Clinical Activity of an hTERT-Specific Cancer Vaccine (Vx-001) in “Immune Desert” NSCLC
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Study Design
2.2. PD-L1 Staining
2.3. Lymphocytic Infiltration
2.4. Immune Response
2.5. Statistical Analysis
3. Results
3.1. TIL Phenotype and PD-L1 Expression
3.2. TILs but Not PD-L1 Predict Vx-001 Efficacy on OS
3.3. TILs but Not PD-L1 Predict Vx-001 Efficacy on TTF
3.4. Functionality of TILs Predicts Activity of Vx-001 on Both OS and TTF
3.5. Vaccine Induced Immune Response and TIL Infiltration
Univariate and Multivariate Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moudgil, K.D.; Sercarz, E.E. The T cell repertoire against cryptic self-determinants and its involvement in autoimmunity and cancer. Clin. Immunol. Immunopathol. 1994, 73, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Cibotti, R.; Kanellopoulos, J.M.; Cabaniols, J.P.; Halle-Panenko, O.; Kosmatopoulos, K.; Sercarz, E.; Kourilsky, P. Tolerance to a self-protein involves its immunodominant but does not involve its subdominant determinants. Proc. Natl. Acad. Sci. USA 1992, 89, 416–420. [Google Scholar] [CrossRef] [Green Version]
- Gross, D.A.; Graff-Dubois, S.; Opolon, P.; Cornet, S.; Alves, P.; Bennaceur-Griscelli, A.; Faure, O.; Guillaume, P.; Firat, H.; Chouaib, S.; et al. High vaccination efficiency of low-affinity epitopes in antitumor immunotherapy. J. Clin. Investig. 2004, 113, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Scardino, A.; Gross, D.A.; Alves, P.; Schultze, J.L.; Graff-Dubois, S.; Faure, O.; Tourdot, S.; Chouaib, S.; Nadler, L.M.; Lemonnier, F.A.; et al. HER-2/neu and hTERT cryptic epitopes as novel targets for broad spectrum tumor immunotherapy. J. Immunol. 2002, 168, 5900–5906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vetsika, E.K.; Konsolakis, G.; Aggouraki, D.; Kotsakis, A.; Papadimitraki, E.; Christou, S.; Menez-Jamet, J.; Kosmatopoulos, K.; Georgoulias, V.; Mavroudis, D. Immunological responses in cancer patients after vaccination with the therapeutic telomerase-specific vaccine Vx-001. Cancer immunol. Immunotherapy 2012, 61, 157–168. [Google Scholar]
- Bolonaki, I.; Kotsakis, A.; Papadimitraki, E.; Aggouraki, D.; Konsolakis, G.; Vagia, A.; Christophylakis, C.; Nikoloudi, I.; Magganas, E.; Galanis, A.; et al. Vaccination of patients with advanced non-small-cell lung cancer with an optimized cryptic human telomerase reverse transcriptase peptide. J. Clin. Oncol. 2007, 25, 2727–2734. [Google Scholar] [CrossRef]
- Kotsakis, A.; Vetsika, E.-K.; Christou, S.; Hatzidaki, D.; Vardakis, N.; Aggouraki, D.; Konsolakis, G.; Georgoulias, V.; Christophyllakis, C.; Cordopatis, P.; et al. Clinical outcome of patients with various advanced cancer types vaccinated with an optimized cryptic human telomerase reverse transcriptase (TERT) peptide: Results of an expanded phase II study. Ann. Oncol. 2012, 23, 442–449. [Google Scholar] [CrossRef]
- Kotsakis, A.; Papadimitraki, E.; Vetsika, E.K.; Aggouraki, D.; Dermitzaki, E.K.; Hatzidaki, D.; Kentepozidis, N.; Mavroudis, D.; Georgoulias, V. A phase II trial evaluating the clinical and immunologic response of HLA-A2+ non-small cell lung cancer patients vaccinated with an hTERT cryptic peptide. Lung Cancer 2014, 86, 59–66. [Google Scholar] [CrossRef]
- Gridelli, C.; Ciuleanu, T.; Domine, M.; Szczesna, A.; Bover, I.; Cobo, M.; Kentepozidis, N.; Zarogoulidis, K.; Kalofonos, C.; Kazarnowisz, A.; et al. Clinical activity of a hTERT (Vx-001) cancer vaccine as post-chemotherapy maintenance immunotherapy in patients with stage IV non-small cell lung cancer: Final results of a randomized phase 2 clinical trial. Br. J. Cancer 2020, 122, 1461–1466. [Google Scholar] [CrossRef]
- Gridelli, C.; Ciuleanu, T.; Gomez, M.D.; Szczesna, A.; Bover, I.; Dols, M.C.; Kentepozidis, N.; Viteri, S.; Manegold, C.; Khayat, D.; et al. Randomized double blind phase IIb trial in advanced NSCLC patients who did not progress after first line platinum based chemotherapy: Vx-001 a therapeutic cancer vaccinevs placebo as maintenance therapy. Ann. Oncol. 2017, 28 (Suppl. S5), V638. [Google Scholar] [CrossRef] [Green Version]
- Govindan, R.; Ding, L.; Griffith, M.; Subramanian, J.; Dees, N.D.; Kanchi, K.L.; Maher, C.A.; Fulton, R.; Fulton, L.; Wallis, J.; et al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell 2012, 150, 1121–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenbaum, M.; Khosrowjerdi, S.; Kamesan, V.; Digumarthy, S.; Gainor, J.; Mino-Kenudson, M. The utility of PD-L1/CD8 dual immunochemistry for prediction of response to immunotherapy in NSCLC. J. Thor. Oncol. 2018, 13, 533. [Google Scholar] [CrossRef] [Green Version]
- Prelaj, A.; Tay, R.; Ferrara, R.; Chaput, N.; Besse, B.; Califano, R. Predictive biomarkers of response for immune checkpoint inhibitors in non-small-cell lung cancer. Eur. J. Cancer 2019, 106, 144–159. [Google Scholar] [CrossRef] [PubMed]
- Roach, C.; Zhang, N.; Corigliano, E.; Jansson, M.; Toland, G.; Ponto, G.; Dolled-Filhart, M.; Emancipator, K.; Stanforth, D.; Kulangara, K. Development of a companion diagnostic PD-L1 immunohistochemistry assay for pembrolizumab therapy in NSCLC. Appl. Immunohistochem. Mol. Morphol. 2016, 24, 392–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brambilla, E.; Le Teuff, G.; Marguet, S.; Lantuejoul, S.; Dunant, A.; Graziano, S.; Pirker, R.; Douillard, J.Y.; Le Chevalier, T.; Filipits, M.; et al. Prognostic effect of tumor lymphocytic infiltration in resectable NSCLC. J. Clin. Oncol. 2016, 34, 1223–1230. [Google Scholar] [CrossRef]
- Papalampros, A.; Vailas, M.; Ntostoglou, K.; Chiloeches, M.L.; Sakellariou, S.; Chouliari, N.V.; Samaras, M.G.; Veltsista, P.D.; Theodorou, S.D.; Margetis, A.T.; et al. Unique spatial immune profiling in pancreatic ductal adenocarcinoma with enrichment of exhausted and senescent T cells and diffused CD47-SIRPa expression. Cancers 2020, 12, 1825. [Google Scholar] [CrossRef] [PubMed]
- Camp, R.L.; Dolled-Filhart, M.; Rimm, D.L. X-Tile: A new Bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin. Cancer Res. 2004, 10, 7252–7259. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Cao, M.F.; Zhang, X.; Dang, W.Q.; Xiao, J.F.; Liu, Q.; Tan, Y.H.; Tan, Y.Y.; Xu, Y.Y.; Xu, S.L.; et al. The landscape of immune microenvironment in lung adenocarcinoma and squamous cell carcinoma based on PD-L1 expression and tumor-infiltrating lymphocytes. Cancer Med. 2019, 8, 7207–7218. [Google Scholar] [CrossRef] [Green Version]
- Joyce, J.A.; Fearon, D.T. T-cell exclusion, immune privilege and the tumor microenvironment. Science 2015, 348, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Hamada, T.; Soong, T.R.; Masugi, Y.; Kosumi, K.; Nowak, J.A.; da Silva, A.; Mu, X.J.; Twombly, T.S.; Koh, H.; Yang, J.; et al. TIME (Tumor Immunity in the MicroEnvironment) classification based on tumor CD274 (PD-L1) expression status and tumor-infiltrating lymphocytes in colorectal carcinomas. Oncoimmunology 2018, 7, e1442999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bremnes, R.M.; Busund, L.T.; Kilvær, T.L.; Andersen, S.; Richardsen, E.; Paulsen, E.E.; Hald, S.; Khanehkenari, M.R.; Cooper, W.A.; Kao, S.C.; et al. The role of tumor infiltrating lymphocytes in development, progression and prognosis of NSCLC. J. Thorac. Oncol. 2016, 11, 789–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, X.; Gao, Y.; Yang, L.; Jing, H.; Teng, F.; Huang, Z.; Xing, L. Immune microenvironment differences between squamous and non-squamous NSCLC and their influence on the prognosis. Clin. Lung Cancer 2019, 20, 48–58. [Google Scholar] [CrossRef]
- Fumet, J.D.; Richard, C.; Ledys, F.; Klopfenstein, Q.; Joubert, P.; Routy, B.; Truntzer, C.; Gagné, A.; Hamel, M.A.; Guimaraes, C.F. Prognostic and predictive role of CD8 and PD-L1 determination in lung tumor tissue of patients under PD-L1 therapy. Br. J. Cancer 2018, 119, 950–960. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zeng, D.; Ou, Q.; Liu, S.; Li, A.; Chen, Y.; Lin, D.; Gao, Q.; Zhou, H.; Liao, W.; et al. Association of survival and immune related biomarkers with immunotherapy in patients with NSCLC: A meta-analysis and individual patients level analysis. JAMA Netw. Open 2019, 2, e196879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kontani, K.; Sawai, S.; Hanaoka, J.; Tezuka, N.; Inoue, S.; Fujino, S. Involvement of granzyme B and perforin in suppressing nodal metastasis of cancer cells in breast and lung cancer. Eur. J. Surg. Oncol. 2001, 27, 180–186. [Google Scholar] [CrossRef]
- Hodge, G.; Barnawi, J.; Jurisevic, C.; Moffat, D.; Holmes, M.; Reynolds, P.N.; Jersmann, H.; Hodge, S. Lung cancer is associated with decreased expression of perforin, granzyme B and interferon (IFN)-g by infiltrating lung tissue T cells, natural killer (NK) T-like and NK cells. Clin. Exp. Immunol. 2014, 178, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Costantini, A.; Julie, C.; Dumenil, C.; Hélias-Rodzewicz, Z.; Tisserand, J.; Dumoulin, J.; Giraud, V.; Labrune, S.; Chinet, T.; Emile, J.F.; et al. Predictive role of plasmatic biomarkers in advanced NSCLC treated by nivolumab. Oncoimmunology 2018, 7, e1452581. [Google Scholar]
- Li, S.; Zhang, C.; Pang, G.; Wang, P. Emerging blood-based biomarkers for predicting response to checkpoint immunotherapy in NSCLC. Front. Immunol. 2020, 11, 603157. [Google Scholar] [CrossRef]
- Pickard, E.; Verschoor, C.P.; Ma, G.; Pawelec, G. Relationships between immune landscape, genetics subtypes, and response to immunotherapy in colorectal cancer. Front. Immunol. 2020, 11, 369–374. [Google Scholar] [CrossRef]
Variable | Total Patients, n = 131 No. of Patients (%) | Vx-001 Arm, n = 63 No. of Patients (%) | Placebo Arm, n = 68 No. of Patients (%) |
---|---|---|---|
Gender | |||
Male | 95 (72.5%) | 44 (69.8%) | 51 (75.0%) |
Female | 36 (27.5%) | 19 (30.2%) | 17 (25.0%) |
Age | |||
<65 years | 63 (48.1%) | 31 (49.2%) | 32 (47.1%) |
≥65 years | 68 (51.9%) | 32 (50.8%) | 36 (52.9%) |
Histology | |||
NSQ/MH | 75 (57.3%) | 34 (54.0%) | 41 (60.3%) |
SQ | 56 (42.7%) | 29 (46.0%) | 27 (39.7%) |
Response to previous treatment | |||
OR | 65 (49.6%) | 27 (49.2%) | 38 (55.9%) |
SD | 66 (50.4%) | 36 (57.1%) | 30 (44.1%) |
Smoking status | |||
Never | 13 (9.9%) | 6 (9.5%) | 7 (10.3%) |
Smokers | 118 (90.1%) | 57 (90.5%) | 61 (89.7%) |
Heavy smokers (>25 years) | 93 (71.0%) | 45 (771.4%) | 48 (70.6%) |
Light smokers (<25 years) | 25 (19.1%) | 12 (19.1%) | 13 (19.1%) |
Univariate Analysis | ||||
---|---|---|---|---|
Covariant Tested vs. Control (HR = 1) | HR a | 95% CI b | p-Value c | Bootstrap p-Value c |
CD3-TILs Low vs. High | 0.395 | 0.194–0.805 | 0.011 | 0.019 |
CD8-TILs Low vs. High | 0.428 | 0.212–0.862 | 0.018 | 0.013 |
GZMB-TILs Low vs. High | 0.310 | 0.122–0.792 | 0.014 | 0.048 |
TAIC Low vs. High | 0.590 | 0.323–1.069 | 0.082 | 0.089 |
Gender Female vs. Male | 1.398 | 0.753–2.595 | 0.288 | 0.285 |
Age ≥65y vs. <65y | 0.963 | 0.543–1.706 | 0.896 | 0.894 |
Response to previous treatment SD vs. OR | 1.349 | 0.748–2.433 | 0.320 | 0.306 |
Histology SQ vs. NSQ/MH | 1.575 | 0.884–2.806 | 0.123 | 0.118 |
Smoking Heavy vs. No/Light | 1.714 | 0.848–3.465 | 0.133 | 0.133 |
Multivariate Analysis d | ||||
CD3-TILs Low vs. High | 0.381 | 0.181–0.799 | 0.011 | 0.015 |
CD8-TILs Low vs. High | 0.388 | 0.182–0.830 | 0.015 | 0.016 |
GZMB-TILs Low vs. High | 0.173 | 0.058–0.520 | 0.002 | 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pateras, I.S.; Kotsakis, A.; Avgeris, M.; Baliou, E.; Kouroupakis, P.; Patsea, E.; Georgoulias, V.; Menez-Jamet, J.; Kinet, J.-P.; Kosmatopoulos, K. Clinical Activity of an hTERT-Specific Cancer Vaccine (Vx-001) in “Immune Desert” NSCLC. Cancers 2021, 13, 1658. https://doi.org/10.3390/cancers13071658
Pateras IS, Kotsakis A, Avgeris M, Baliou E, Kouroupakis P, Patsea E, Georgoulias V, Menez-Jamet J, Kinet J-P, Kosmatopoulos K. Clinical Activity of an hTERT-Specific Cancer Vaccine (Vx-001) in “Immune Desert” NSCLC. Cancers. 2021; 13(7):1658. https://doi.org/10.3390/cancers13071658
Chicago/Turabian StylePateras, Ioannis S., Athanasios Kotsakis, Margaritis Avgeris, Evangelia Baliou, Panagiotis Kouroupakis, Eleni Patsea, Vassilis Georgoulias, Jeanne Menez-Jamet, Jean-Pierre Kinet, and Kostas Kosmatopoulos. 2021. "Clinical Activity of an hTERT-Specific Cancer Vaccine (Vx-001) in “Immune Desert” NSCLC" Cancers 13, no. 7: 1658. https://doi.org/10.3390/cancers13071658
APA StylePateras, I. S., Kotsakis, A., Avgeris, M., Baliou, E., Kouroupakis, P., Patsea, E., Georgoulias, V., Menez-Jamet, J., Kinet, J.-P., & Kosmatopoulos, K. (2021). Clinical Activity of an hTERT-Specific Cancer Vaccine (Vx-001) in “Immune Desert” NSCLC. Cancers, 13(7), 1658. https://doi.org/10.3390/cancers13071658