts, H.J.G.; Pras, E.; Maduro, J.H.; Reyners, A.K.L.; de Bock, G.H.; et al. Expression of Epidermal Growth Factor Receptor (EGFR) and Activated EGFR Predict Poor Response to (Chemo)Radiation and Survival in Cervical Cancer. Clin. Cancer Res. 2009, 15, 7389–7397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iida, K.; Nakayama, K.; Rahman, M.T.; Rahman, M.; Ishikawa, M.; Katagiri, A.; Yeasmin, S.; Otsuki, Y.; Kobayashi, H.; Nakayama, S.; et al. EGFR Gene Amplification Is Related to Adverse Clinical Outcomes in Cervical Squamous Cell Carcinoma, Making the EGFR Pathway a Novel Therapeutic Target. Br. J. Cancer 2011, 105, 420–427. [Google Scholar] [CrossRef]
- Soonthornthum, T.; Arias-Pulido, H.; Joste, N.; Lomo, L.; Muller, C.; Rutledge, T.; Verschraegen, C. Epidermal Growth Factor Receptor as a Biomarker for Cervical Cancer. Ann. Oncol. 2011, 22, 2166–2178. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Tang, Y.; Cheng, X.; Ji, J.; Zhang, J.; Zhou, X. EGFR Protein Expression and Gene Amplification in Squamous Intraepithelial Lesions and Squamous Cell Carcinomas of the Cervix. Int. J. Clin. Exp. Pathol. 2014, 7, 733–741. [Google Scholar]
- Tian, W.-J.; Huang, M.-L.; Qin, Q.-F.; Chen, Q.; Fang, K.; Wang, P.-L. Prognostic Impact of Epidermal Growth Factor Receptor Overexpression in Patients with Cervical Cancer: A Meta-Analysis. PLoS ONE 2016, 11, e0158787. [Google Scholar] [CrossRef]
- Kato, S.; Okamura, R.; Mareboina, M.; Lee, S.; Goodman, A.; Patel, S.P.; Fanta, P.T.; Schwab, R.B.; Vu, P.; Raymond, V.M.; et al. Revisiting Epidermal Growth Factor Receptor (EGFR) Amplification as a Target for Anti-EGFR Therapy: Analysis of Cell-Free Circulating Tumor DNA in Patients with Advanced Malignancies. JCO Precis. Oncol. 2019, 3. [Google Scholar] [CrossRef]
- Goncalves, A.; Fabbro, M.; Lhommé, C.; Gladieff, L.; Extra, J.-M.; Floquet, A.; Chaigneau, L.; Carrasco, A.T.; Viens, P. A Phase II Trial to Evaluate Gefitinib as Second- or Third-Line Treatment in Patients with Recurring Locoregionally Advanced or Metastatic Cervical Cancer. Gynecol. Oncol. 2008, 108, 42–46. [Google Scholar] [CrossRef]
- Schilder, R.J.; Sill, M.W.; Lee, Y.-C.; Mannel, R. A Phase II Trial of Erlotinib in Recurrent Squamous Cell Carcinoma of the Cervix: A Gynecologic Oncology Group Study. Int. J. Gynecol. Cancer 2009, 19, 929–933. [Google Scholar] [CrossRef] [Green Version]
- Farley, J.; Sill, M.W.; Birrer, M.; Walker, J.; Schilder, R.J.; Thigpen, J.T.; Coleman, R.L.; Miller, B.E.; Rose, P.G.; Lankes, H.A. Phase II Study of Cisplatin plus Cetuximab in Advanced, Recurrent, and Previously Treated Cancers of the Cervix and Evaluation of Epidermal Growth Factor Receptor Immunohistochemical Expression: A Gynecologic Oncology Group Study. Gynecol. Oncol. 2011, 121, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Santin, A.D.; Sill, M.W.; McMeekin, D.S.; Leitao, M.M.; Brown, J.; Sutton, G.P.; Van Le, L.; Griffin, P.; Boardman, C.H. Phase II Trial of Cetuximab in the Treatment of Persistent or Recurrent Squamous or Non-Squamous Cell Carcinoma of the Cervix: A Gynecologic Oncology Group Study. Gynecol. Oncol. 2011, 122, 495–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, T.; Terai, Y.; Kogata, Y.; Ashihara, K.; Maeda, K.; Fujiwara, S.; Yoo, S.; Tanaka, Y.; Tsunetoh, S.; Sasaki, H.; et al. CD24 Expression as a Marker for Predicting Clinical Outcome and Invasive Activity in Uterine Cervical Cancer. Oncol. Rep. 2015, 34, 2282–2288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, W.; Xiang, L.; Pei, X.; He, T.; Shen, X.; Wu, X.; Yang, H. Mutational Analysis of KRAS and Its Clinical Implications in Cervical Cancer Patients. J. Gynecol. Oncol. 2018, 29, e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strebhardt, K. Multifaceted Polo-like Kinases: Drug Targets and Antitargets for Cancer Therapy. Nat. Rev. Drug Discov. 2010, 9, 643–660. [Google Scholar] [CrossRef] [PubMed]
- Barton, O.; Naumann, S.C.; Diemer-Biehs, R.; Künzel, J.; Steinlage, M.; Conrad, S.; Makharashvili, N.; Wang, J.; Feng, L.; Lopez, B.S.; et al. Polo-like Kinase 3 Regulates CtIP during DNA Double-Strand Break Repair in G1. J. Cell Biol. 2014, 206, 877–894. [Google Scholar] [CrossRef]
- Helmke, C.; Becker, S.; Strebhardt, K. The Role of Plk3 in Oncogenesis. Oncogene 2016, 35, 135–147. [Google Scholar] [CrossRef]
- Gao, L.; Pang, Y.-Y.; Guo, X.-Y.; Zeng, J.-J.; Tang, Z.-Q.; Xiong, D.-D.; Yang, X.; Li, Y.; Ma, F.-C.; Pan, L.-J.; et al. Polo like Kinase 1 Expression in Cervical Cancer Tissues Generated from Multiple Detection Methods. PeerJ 2020, 8, e10458. [Google Scholar] [CrossRef]
- Chhavi; Saxena, M.; Singh, S.; Negi, M.P.S.; Srivastava, A.K.; Trivedi, R.; Singh, U.; Pant, M.C.; Bhatt, M.L.B. Expression Profiling of G2/M Phase Regulatory Proteins in Normal, Premalignant and Malignant Uterine Cervix and Their Correlation with Survival of Patients. J. Cancer Res. Ther. 2010, 6, 167–171. [Google Scholar] [CrossRef]
- Yang, X.; Chen, G.; Li, W.; Peng, C.; Zhu, Y.; Yang, X.; Li, T.; Cao, C.; Pei, H. Cervical Cancer Growth Is Regulated by a C-ABL-PLK1 Signaling Axis. Cancer Res. 2017, 77, 1142–1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helmke, C.; Raab, M.; Rödel, F.; Matthess, Y.; Oellerich, T.; Mandal, R.; Sanhaji, M.; Urlaub, H.; Rödel, C.; Becker, S.; et al. Ligand Stimulation of CD95 Induces Activation of Plk3 Followed by Phosphorylation of Caspase-8. Cell Res. 2016, 26, 914–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleischmann, M.; Martin, D.; Peña-Llopis, S.; Oppermann, J.; von der Grün, J.; Diefenhardt, M.; Chatzikonstantinou, G.; Fokas, E.; Rödel, C.; Strebhardt, K.; et al. Association of Polo-Like Kinase 3 and PhosphoT273 Caspase 8 Levels With Disease-Related Outcomes Among Cervical Squamous Cell Carcinoma Patients Treated with Chemoradiation and Brachytherapy. Front. Oncol. 2019, 9, 742. [Google Scholar] [CrossRef] [Green Version]
- Holtrich, U.; Wolf, G.; Yuan, J.; Bereiter-Hahn, J.; Karn, T.; Weiler, M.; Kauselmann, G.; Rehli, M.; Andreesen, R.; Kaufmann, M.; et al. Adhesion Induced Expression of the Serine/Threonine Kinase Fnk in Human Macrophages. Oncogene 2000, 19, 4832–4839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, C.K.; Kornaga, E.N.; Klimowicz, A.C.; Enwere, E.K.; Dean, M.; Bebb, G.D.; Phan, T.; Ghatage, P.; Magliocco, A.M.; Lees-Miller, S.P.; et al. Expression of DNA Damage Response Proteins in Cervical Cancer Patients Treated with Radical Chemoradiotherapy. Gynecol. Oncol. 2017, 145, 176–184. [Google Scholar] [CrossRef]
- Choi, C.H.; Chung, J.-Y.; Kang, J.H.; Paik, E.S.; Lee, Y.-Y.; Park, W.; Byeon, S.-J.; Chung, E.J.; Kim, B.-G.; Hewitt, S.M.; et al. Chemoradiotherapy Response Prediction Model by Proteomic Expressional Profiling in Patients with Locally Advanced Cervical Cancer. Gynecol. Oncol. 2020, 157, 437–443. [Google Scholar] [CrossRef]
- Lu, Y.; Govindan, R.; Wang, L.; Liu, P.; Goodgame, B.; Wen, W.; Sezhiyan, A.; Pfeifer, J.; Li, Y.; Hua, X.; et al. MicroRNA Profiling and Prediction of Recurrence/Relapse-Free Survival in Stage I Lung Cancer. Carcinogenesis 2012, 33, 1046–1054. [Google Scholar] [CrossRef]
- Jacob, H.; Stanisavljevic, L.; Storli, K.E.; Hestetun, K.E.; Dahl, O.; Myklebust, M.P. A Four-MicroRNA Classifier as a Novel Prognostic Marker for Tumor Recurrence in Stage II Colon Cancer. Sci. Rep. 2018, 8, 6157. [Google Scholar] [CrossRef]
- Akazawa, Y.; Mizuno, S.; Fujinami, N.; Suzuki, T.; Yoshioka, Y.; Ochiya, T.; Nakamoto, Y.; Nakatsura, T. Usefulness of Serum MicroRNA as a Predictive Marker of Recurrence and Prognosis in Biliary Tract Cancer after Radical Surgery. Sci. Rep. 2019, 9, 5925. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Chen, L.-J. The Role of MiRNAs in the Invasion and Metastasis of Cervical Cancer. Biosci. Rep. 2019, 39, BSR20181377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, E.C. Micro RNAs Are Complementary to 3′ UTR Sequence Motifs That Mediate Negative Post-Transcriptional Regulation. Nat. Genet. 2002, 30, 363–364. [Google Scholar] [CrossRef] [PubMed]
- Jansson, M.D.; Lund, A.H. MicroRNA and Cancer. Mol. Oncol. 2012, 6, 590–610. [Google Scholar] [CrossRef] [PubMed]
- Di Leva, G.; Garofalo, M.; Croce, C.M. MicroRNAs in Cancer. Annu. Rev. Pathol. 2014, 9, 287–314. [Google Scholar] [CrossRef] [Green Version]
- Pardini, B.; De Maria, D.; Francavilla, A.; Di Gaetano, C.; Ronco, G.; Naccarati, A. MicroRNAs as Markers of Progression in Cervical Cancer: A Systematic Review. BMC Cancer 2018, 18, 696. [Google Scholar] [CrossRef]
- He, Y.; Lin, J.; Ding, Y.; Liu, G.; Luo, Y.; Huang, M.; Xu, C.; Kim, T.-K.; Etheridge, A.; Lin, M.; et al. A Systematic Study on Dysregulated MicroRNAs in Cervical Cancer Development. Int. J. Cancer 2016, 138, 1312–1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gocze, K.; Gombos, K.; Juhasz, K.; Kovacs, K.; Kajtar, B.; Benczik, M.; Gocze, P.; Patczai, B.; Arany, I.; Ember, I. Unique MicroRNA Expression Profiles in Cervical Cancer. Anticancer Res. 2013, 33, 2561–2567. [Google Scholar]
- Wang, X.; Meyers, C.; Guo, M.; Zheng, Z.-M. Upregulation of P18Ink4c Expression by Oncogenic HPV E6 via P53-MiR-34a Pathway. Int. J. Cancer 2011, 129, 1362–1372. [Google Scholar] [CrossRef] [Green Version]
- Navarro, F.; Lieberman, J. MiR-34 and P53: New Insights into a Complex Functional Relationship. PLoS ONE 2015, 10, e0132767. [Google Scholar] [CrossRef]
- Hong, S.; Cheng, S.; Songock, W.; Bodily, J.; Laimins, L.A. Suppression of MicroRNA 424 Levels by Human Papillomaviruses Is Necessary for Differentiation-Dependent Genome Amplification. J. Virol. 2017, 91, e01712-17. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Li, Y.; Wang, F.; Wang, X.; Cheng, B.; Ye, F.; Xie, X.; Zhou, C.; Lu, W. Suppressed MiR-424 Expression via Upregulation of Target Gene Chk1 Contributes to the Progression of Cervical Cancer. Oncogene 2013, 32, 976–987. [Google Scholar] [CrossRef]
- Wang, N.; Zhou, Y.; Zheng, L.; Li, H. MiR-31 Is an Independent Prognostic Factor and Functions as an Oncomir in Cervical Cancer via Targeting ARID1A. Gynecol. Oncol. 2014, 134, 129–137. [Google Scholar] [CrossRef]
- Berns, K.; Sonnenblick, A.; Gennissen, A.; Brohée, S.; Hijmans, E.M.; Evers, B.; Fumagalli, D.; Desmedt, C.; Loibl, S.; Denkert, C.; et al. Loss of ARID1A Activates ANXA1, Which Serves as a Predictive Biomarker for Trastuzumab Resistance. Clin. Cancer Res. 2016, 22, 5238–5248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X. Up-Regulation of MiR-20a by HPV16 E6 Exerts Growth-Promoting Effects by Targeting PDCD6 in Cervical Carcinoma Cells. Biomed. Pharmacother. 2018, 102, 996–1002. [Google Scholar] [CrossRef]
- Cheng, Y.; Geng, L.; Zhao, L.; Zuo, P.; Wang, J. Human Papillomavirus E6-Regulated MicroRNA-20b Promotes Invasion in Cervical Cancer by Targeting Tissue Inhibitor of Metalloproteinase 2. Mol. Med. Rep. 2017, 16, 5464–5470. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Chen, H. Anti-Condyloma Acuminata Mechanism of MicroRNAs-375 Modulates HPV in Cervical Cancer Cells via the UBE3A and IGF-1R Pathway. Oncol. Lett. 2018, 16, 3241–3247. [Google Scholar] [CrossRef]
- Ulitsky, I.; Bartel, D.P. LincRNAs: Genomics, Evolution, and Mechanisms. Cell 2013, 154, 26–46. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Hao, Q.; Prasanth, K.V. Nuclear Long Noncoding RNAs: Key Regulators of Gene Expression. Trends Genet. 2018, 34, 142–157. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Su, M.; Chang, W.; Zhang, K.; Wu, S.; Xu, T. Long Non-Coding RNAs on the Stage of Cervical Cancer (Review). Oncol. Rep. 2017, 38, 1923–1931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, T.; Huang, S. Roles of Non-Coding RNAs in Cervical Cancer Metastasis. Front. Oncol. 2021, 11, 646192. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Mandal, P.; Sadhukhan, T.; Roy Chowdhury, R.; Ranjan Mondal, N.; Chakravarty, B.; Chatterjee, T.; Roy, S.; Sengupta, S. Bridging Links between Long Noncoding RNA HOTAIR and HPV Oncoprotein E7 in Cervical Cancer Pathogenesis. Sci. Rep. 2015, 5, 11724. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Jia, J.; Wang, X.; Liu, Y.; Wang, C.; Fan, R. Long Non-Coding RNA HOTAIR Promotes Cervical Cancer Progression through Regulating BCL2 via Targeting MiR-143-3p. Cancer Biol. Ther. 2018, 19, 391–399. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Zhou, X.; Zhang, J.; Zhou, Y.; Ying, J.; Wu, G.; Qian, J. Propofol Promotes Cell Apoptosis via Inhibiting HOTAIR Mediated MTOR Pathway in Cervical Cancer. Biochem. Biophys. Res. Commun. 2015, 468, 561–567. [Google Scholar] [CrossRef]
- Lee, M.; Kim, H.J.; Kim, S.W.; Park, S.-A.; Chun, K.-H.; Cho, N.H.; Song, Y.S.; Kim, Y.T. The Long Non-Coding RNA HOTAIR Increases Tumour Growth and Invasion in Cervical Cancer by Targeting the Notch Pathway. Oncotarget 2016, 7, 44558–44571. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Lee, D.W.; Yim, G.W.; Nam, E.J.; Kim, S.; Kim, S.W.; Kim, Y.T. Long Non-Coding RNA HOTAIR Is Associated with Human Cervical Cancer Progression. Int. J. Oncol. 2015, 46, 521–530. [Google Scholar] [CrossRef] [Green Version]
- Sun, R.; Qin, C.; Jiang, B.; Fang, S.; Pan, X.; Peng, L.; Liu, Z.; Li, W.; Li, Y.; Li, G. Down-Regulation of MALAT1 Inhibits Cervical Cancer Cell Invasion and Metastasis by Inhibition of Epithelial-Mesenchymal Transition. Mol. Biosyst. 2016, 12, 952–962. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, Y.; Fang, S.; Jiang, B.; Qin, C.; Xie, P.; Zhou, G.; Li, G. The Role of MALAT1 Correlates with HPV in Cervical Cancer. Oncol. Lett. 2014, 7, 2135–2141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, H.; He, Y.; Lin, L.; Qi, Z.; Ma, L.; Li, L.; Su, Y. Long Non-Coding RNA MALAT1 Modulates Radiosensitivity of HR-HPV+ Cervical Cancer via Sponging MiR-145. Tumour Biol. 2016, 37, 1683–1691. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Bai, H.-S.; Deng, Y.; Fan, L. High MALAT1 Expression Predicts a Poor Prognosis of Cervical Cancer and Promotes Cancer Cell Growth and Invasion. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 3187–3193. [Google Scholar] [PubMed]
- Peng, W.; Fan, H. Long Noncoding RNA CCHE1 Indicates a Poor Prognosis of Hepatocellular Carcinoma and Promotes Carcinogenesis via Activation of the ERK/MAPK Pathway. Biomed. Pharmacother. 2016, 83, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, C.-X.; Sun, X.-X.; Wang, C.; Liu, T.-F.; Wang, D.-J. Long Non-Coding RNA CCHE1 Overexpression Predicts a Poor Prognosis for Cervical Cancer. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 479–483. [Google Scholar]
- Wu, L.; Jin, L.; Zhang, W.; Zhang, L. Roles of Long Non-Coding RNA CCAT2 in Cervical Cancer Cell Growth and Apoptosis. Med. Sci. Monit. 2016, 22, 875–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, S.; Liu, W.; Li, F.; Zhao, W.; Qin, C. Decreased Expression of LncRNA GAS5 Predicts a Poor Prognosis in Cervical Cancer. Int. J. Clin. Exp. Pathol. 2014, 7, 6776–6783. [Google Scholar] [PubMed]
- Yang, W.; Hong, L.; Xu, X.; Wang, Q.; Huang, J.; Jiang, L. LncRNA GAS5 Suppresses the Tumorigenesis of Cervical Cancer by Downregulating MiR-196a and MiR-205. Tumour Biol. 2017, 39, 1010428317711315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, J.; Liu, L.; Li, G.; Cai, M.; Tan, C.; Han, X.; Han, L. LncRNA GAS5 Confers the Radio Sensitivity of Cervical Cancer Cells via Regulating MiR-106b/IER3 Axis. Int. J. Biol. Macromol. 2019, 126, 994–1001. [Google Scholar] [CrossRef]
- Chen, Q.; Hu, L.; Huang, D.; Chen, K.; Qiu, X.; Qiu, B. Six-LncRNA Immune Prognostic Signature for Cervical Cancer. Front. Genet. 2020, 11, 533628. [Google Scholar] [CrossRef]
- Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The Biogenesis, Biology and Characterization of Circular RNAs. Nat. Rev. Genet. 2019, 20, 675–691. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, L.-H.; Sun, D.-W.; Hou, J.-C.; Ji, Z.-L. CircRNA: A Novel Type of Biomarker for Cancer. Breast Cancer 2018, 25, 1–7. [Google Scholar] [CrossRef]
- Han, Y.-N.; Xia, S.-Q.; Zhang, Y.-Y.; Zheng, J.-H.; Li, W. Circular RNAs: A Novel Type of Biomarker and Genetic Tools in Cancer. Oncotarget 2017, 8, 64551–64563. [Google Scholar] [CrossRef]
- Chaichian, S.; Shafabakhsh, R.; Mirhashemi, S.M.; Moazzami, B.; Asemi, Z. Circular RNAs: A Novel Biomarker for Cervical Cancer. J. Cell. Physiol. 2020, 235, 718–724. [Google Scholar] [CrossRef]
- Gao, Y.-L.; Zhang, M.-Y.; Xu, B.; Han, L.-J.; Lan, S.-F.; Chen, J.; Dong, Y.-J.; Cao, L.-L. Circular RNA Expression Profiles Reveal That Hsa_circ_0018289 Is Up-Regulated in Cervical Cancer and Promotes the Tumorigenesis. Oncotarget 2017, 8, 86625–86633. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhao, X.; Zhang, J.; Zheng, X.; Li, F. Circular RNA Hsa_circ_0023404 Exerts an Oncogenic Role in Cervical Cancer through Regulating MiR-136/TFCP2/YAP Pathway. Biochem. Biophys. Res. Commun. 2018, 501, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Zhang, P.; Xu, M.; Yan, L.; Liu, N.; Wu, X. Circular RNA Hsa_circ_0000263 Participates in Cervical Cancer Development by Regulating Target Gene of MiR-150-5p. J. Cell. Physiol. 2019, 234, 11391–11400. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.-J.D.C.; Liang, L. Involvement of Circular RNA SMARCA5/MicroRNA-620 Axis in the Regulation of Cervical Cancer Cell Proliferation, Invasion and Migration. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 8589–8598. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Chen, M.; Ai, G.; Mao, W.; Li, H.; Zhou, J. Hsa_circ_0023404 Enhances Cervical Cancer Metastasis and Chemoresistance through VEGFA and Autophagy Signaling by Sponging MiR-5047. Biomed. Pharmacother. 2019, 115, 108957. [Google Scholar] [CrossRef]
- Song, T.; Xu, A.; Zhang, Z.; Gao, F.; Zhao, L.; Chen, X.; Gao, J.; Kong, X. CircRNA Hsa_circRNA_101996 Increases Cervical Cancer Proliferation and Invasion through Activating TPX2 Expression by Restraining MiR-8075. J. Cell. Physiol. 2019, 234, 14296–14305. [Google Scholar] [CrossRef]
- Hu, C.; Wang, Y.; Li, A.; Zhang, J.; Xue, F.; Zhu, L. Overexpressed Circ_0067934 Acts as an Oncogene to Facilitate Cervical Cancer Progression via the MiR-545/EIF3C Axis. J. Cell. Physiol. 2019, 234, 9225–9232. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Lee, E.E.; Kim, J.; Yang, R.; Chamseddin, B.; Ni, C.; Gusho, E.; Xie, Y.; Chiang, C.-M.; Buszczak, M.; et al. Transforming Activity of an Oncoprotein-Encoding Circular RNA from Human Papillomavirus. Nat. Commun. 2019, 10, 2300. [Google Scholar] [CrossRef] [Green Version]
- Heidrich, I.; Ačkar, L.; Mossahebi Mohammadi, P.; Pantel, K. Liquid Biopsies: Potential and Challenges. Int. J. Cancer 2021, 148, 528–545. [Google Scholar] [CrossRef] [PubMed]
- Cafforio, P.; Palmirotta, R.; Lovero, D.; Cicinelli, E.; Cormio, G.; Silvestris, E.; Porta, C.; D’Oronzo, S. Liquid Biopsy in Cervical Cancer: Hopes and Pitfalls. Cancers 2021, 13, 3968. [Google Scholar] [CrossRef]
- Vasseur, A.; Kiavue, N.; Bidard, F.-C.; Pierga, J.-Y.; Cabel, L. Clinical Utility of Circulating Tumor Cells: An Update. Mol. Oncol. 2021, 15, 1647–1666. [Google Scholar] [CrossRef] [PubMed]
- Du, K.; Huang, Q.; Bu, J.; Zhou, J.; Huang, Z.; Li, J. Circulating Tumor Cells Counting Act as a Potential Prognostic Factor in Cervical Cancer. Technol. Cancer Res. Treat. 2020, 19, 1533033820957005. [Google Scholar] [CrossRef]
- Wen, Y.-F.; Cheng, T.-T.; Chen, X.-L.; Huang, W.-J.; Peng, H.-H.; Zhou, T.-C.; Lin, X.-D.; Zeng, L.-S. Elevated Circulating Tumor Cells and Squamous Cell Carcinoma Antigen Levels Predict Poor Survival for Patients with Locally Advanced Cervical Cancer Treated with Radiotherapy. PLoS ONE 2018, 13, e0204334. [Google Scholar] [CrossRef]
- Tewari, K.S.; Sill, M.W.; Monk, B.J.; Penson, R.T.; Moore, D.H.; Lankes, H.A.; Ramondetta, L.M.; Landrum, L.M.; Randall, L.M.; Oaknin, A.; et al. Circulating Tumor Cells In Advanced Cervical Cancer: NRG Oncology-Gynecologic Oncology Group Study 240 (NCT 00803062). Mol. Cancer Ther. 2020, 19, 2363–2370. [Google Scholar] [CrossRef] [PubMed]
- Palmirotta, R.; Lovero, D.; Cafforio, P.; Felici, C.; Mannavola, F.; Pellè, E.; Quaresmini, D.; Tucci, M.; Silvestris, F. Liquid Biopsy of Cancer: A Multimodal Diagnostic Tool in Clinical Oncology. Ther. Adv. Med. Oncol. 2018, 10, 1758835918794630. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Tong, H.; Li, T.; Chen, Y.; Mao, X. Potential Value of Circulating Tumor DNA in Gynecological Tumors. Am. J. Transl. Res. 2020, 12, 3225–3233. [Google Scholar]
- Tian, J.; Geng, Y.; Lv, D.; Li, P.; Cordova, M.; Liao, Y.; Tian, X.; Zhang, X.; Zhang, Q.; Zou, K.; et al. Using Plasma Cell-Free DNA to Monitor the Chemoradiotherapy Course of Cervical Cancer. Int. J. Cancer 2019, 145, 2547–2557. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Chae, D.-K.; An, J.; Yoo, S.; Jung, S.; Chae, C.H.; Bhak, J.; Kim, B.C.; Cho, D.-H. Combinatory Analysis of Cell-Free and Circulating Tumor Cell DNAs Provides More Variants for Cancer Treatment. Anticancer Res. 2019, 39, 6595–6602. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Chae, D.-K.; Lee, S.-H.; Lim, Y.; An, J.; Chae, C.H.; Kim, B.C.; Bhak, J.; Bolser, D.; Cho, D.-H. Efficient Mutation Screening for Cervical Cancers from Circulating Tumor DNA in Blood. BMC Cancer 2020, 20, 694. [Google Scholar] [CrossRef]
- Tian, X.; Ge, D.; Zhang, F.; Zhang, B.; Bai, W.; Xu, X.; Li, Z.; Cao, Y.; Li, P.; Zou, K.; et al. Dynamic Analysis of Circulating Tumor DNA to Predict Prognosis and Monitor Therapeutic Response in Metastatic Relapsed Cervical Cancer. Int. J. Cancer 2021, 148, 921–931. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.M.; Pai, S.I.; Rha, S.-H.; Hildesheim, A.; Kurman, R.J.; Schwartz, P.E.; Mortel, R.; McGowan, L.; Greenberg, M.D.; Barnes, W.A.; et al. Detection and Quantitation of Human Papillomavirus DNA in the Plasma of Patients with Cervical Carcinoma. Cancer Epidemiol. Biomark. Prev. 2002, 11, 3–6. [Google Scholar]
- Shimada, T.; Yamaguchi, N.; Nishida, N.; Yamasaki, K.; Miura, K.; Katamine, S.; Masuzaki, H. Human Papillomavirus DNA in Plasma of Patients with HPV16 DNA-Positive Uterine Cervical Cancer. Jpn. J. Clin. Oncol. 2010, 40, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Kang, Z.; Stevanović, S.; Hinrichs, C.S.; Cao, L. Circulating Cell-Free DNA for Metastatic Cervical Cancer Detection, Genotyping, and Monitoring. Clin. Cancer Res. 2017, 23, 6856–6862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Y.; Wan, C.; Qiu, J.; Cui, Y.; Jiang, T.; Zhuang, Z. Circulating HPV CDNA in the Blood as a Reliable Biomarker for Cervical Cancer: A Meta-Analysis. PLoS ONE 2020, 15, e0224001. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Wang, Y.; Dong, R.; Huang, X.; Ding, S.; Qiu, H. Circulating MicroRNA-218 Was Reduced in Cervical Cancer and Correlated with Tumor Invasion. J. Cancer Res. Clin. Oncol. 2012, 138, 671–674. [Google Scholar] [CrossRef]
- Ma, Q.; Wan, G.; Wang, S.; Yang, W.; Zhang, J.; Yao, X. Serum MicroRNA-205 as a Novel Biomarker for Cervical Cancer Patients. Cancer Cell Int. 2014, 14, 81. [Google Scholar] [CrossRef] [Green Version]
- Farzanehpour, M.; Mozhgani, S.-H.; Jalilvand, S.; Faghihloo, E.; Akhavan, S.; Salimi, V.; Azad, T.M. Serum and Tissue MiRNAs: Potential Biomarkers for the Diagnosis of Cervical Cancer. Virol. J. 2019, 16, 116. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Yao, D.; Chen, J.; Ding, N. Circulating MiRNA-20a and MiRNA-203 for Screening Lymph Node Metastasis in Early Stage Cervical Cancer. Genet. Test. Mol. Biomark. 2013, 17, 631–636. [Google Scholar] [CrossRef]
- Jiang, W.; Pan, J.J.; Deng, Y.H.; Liang, M.R.; Yao, L.H. Down-Regulated Serum MicroRNA-101 Is Associated with Aggressive Progression and Poor Prognosis of Cervical Cancer. J. Gynecol. Oncol. 2017, 28, e75. [Google Scholar] [CrossRef] [Green Version]
- Qiu, H.; Liang, D.; Liu, L.; Xiang, Q.; Yi, Z.; Ji, Y. A Novel Circulating MiRNA-Based Signature for the Diagnosis and Prognosis Prediction of Early-Stage Cervical Cancer. Technol. Cancer Res. Treat. 2020, 19, 1533033820970667. [Google Scholar] [CrossRef]
- Jia, W.; Wu, Y.; Zhang, Q.; Gao, G.E.; Zhang, C.; Xiang, Y. Expression Profile of Circulating MicroRNAs as a Promising Fingerprint for Cervical Cancer Diagnosis and Monitoring. Mol. Clin. Oncol. 2015, 3, 851–858. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Schwarz, J.K.; Lewis, J.S.; Huettner, P.C.; Rader, J.S.; Deasy, J.O.; Grigsby, P.W.; Wang, X. A MicroRNA Expression Signature for Cervical Cancer Prognosis. Cancer Res. 2010, 70, 1441–1448. [Google Scholar] [CrossRef] [Green Version]
- Mbeunkui, F.; Johann, D.J. Cancer and the Tumor Microenvironment: A Review of an Essential Relationship. Cancer Chemother. Pharmacol. 2009, 63, 571–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shamseddine, A.A.; Burman, B.; Lee, N.Y.; Zamarin, D.; Riaz, N. Tumor Immunity and Immunotherapy for HPV-Related Cancers. Cancer Discov. 2021, 11, 1896–1912. [Google Scholar] [CrossRef] [PubMed]
- Duranti, S.; Pietragalla, A.; Daniele, G.; Nero, C.; Ciccarone, F.; Scambia, G.; Lorusso, D. Role of Immune Checkpoint Inhibitors in Cervical Cancer: From Preclinical to Clinical Data. Cancers 2021, 13, 2089. [Google Scholar] [CrossRef] [PubMed]
- Enwere, E.K.; Kornaga, E.N.; Dean, M.; Koulis, T.A.; Phan, T.; Kalantarian, M.; Köbel, M.; Ghatage, P.; Magliocco, A.M.; Lees-Miller, S.P.; et al. Expression of PD-L1 and Presence of CD8-Positive T Cells in Pre-Treatment Specimens of Locally Advanced Cervical Cancer. Mod. Pathol. 2017, 30, 577–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohno, A.; Iwata, T.; Katoh, Y.; Taniguchi, S.; Tanaka, K.; Nishio, H.; Nakamura, M.; Morisada, T.; Chen, G.; Saito, M.; et al. Tumor-Infiltrating Lymphocytes Predict Survival Outcomes in Patients with Cervical Cancer Treated with Concurrent Chemoradiotherapy. Gynecol. Oncol. 2020, 159, 329–334. [Google Scholar] [CrossRef]
- Fan, P.; Li, X.; Feng, Y.; Cai, H.; Dong, D.; Peng, Y.; Yao, X.; Guo, Y.; Ma, M.; Dong, T.; et al. PD-1 Expression Status on CD8+ Tumour Infiltrating Lymphocytes Associates With Survival in Cervical Cancer. Front. Oncol. 2021, 11, 678758. [Google Scholar] [CrossRef]
- Gu, X.; Dong, M.; Liu, Z.; Mi, Y.; Yang, J.; Zhang, Z.; Liu, K.; Jiang, L.; Zhang, Y.; Dong, S.; et al. Elevated PD-L1 Expression Predicts Poor Survival Outcomes in Patients with Cervical Cancer. Cancer Cell Int. 2019, 19, 146. [Google Scholar] [CrossRef]
- Litwin, T.R.; Irvin, S.R.; Chornock, R.L.; Sahasrabuddhe, V.V.; Stanley, M.; Wentzensen, N. Infiltrating T-Cell Markers in Cervical Carcinogenesis: A Systematic Review and Meta-Analysis. Br. J. Cancer 2021, 124, 831–841. [Google Scholar] [CrossRef]
- Shang, B.; Liu, Y.; Jiang, S.; Liu, Y. Prognostic Value of Tumor-Infiltrating FoxP3+ Regulatory T Cells in Cancers: A Systematic Review and Meta-Analysis. Sci. Rep. 2015, 5, 15179. [Google Scholar] [CrossRef] [Green Version]
- Someya, M.; Tsuchiya, T.; Fukushima, Y.; Hasegawa, T.; Hori, M.; Kitagawa, M.; Gocho, T.; Mafune, S.; Ikeuchi, Y.; Hirohashi, Y.; et al. Prediction of Treatment Response from the Microenvironment of Tumor Immunity in Cervical Cancer Patients Treated with Chemoradiotherapy. Med. Mol. Morphol. 2021, 54, 245–252. [Google Scholar] [CrossRef]
- Ferguson, R.; Ramanakumar, A.V.; Richardson, H.; Tellier, P.-P.; Coutlée, F.; Franco, E.L.; Roger, M. Human Leukocyte Antigen (HLA)-E and HLA-G Polymorphisms in Human Papillomavirus Infection Susceptibility and Persistence. Hum. Immunol. 2011, 72, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Hemmat, N.; Baghi, H.B. Human Papillomavirus E5 Protein, the Undercover Culprit of Tumorigenesis. Infect. Agents Cancer 2018, 13, 31. [Google Scholar] [CrossRef] [PubMed]
- Ashrafi, G.H.; Haghshenas, M.R.; Marchetti, B.; O’Brien, P.M.; Campo, M.S. E5 Protein of Human Papillomavirus Type 16 Selectively Downregulates Surface HLA Class I. Int. J. Cancer 2005, 113, 276–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Lu, J.; Tian, H.; Du, W.; Zhao, L.; Feng, J.; Yuan, D.; Li, Z. Increased Expression of PD-L1 by the Human Papillomavirus 16 E7 Oncoprotein Inhibits Anticancer Immunity. Mol. Med. Rep. 2017, 15, 1063–1070. [Google Scholar] [CrossRef] [Green Version]
- Qian, B.-Z.; Pollard, J.W. Macrophage Diversity Enhances Tumor Progression and Metastasis. Cell 2010, 141, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Biswas, S.K.; Allavena, P.; Mantovani, A. Tumor-Associated Macrophages: Functional Diversity, Clinical Significance, and Open Questions. Semin. Immunopathol. 2013, 35, 585–600. [Google Scholar] [CrossRef]
- Poh, A.R.; Ernst, M. Targeting Macrophages in Cancer: From Bench to Bedside. Front. Oncol. 2018, 8, 49. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.-J.; Han, L.-F.; Wu, X.-G.; Wei, W.-F.; Wu, L.-F.; Yi, H.-Y.; Yan, R.-M.; Bai, X.-Y.; Zhong, M.; Yu, Y.-H.; et al. Clinical Significance of CD163+ and CD68+ Tumor-Associated Macrophages in High-Risk HPV-Related Cervical Cancer. J. Cancer 2017, 8, 3868–3875. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Q.; Zhou, Q.; Luo, A.; Li, X.; Li, K.; Li, W.; Yu, M.; Amanullah, M.; Lu, B.; Lu, W.; et al. Integrated Analysis of Virus and Host Transcriptomes in Cervical Cancer in Asian and Western Populations. Genomics 2021, 113, 1554–1564. [Google Scholar] [CrossRef] [PubMed]
- Petrillo, M.; Zannoni, G.F.; Martinelli, E.; Pedone Anchora, L.; Ferrandina, G.; Tropeano, G.; Fagotti, A.; Scambia, G. Polarisation of Tumor-Associated Macrophages toward M2 Phenotype Correlates with Poor Response to Chemoradiation and Reduced Survival in Patients with Locally Advanced Cervical Cancer. PLoS ONE 2015, 10, e0136654. [Google Scholar] [CrossRef]
- Ping, Q.; Yan, R.; Cheng, X.; Wang, W.; Zhong, Y.; Hou, Z.; Shi, Y.; Wang, C.; Li, R. Cancer-Associated Fibroblasts: Overview, Progress, Challenges, and Directions. Cancer Gene Ther. 2021, 28, 984–999. [Google Scholar] [CrossRef]
- Xiao, L.; Zhu, H.; Shu, J.; Gong, D.; Zheng, D.; Gao, J. Overexpression of TGF-Β1 and SDF-1 in Cervical Cancer-Associated Fibroblasts Promotes Cell Growth, Invasion and Migration. Arch. Gynecol. Obstet. 2021, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Fullár, A.; Dudás, J.; Oláh, L.; Hollósi, P.; Papp, Z.; Sobel, G.; Karászi, K.; Paku, S.; Baghy, K.; Kovalszky, I. Remodeling of Extracellular Matrix by Normal and Tumor-Associated Fibroblasts Promotes Cervical Cancer Progression. BMC Cancer 2015, 15, 256. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.-F.; Chen, X.-J.; Liang, L.-J.; Yu, L.; Wu, X.-G.; Zhou, C.-F.; Wang, Z.-C.; Fan, L.-S.; Hu, Z.; Liang, L.; et al. Periostin+ Cancer-Associated Fibroblasts Promote Lymph Node Metastasis by Impairing the Lymphatic Endothelial Barriers in Cervical Squamous Cell Carcinoma. Mol. Oncol. 2021, 15, 210–227. [Google Scholar] [CrossRef]
- Chu, T.-Y.; Yang, J.-T.; Huang, T.-H.; Liu, H.-W. Crosstalk with Cancer-Associated Fibroblasts Increases the Growth and Radiation Survival of Cervical Cancer Cells. Radiat. Res. 2014, 181, 540–547. [Google Scholar] [CrossRef]
- Helmink, B.A.; Khan, M.A.W.; Hermann, A.; Gopalakrishnan, V.; Wargo, J.A. The Microbiome, Cancer, and Cancer Therapy. Nat. Med. 2019, 25, 377–388. [Google Scholar] [CrossRef]
- Klein, C.; Kahesa, C.; Mwaiselage, J.; West, J.T.; Wood, C.; Angeletti, P.C. How the Cervical Microbiota Contributes to Cervical Cancer Risk in Sub-Saharan Africa. Front. Cell. Infect. Microbiol. 2020, 10, 23. [Google Scholar] [CrossRef] [Green Version]
- Norenhag, J.; Du, J.; Olovsson, M.; Verstraelen, H.; Engstrand, L.; Brusselaers, N. The Vaginal Microbiota, Human Papillomavirus and Cervical Dysplasia: A Systematic Review and Network Meta-Analysis. BJOG 2020, 127, 171–180. [Google Scholar] [CrossRef]
- Petrova, M.I.; Reid, G.; Vaneechoutte, M.; Lebeer, S. Lactobacillus Iners: Friend or Foe? Trends Microbiol. 2017, 25, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Curty, G.; de Carvalho, P.S.; Soares, M.A. The Role of the Cervicovaginal Microbiome on the Genesis and as a Biomarker of Premalignant Cervical Intraepithelial Neoplasia and Invasive Cervical Cancer. Int. J. Mol. Sci. 2019, 21, 222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swidsinski, A.; Mendling, W.; Loening-Baucke, V.; Ladhoff, A.; Swidsinski, S.; Hale, L.P.; Lochs, H. Adherent Biofilms in Bacterial Vaginosis. Obstet. Gynecol. 2005, 106, 1013–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Paola, M.; Sani, C.; Clemente, A.M.; Iossa, A.; Perissi, E.; Castronovo, G.; Tanturli, M.; Rivero, D.; Cozzolino, F.; Cavalieri, D.; et al. Characterization of Cervico-Vaginal Microbiota in Women Developing Persistent High-Risk Human Papillomavirus Infection. Sci. Rep. 2017, 7, 10200. [Google Scholar] [CrossRef]
- Kostic, A.D.; Chun, E.; Robertson, L.; Glickman, J.N.; Gallini, C.A.; Michaud, M.; Clancy, T.E.; Chung, D.C.; Lochhead, P.; Hold, G.L.; et al. Fusobacterium Nucleatum Potentiates Intestinal Tumorigenesis and Modulates the Tumor-Immune Microenvironment. Cell Host Microbe 2013, 14, 207–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitra, A.; MacIntyre, D.A.; Lee, Y.S.; Smith, A.; Marchesi, J.R.; Lehne, B.; Bhatia, R.; Lyons, D.; Paraskevaidis, E.; Li, J.V.; et al. Cervical Intraepithelial Neoplasia Disease Progression Is Associated with Increased Vaginal Microbiome Diversity. Sci. Rep. 2015, 5, 16865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Audirac-Chalifour, A.; Torres-Poveda, K.; Bahena-Román, M.; Téllez-Sosa, J.; Martínez-Barnetche, J.; Cortina-Ceballos, B.; López-Estrada, G.; Delgado-Romero, K.; Burguete-García, A.I.; Cantú, D.; et al. Cervical Microbiome and Cytokine Profile at Various Stages of Cervical Cancer: A Pilot Study. PLoS ONE 2016, 11, e0153274. [Google Scholar] [CrossRef] [PubMed]
- Tsakmaklis, A.; Vehreschild, M.; Farowski, F.; Trommer, M.; Kohler, C.; Herter, J.; Marnitz, S. Changes in the Cervical Microbiota of Cervical Cancer Patients after Primary Radio-Chemotherapy. Int. J. Gynecol. Cancer 2020, 30, 1326–1330. [Google Scholar] [CrossRef]
- Sims, T.T.; El Alam, M.B.; Karpinets, T.V.; Dorta-Estremera, S.; Hegde, V.L.; Nookala, S.; Yoshida-Court, K.; Wu, X.; Biegert, G.W.G.; Delgado Medrano, A.Y.; et al. Gut Microbiome Diversity Is an Independent Predictor of Survival in Cervical Cancer Patients Receiving Chemoradiation. Commun. Biol. 2021, 4, 237. [Google Scholar] [CrossRef]
Intermediate Risk (Sedlis’ Criteria) | High Risk (Peters’ Criteria) |
---|---|
LVSI plus deep stromal invasion (outer third) | Positive surgical margins |
LVSI plus middle stromal invasion (one-third) and tumor size ≥ 2 cm | Detection of pathologically-confirmed lymph node metastases |
LVSI plus superficial stromal invasion (inner third) and tumor size ≥ 5 cm | Extension into the parametrial tissue |
No LVSI but deep or middle stromal invasion and tumor size ≥ 4 cm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fleischmann, M.; Chatzikonstantinou, G.; Fokas, E.; Wichmann, J.; Christiansen, H.; Strebhardt, K.; Rödel, C.; Tselis, N.; Rödel, F. Molecular Markers to Predict Prognosis and Treatment Response in Uterine Cervical Cancer. Cancers 2021, 13, 5748. https://doi.org/10.3390/cancers13225748
Fleischmann M, Chatzikonstantinou G, Fokas E, Wichmann J, Christiansen H, Strebhardt K, Rödel C, Tselis N, Rödel F. Molecular Markers to Predict Prognosis and Treatment Response in Uterine Cervical Cancer. Cancers. 2021; 13(22):5748. https://doi.org/10.3390/cancers13225748
Chicago/Turabian StyleFleischmann, Maximilian, Georgios Chatzikonstantinou, Emmanouil Fokas, Jörn Wichmann, Hans Christiansen, Klaus Strebhardt, Claus Rödel, Nikolaos Tselis, and Franz Rödel. 2021. "Molecular Markers to Predict Prognosis and Treatment Response in Uterine Cervical Cancer" Cancers 13, no. 22: 5748. https://doi.org/10.3390/cancers13225748
APA StyleFleischmann, M., Chatzikonstantinou, G., Fokas, E., Wichmann, J., Christiansen, H., Strebhardt, K., Rödel, C., Tselis, N., & Rödel, F. (2021). Molecular Markers to Predict Prognosis and Treatment Response in Uterine Cervical Cancer. Cancers, 13(22), 5748. https://doi.org/10.3390/cancers13225748