Differentiated Thyroid Cancer: A Health Economic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Epidemiology of DTC
3. Overdiagnosis and Overtreatment
4. The Indeterminate Thyroid Nodule
5. Surgery as the Solution?
6. Surgical Technology: A Cost-Effective Addition?
7. Follow-Up: The Gift That Keeps on Giving?
8. Active Surveillance of PTMC
9. Healthcare Structure and the Growing Cost of Care
10. Do Guidelines Help Control Costs?
11. Future Considerations
12. Conclusions
13. Take Home Messages
- The main cause of the rising incidence of DTC incidence over the last decades has been the increased detection of asymptomatic thyroid nodularity revealed by the liberal use of thyroid ultrasound.
- After controlling for multiple clinical and demographic variables, and adjusting for inflation, the cost of thyroid surgery is still increasing.
- The cost of long-term follow-up, active surveillance, and excess healthcare expenditures of the community-dwelling thyroid cancer ‘survivors’ has to be evaluated in light of the different healthcare models.
- Future research should be directed towards micro-cost analyses to identify potential factors associated with the increased costs.
- Cost-effectiveness studies with QALY and ICER calculations should be implemented in future guidelines on treatment, surgical, and follow-up strategy.
14. Notes
- 1.
- For international comparison between studies and data, all monetary values have been expressed in pound sterling (£) at the time of writing: 1 GBP = 1.39 $US = 1.17 EUR = AUD 1.80.
- 2.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Vanderpump, M.P. The Epidemiology of Thyroid Disease. Br. Med. Bull. 2011, 99, 39–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiners, C.; Wegscheider, K.; Schicha, H.; Theissen, P.; Vaupel, R.; Wrbitzky, R.; Schumm-Draeger, P.M. Prevalence of Thyroid Disorders in the Working Population of Germany: Ultrasonography Screening in 96,278 Unselected Employees. Thyroid 2004, 14, 926–932. [Google Scholar] [CrossRef] [PubMed]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [Green Version]
- Filetti, S.; Durante, C.; Hartl, D.; Leboulleux, S.; Locati, L.D.; Newbold, K.; Papotti, M.G.; Berruti, A.; ESMO Guidelines Committee. Thyroid Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2019, 30, 1856–1883. [Google Scholar] [CrossRef] [Green Version]
- Pellegriti, G.; Frasca, F.; Regalbuto, C.; Squatrito, S.; Vigneri, R. Worldwide Increasing Incidence of Thyroid Cancer: Update on Epidemiology and Risk Factors. J. Cancer Epidemiol. 2013, 2013, 965212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La Vecchia, C.; Malvezzi, M.; Bosetti, C.; Garavello, W.; Bertuccio, P.; Levi, F.; Negri, E. Thyroid Cancer Mortality and Incidence: A Global Overview. Int. J. Cancer 2015, 136, 2187–2195. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [Green Version]
- Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting Cancer Incidence and Deaths to 2030: The Unexpected Burden of Thyroid, Liver, and Pancreas Cancers in the United States. Cancer Res. 2014, 74, 2913–2921. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.Y.; Jemal, A.; Ward, E.M. Increasing Incidence of Differentiated Thyroid Cancer in the United States, 1988–2005. Cancer 2009, 115, 3801–3807. [Google Scholar] [CrossRef]
- Ahn, H.S.; Kim, H.J.; Welch, H.G. Korea’s Thyroid-Cancer “Epidemic”—Screening and Overdiagnosis. N. Engl. J. Med. 2014, 371, 1765–1767. [Google Scholar] [CrossRef] [PubMed]
- Smittenaar, C.R.; Petersen, K.A.; Stewart, K.; Moitt, N. Cancer Incidence and Mortality Projections in the UK until 2035. Br. J. Cancer 2016, 115, 1147–1155. [Google Scholar] [CrossRef] [PubMed]
- Furuya-Kanamori, L.; Bell, K.J.L.; Clark, J.; Glasziou, P.; Doi, S.A.R. Prevalence of Differentiated Thyroid Cancer in Autopsy Studies over Six Decades: A Meta-Analysis. J. Clin. Oncol. 2016, 34, 3672–3679. [Google Scholar] [CrossRef]
- Decallonne, B.; van den Bruel, A.; Macq, G.; Elaut, N.; de Schutter, H. The Impact of Regional Variation in Clinical Practice on Thyroid Cancer Diagnosis: A National Population-Based Study. Eur. Thyroid J. 2020, 9, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Janovsky, C.; Bittencourt, M.S.; Novais, M.A.P.; Maciel, R.M.B.; Biscolla, R.P.M.; Zucchi, P. Thyroid Cancer Burden and Economic Impact on the Brazilian Public Health System. Arch. Endocrinol. Metab. 2018, 62, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Van den Bruel, A.; Francart, J.; Dubois, C.; Adam, M.; Vlayen, J.; de Schutter, H.; Stordeur, S.; Decallonne, B. Regional Variation in Thyroid Cancer Incidence in Belgium Is Associated with Variation in Thyroid Imaging and Thyroid Disease Management. J. Clin. Endocrinol. Metab. 2013, 98, 4063–4071. [Google Scholar] [CrossRef] [Green Version]
- Golden, S.H.; Brown, A.; Cauley, J.A.; Chin, M.H.; Gary-Webb, T.L.; Kim, C.; Sosa, J.A.; Sumner, A.E.; Anton, B. Health Disparities in Endocrine Disorders: Biological, Clinical, and Nonclinical Factors—An Endocrine Society Scientific Statement. J. Clin. Endocrinol. Metab. 2012, 97, E1579–E1639. [Google Scholar] [CrossRef] [Green Version]
- Jegerlehner, S.; Bulliard, J.L.; Aujesky, D.; Rodondi, N.; Germann, S.; Konzelmann, I.; Chiolero, A.; Group, N.W. Overdiagnosis and Overtreatment of Thyroid Cancer: A Population-Based Temporal Trend Study. PLoS ONE 2017, 12, e0179387. [Google Scholar] [CrossRef] [PubMed]
- Demoury, C.; de Schutter, H.; Faes, C.; Carbonnelle, S.; Fierens, S.; Molenberghs, G.; van Damme, N.; van Bladel, L.; van Nieuwenhuyse, A.; Vleminckx, C. Thyroid Cancer Incidence Near Nuclear Sites in Belgium: An Ecological Study at Small Geographical Level. Int. J. Cancer 2020, 146, 3034–3043. [Google Scholar] [CrossRef]
- Schlumberger, M.; le Guen, B. Nuclear-Power-Plant Accidents: Thyroid Cancer Incidence and Radiation-Related Health Effects from the Chernobyl Accident. Med. Sci. 2012, 28, 746–756. [Google Scholar] [CrossRef] [Green Version]
- Morris, L.G.T. Thyroid Cancer Screening after Nuclear Accidents. JAMA Otolaryngol. Head Neck Surg. 2019, 145, 79. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Boelaert, K. Iodine Deficiency and Thyroid Disorders. Lancet Diabetes Endocrinol. 2015, 3, 286–295. [Google Scholar] [CrossRef]
- Lind, P.; Langsteger, W.; Molnar, M.; Gallowitsch, H.J.; Mikosch, P.; Gomez, I. Epidemiology of Thyroid Diseases in Iodine Sufficiency. Thyroid 1998, 8, 1179–1183. [Google Scholar] [CrossRef] [PubMed]
- Besic, N.; Hocevar, M.; Zgajnar, J. Lower Incidence of Anaplastic Carcinoma after Higher Iodination of Salt in Slovenia. Thyroid 2010, 20, 623–626. [Google Scholar] [CrossRef] [PubMed]
- Black, W.C.; Welch, H.G. Advances in Diagnostic Imaging and Overestimations of Disease Prevalence and the Benefits of Therapy. N. Engl. J. Med. 1993, 328, 1237–1243. [Google Scholar] [CrossRef]
- Davies, L.; Welch, H.G. Increasing Incidence of Thyroid Cancer in the United States, 1973–2002. JAMA 2006, 295, 2164–2167. [Google Scholar] [CrossRef] [Green Version]
- Fagin, J.A.; Wells, S.A., Jr. Biologic and Clinical Perspectives on Thyroid Cancer. N. Engl. J. Med. 2016, 375, 1054–1067. [Google Scholar] [CrossRef] [Green Version]
- Kaliszewski, K.; Diakowska, D.; Wojtczak, B.; Rudnicki, J. Cancer Screening Activity Results in Overdiagnosis and Overtreatment of Papillary Thyroid Cancer: A 10-Year Experience at a Single Institution. PLoS ONE 2020, 15, e0236257. [Google Scholar] [CrossRef]
- Obuchowski, N.A.; Graham, R.J.; Baker, M.E.; Powell, K.A. Ten Criteria for Effective Screening: Their Application to Multislice CT Screening for Pulmonary and Colorectal Cancers. AJR Am. J. Roentgenol. 2001, 176, 1357–1362. [Google Scholar] [CrossRef] [PubMed]
- Black, W.C.; Welch, H.G. Screening for Disease. AJR Am. J. Roentgenol. 1997, 168, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, A.L.; Gandhi, A.; Scott-Coombes, D.; Perros, P. Management of Thyroid Cancer: United Kingdom National Multidisciplinary Guidelines. J. Laryngol. Otol. 2016, 130, S150–S160. [Google Scholar] [CrossRef] [PubMed]
- Jin, J. JAMA PATIENT PAGE. The US Preventive Services Task Force. JAMA 2016, 315, 1804. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.S.; Kim, H.J.; Kim, K.H.; Lee, Y.S.; Han, S.J.; Kim, Y.; Ko, M.J.; Brito, J.P. Thyroid Cancer Screening in South Korea Increases Detection of Papillary Cancers with No Impact on Other Subtypes or Thyroid Cancer Mortality. Thyroid 2016, 26, 1535–1540. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.S.; Welch, H.G. South Korea’s Thyroid-Cancer “Epidemic”—Turning the Tide. N. Engl. J. Med. 2015, 373, 2389–2390. [Google Scholar] [CrossRef]
- Leboulleux, S.; Tuttle, R.M.; Pacini, F.; Schlumberger, M. Papillary Thyroid Microcarcinoma: Time to Shift from Surgery to Active Surveillance? Lancet Diabetes Endocrinol. 2016, 4, 933–942. [Google Scholar] [CrossRef]
- Ito, Y.; Oda, H.; Miyauchi, A. Insights and Clinical Questions About the Active Surveillance of low-Risk Papillary Thyroid Microcarcinomas [Review]. Endocr. J. 2016, 63, 323–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inabnet, W.B., 3rd; Palazzo, F.; Sosa, J.A.; Kriger, J.; Aspinall, S.; Barczynski, M.; Doherty, G.; Iacobone, M.; Nordenstrom, E.; Scott-Coombes, D.; et al. Correlating the Bethesda System for Reporting Thyroid Cytopathology with Histology and Extent of Surgery: A Review of 21,746 Patients from Four Endocrine Surgery Registries across Two Continents. World J. Surg. 2020, 44, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Balentine, C.J.; Vanness, D.J.; Schneider, D.F. Cost-Effectiveness of Lobectomy versus Genetic Testing (Afirma(R)) for Indeterminate Thyroid Nodules: Considering the Costs of Surveillance. Surgery 2018, 163, 88–96. [Google Scholar] [CrossRef] [Green Version]
- Nikiforova, M.N.; Mercurio, S.; Wald, A.I.; Barbi de Moura, M.; Callenberg, K.; Santana-Santos, L.; Gooding, W.E.; Yip, L.; Ferris, R.L.; Nikiforov, Y.E. Analytical Performance of the ThyroSeq v3 Genomic Classifier for Cancer Diagnosis in Thyroid Nodules. Cancer 2018, 124, 1682–1690. [Google Scholar] [CrossRef] [Green Version]
- Labourier, E. Utility and Cost-Effectiveness of Molecular Testing in Thyroid Nodules with Indeterminate Cytology. Clin. Endocrinol. (Oxf) 2016, 85, 624–631. [Google Scholar] [CrossRef]
- Sciacchitano, S.; Lavra, L.; Ulivieri, A.; Magi, F.; de Francesco, G.P.; Bellotti, C.; Salehi, L.B.; Trovato, M.; Drago, C.; Bartolazzi, A. Comparative Analysis of Diagnostic Performance, Feasibility and Cost of Different Test-Methods for Thyroid Nodules with Indeterminate Cytology. Oncotarget 2017, 8, 49421–49442. [Google Scholar] [CrossRef]
- Labourier, E.; Shifrin, A.; Busseniers, A.E.; Lupo, M.A.; Manganelli, M.L.; Andruss, B.; Wylie, D.; Beaudenon-Huibregtse, S. Molecular Testing for miRNA, mRNA, and DNA on Fine-Needle Aspiration Improves the Preoperative Diagnosis of Thyroid Nodules with Indeterminate Cytology. J. Clin. Endocrinol. Metab. 2015, 100, 2743–2750. [Google Scholar] [CrossRef]
- Leiker, A.J.; Yen, T.W.; Cheung, K.; Evans, D.B.; Wang, T.S. Cost Analysis of Thyroid Lobectomy and Intraoperative Frozen Section versus Total Thyroidectomy in Patients with a Cytologic Diagnosis of “Suspicious for Papillary Thyroid Cancer”. Surgery 2013, 154, 1307–1313. [Google Scholar] [CrossRef] [PubMed]
- Sahli, Z.T.; Zhou, S.; Sharma, A.K.; Segev, D.L.; Massie, A.; Zeiger, M.A.; Mathur, A. Rising Cost of Thyroid Surgery in Adult Patients. J. Surg. Res. 2021, 260, 28–37. [Google Scholar] [CrossRef]
- Adam, M.A.; Pura, J.; Gu, L.; Dinan, M.A.; Tyler, D.S.; Reed, S.D.; Scheri, R.; Roman, S.A.; Sosa, J.A. Extent of Surgery for Papillary Thyroid Cancer Is Not Associated with Survival: An Analysis of 61,775 Patients. Ann. Surg. 2014, 260, 601–605, discussion 605–607. [Google Scholar] [CrossRef] [Green Version]
- Gourin, C.G.; Tufano, R.P.; Forastiere, A.A.; Koch, W.M.; Pawlik, T.M.; Bristow, R.E. Volume-Based Trends in Thyroid Surgery. Arch. Otolaryngol. Head Neck Surg. 2010, 136, 1191–1198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Park, J.H.; Lee, C.R.; Chung, W.Y.; Park, C.S. Long-Term Outcomes of Total Thyroidectomy versus Thyroid Lobectomy for Papillary Thyroid Microcarcinoma: Comparative Analysis after Propensity Score Matching. Thyroid 2013, 23, 1408–1415. [Google Scholar] [CrossRef] [PubMed]
- Bravo Vergel, Y.; Sculpher, M. Quality-Adjusted Life Years. Pract. Neurol. 2008, 8, 175–182. [Google Scholar] [CrossRef]
- Al-Qurayshi, Z.; Farag, M.; Shama, M.A.; Ibraheem, K.; Randolph, G.W.; Kandil, E. Total Thyroidectomy versus Lobectomy in Small Nodules Suspicious for Papillary Thyroid Cancer: Cost-Effectiveness Analysis. Laryngoscope 2020, 130, 2922–2926. [Google Scholar] [CrossRef] [PubMed]
- Aspinall, S.; Oweis, D.; Chadwick, D. Effect of Surgeons’ Annual Operative Volume on the Risk of Permanent Hypoparathyroidism, Recurrent Laryngeal Nerve Palsy and Haematoma Following Thyroidectomy: Analysis of United Kingdom Registry of Endocrine and Thyroid Surgery (UKRETS). Langenbecks Arch. Surg. 2019, 404, 421–430. [Google Scholar] [CrossRef]
- Nouraei, S.A.; Virk, J.S.; Middleton, S.E.; Aylin, P.; Mace, A.; Vaz, F.; Kaddour, H.; Darzi, A.; Tolley, N.S. A National Analysis of Trends, Outcomes and Volume-Outcome Relationships in Thyroid Surgery. Clin. Otolaryngol. 2017, 42, 354–365. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, K.; Raffaeli, M.; Barczynski, M.; Lorente-Poch, L.; Sancho, J. Volume, Outcomes, and Quality Standards in Thyroid Surgery: An Evidence-Based Analysis-European Society of Endocrine Surgeons (ESES) Positional Statement. Langenbecks Arch. Surg. 2020, 405, 401–425. [Google Scholar] [CrossRef]
- Patel, N.; Scott-Coombes, D. Impact of Surgical Volume and Surgical Outcome Assessing Registers on the Quality of Thyroid Surgery. Best Pract. Res. Clin. Endocrinol. Metab. 2019, 33, 101317. [Google Scholar] [CrossRef] [PubMed]
- Mercante, G.; Anelli, A.; Giannarelli, D.; Giordano, D.; Sinopoli, I.; Ferreli, F.; Digiesi, G.; Appetecchia, M.L.; Barnabei, A.; Cristalli, G.; et al. Cost-Effectiveness in Transient Hypocalcemia Post-Thyroidectomy. Head Neck 2019, 41, 3940–3947. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.Y.; Terrell, J.; Park, A.; Perrier, N. Understanding Thyroidectomy Cost Variations among National Cancer Institute-Designated Cancer Centers. World J. Surg. 2020, 44, 385–392. [Google Scholar] [CrossRef]
- Biron, V.L.; Bang, H.; Farwell, D.G.; Bewley, A.F. National Trends and Factors Associated with Hospital Costs Following Thyroid Surgery. Thyroid 2015, 25, 823–829. [Google Scholar] [CrossRef] [Green Version]
- Russell, L.B.; Gold, M.R.; Siegel, J.E.; Daniels, N.; Weinstein, M.C. The Role of Cost-Effectiveness Analysis in Health and Medicine. Panel on Cost-Effectiveness in Health and Medicine. JAMA 1996, 276, 1172–1177. [Google Scholar] [CrossRef] [PubMed]
- Garas, G.; Okabayashi, K.; Ashrafian, H.; Shetty, K.; Palazzo, F.; Tolley, N.; Darzi, A.; Athanasiou, T.; Zacharakis, E. Which Hemostatic Device in Thyroid Surgery? A Network Meta-Analysis of Surgical Technologies. Thyroid 2013, 23, 1138–1150. [Google Scholar] [CrossRef]
- Van Slycke, S.; Gillardin, J.P.; van den Heede, K.; Minguet, J.; Vermeersch, H.; Brusselaers, N. Comparison of the Harmonic Focus and the Thunderbeat for Open Thyroidectomy. Langenbecks Arch. Surg. 2016, 401, 851–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konturek, A.; Szpyra, B.; Stopa-Barczynska, M.; Barczynski, M. Energy-Based Devices for Hemostasis in Thyroid Surgery. Gland Surg. 2020, 9, S153–S158. [Google Scholar] [CrossRef]
- Contin, P.; Goossen, K.; Grummich, K.; Jensen, K.; Schmitz-Winnenthal, H.; Buchler, M.W.; Diener, M.K. ENERgized Vessel Sealing Systems versus CONventional Hemostasis Techniques in Thyroid Surgery—The ENERCON Systematic Review and Network Meta-Analysis. Langenbecks Arch. Surg. 2013, 398, 1039–1056. [Google Scholar] [CrossRef]
- Hua, N.; Quimby, A.E.; Johnson-Obaseki, S. Comparing Hematoma Incidence between Hemostatic Devices in Total Thyroidectomy: A Systematic Review and Meta-Analysis. Otolaryngol. Head Neck Surg. 2019, 161, 770–778. [Google Scholar] [CrossRef]
- Cheng, H.; Soleas, I.M.; Ferko, N.C.; Cameron, C.G.; Clymer, J.W.; Amaral, J.F. Hospital Costs Associated with Thyroidectomy Performed with a Harmonic Device Compared to Conventional Techniques: A Systematic Review and Meta-Analysis. J. Med. Econ. 2016, 19, 750–758. [Google Scholar] [CrossRef]
- Tae, K. Cost-Effectiveness of Intraoperative Neural Monitoring in Thyroid Surgery: Comment on “Analyzing Cost-Effectiveness of Neural-Monitoring in Recurrent Laryngeal Nerve Recovery Course in Thyroid Surgery”. Gland Surg. 2019, 8, 304–306. [Google Scholar] [CrossRef] [PubMed]
- Al-Qurayshi, Z.; Kandil, E.; Randolph, G.W. Cost-Effectiveness of Intraoperative Nerve Monitoring in Avoidance of Bilateral Recurrent Laryngeal Nerve Injury in Patients Undergoing Total Thyroidectomy. Br. J. Surg. 2017, 104, 1523–1531. [Google Scholar] [CrossRef]
- Rocke, D.J.; Goldstein, D.P.; de Almeida, J.R. A Cost-Utility Analysis of Recurrent Laryngeal Nerve Monitoring in the Setting of Total Thyroidectomy. JAMA Otolaryngol. Head Neck Surg. 2016, 142, 1199–1205. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Kim, H.Y.; Wu, C.W.; Rausei, S.; Sun, H.; Pergolizzi, F.P.; Dionigi, G. Analyzing Cost-Effectiveness of Neural-Monitoring in Recurrent Laryngeal Nerve Recovery Course in Thyroid Surgery. Int. J. Surg. 2017, 48, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Schneider, R.; Randolph, G.W.; Dionigi, G.; Wu, C.W.; Barczynski, M.; Chiang, F.Y.; Al-Quaryshi, Z.; Angelos, P.; Brauckhoff, K.; Cernea, C.R.; et al. International Neural Monitoring Study Group Guideline 2018 Part I: Staging Bilateral Thyroid Surgery with Monitoring Loss of Signal. Laryngoscope 2018, 128 (Suppl. 3), S1–S17. [Google Scholar] [CrossRef] [Green Version]
- Vlasses, P.H.; Besarab, A.; Lottes, S.R.; Conner, D.P.; Green, P.J.; Gault, M.H. False-Positive Digoxin Measurements Due to Conjugated Metabolite Accumulation in Combined Renal and Hepatic Dysfunction. Am. J. Nephrol. 1987, 7, 355–359. [Google Scholar] [CrossRef]
- Van Slycke, S.; van den Heede, K.; Brusselaers, N.; Vermeersch, H. Feasibility of Autofluorescence for Parathyroid Glands During Thyroid Surgery and the Risk of Hypocalcemia: First Results in Belgium and Review of the Literature. Surg. Innov. 2020, 1553350620980263. [Google Scholar] [CrossRef]
- Di Marco, A.N.; Palazzo, F.F. Near-Infrared Autofluorescence in Thyroid and Parathyroid Surgery. Gland Surg. 2020, 9, S136–S146. [Google Scholar] [CrossRef]
- Aidan, P.; Arora, A.; Lorincz, B.; Tolley, N.; Garas, G. Robotic Thyroid Surgery: Current Perspectives and Future Considerations. ORL J. Otorhinolaryngol. Relat. Spec. 2018, 80, 186–194. [Google Scholar] [CrossRef]
- Lee, S.R.; Lee, E.S.; Eum, H.L.; Lee, Y.J.; Lee, S.W.; Park, J.Y.; Suh, D.S.; Kim, D.Y.; Kim, S.H.; Kim, Y.M.; et al. New Surgical Technique for Robotic Myomectomy: Continuous Locking Suture on Myoma (LSOM) Technique. J. Clin. Med. 2021, 10, 654. [Google Scholar] [CrossRef]
- Razavi, C.R.; Tanavde, V.A.; Kim, A.S.; Shaear, M.; Tufano, R.P.; Russell, J.O. The Variable Direct Cost and Cost Drivers of Transoral Endoscopic Thyroidectomy Vestibular Approach. Gland Surg. 2021, 10, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Luster, M.; Aktolun, C.; Amendoeira, I.; Barczynski, M.; Bible, K.C.; Duntas, L.H.; Elisei, R.; Handkiewicz-Junak, D.; Hoffmann, M.; Jarzab, B.; et al. European Perspective on 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: Proceedings of an Interactive International Symposium. Thyroid 2019, 29, 7–26. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, K.J.; Smith, K.J.; McCoy, K.L.; Carty, S.E.; Yip, L. A Comparative Cost-Utility Analysis of Postoperative Calcium Supplementation Strategies Used in the Current Management of Hypocalcemia. Surgery 2020, 167, 137–143. [Google Scholar] [CrossRef]
- Gardner, G.M.; Smith, M.M.; Yaremchuk, K.L.; Peterson, E.L. The Cost of Vocal Fold Paralysis after Thyroidectomy. Laryngoscope 2013, 123, 1455–1463. [Google Scholar] [CrossRef] [PubMed]
- Naunheim, M.R.; Song, P.C.; Franco, R.A.; Alkire, B.C.; Shrime, M.G. Surgical Management of Bilateral Vocal Fold Paralysis: A Cost-Effectiveness Comparison of Two Treatments. Laryngoscope 2017, 127, 691–697. [Google Scholar] [CrossRef]
- Orlov, S.; Salari, F.; Kashat, L.; Freeman, J.L.; Vescan, A.; Witterick, I.J.; Walfish, P.G. Post-Operative Stimulated Thyroglobulin and Neck Ultrasound as Personalized Criteria for Risk Stratification and Radioactive Iodine Selection in Low- and Intermediate-Risk Papillary Thyroid Cancer. Endocrine 2015, 50, 130–137. [Google Scholar] [CrossRef]
- Cheng, S.Y.; Ringel, M.D. Frontiers in Thyroid Cancer: December 2009. Thyroid 2009, 19, 1297–1298. [Google Scholar] [CrossRef]
- Lubitz, C.C.; Sosa, J.A. The Changing Landscape of Papillary Thyroid Cancer: Epidemiology, Management, and the Implications for Patients. Cancer 2016, 122, 3754–3759. [Google Scholar] [CrossRef]
- Mongelli, M.N.; Giri, S.; Peipert, B.J.; Helenowski, I.B.; Yount, S.E.; Sturgeon, C. Financial Burden and Quality of Life among Thyroid Cancer Survivors. Surgery 2020, 167, 631–637. [Google Scholar] [CrossRef]
- Enewold, L.; Zhu, K.; Ron, E.; Marrogi, A.J.; Stojadinovic, A.; Peoples, G.E.; Devesa, S.S. Rising Thyroid Cancer Incidence in the United States by Demographic and Tumor Characteristics, 1980–2005. Cancer Epidemiol. Biomarkers Prev. 2009, 18, 784–791. [Google Scholar] [CrossRef] [Green Version]
- Lubitz, C.C.; Kong, C.Y.; McMahon, P.M.; Daniels, G.H.; Chen, Y.; Economopoulos, K.P.; Gazelle, G.S.; Weinstein, M.C. Annual Financial Impact of Well-Differentiated Thyroid Cancer Care in the United States. Cancer 2014, 120, 1345–1352. [Google Scholar] [CrossRef]
- Ito, Y.; Uruno, T.; Nakano, K.; Takamura, Y.; Miya, A.; Kobayashi, K.; Yokozawa, T.; Matsuzuka, F.; Kuma, S.; Kuma, K.; et al. An Observation Trial without Surgical Treatment in Patients with Papillary Microcarcinoma of the Thyroid. Thyroid 2003, 13, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Ito, Y.; Miyauchi, A. Nonoperative Management of Low-Risk Differentiated Thyroid Carcinoma. Curr. Opin. Oncol. 2015, 27, 15–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyauchi, A. Clinical Trials of Active Surveillance of Papillary Microcarcinoma of the Thyroid. World J. Surg. 2016, 40, 516–522. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, S.; Pasternak, J.D.; Beninato, T.; Drake, F.T.; Kluijfhout, W.P.; Liu, C.; Gosnell, J.E.; Shen, W.T.; Clark, O.H.; Duh, Q.Y.; et al. Cost-Effectiveness of Active Surveillance versus Hemithyroidectomy for Micropapillary Thyroid Cancer. Surgery 2017, 161, 116–126. [Google Scholar] [CrossRef]
- Saravana-Bawan, B.; Bajwa, A.; Paterson, J.; McMullen, T. Active Surveillance of Low-Risk Papillary Thyroid Cancer: A Meta-Analysis. Surgery 2020, 167, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Reeve, B.B.; Potosky, A.L.; Smith, A.W.; Han, P.K.; Hays, R.D.; Davis, W.W.; Arora, N.K.; Haffer, S.C.; Clauser, S.B. Impact of Cancer on Health-Related Quality of Life of Older Americans. J. Natl. Cancer Inst. 2009, 101, 860–868. [Google Scholar] [CrossRef]
- Meraya, A.M.; Raval, A.D.; Sambamoorthi, U. Chronic Condition Combinations and Health Care Expenditures and Out-of-Pocket Spending Burden among Adults, Medical Expenditure Panel Survey, 2009 and 2011. Prev. Chronic Dis. 2015, 12, E12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aschebrook-Kilfoy, B.; Schechter, R.B.; Shih, Y.C.; Kaplan, E.L.; Chiu, B.C.; Angelos, P.; Grogan, R.H. The Clinical and Economic Burden of a Sustained Increase in Thyroid Cancer Incidence. Cancer Epidemiol. Biomarkers Prev. 2013, 22, 1252–1259. [Google Scholar] [CrossRef] [Green Version]
- Boltz, M.M.; Hollenbeak, C.S.; Schaefer, E.; Goldenberg, D.; Saunders, B.D. Attributable Costs of Differentiated Thyroid Cancer in the Elderly Medicare Population. Surgery 2013, 154, 1363–1369, discussion 1369–1370. [Google Scholar] [CrossRef]
- Berger, A.; Edelsberg, J.; Chung, K.; Nguyen, A.; Stepan, D.; Oster, G. Healthcare (HC) Utilization and Costs in Patients (pts) with Newly Diagnosed Metastatic Thyroid Cancer (mTC). J. Clin. Oncol. 2007, 25, 170–182. [Google Scholar] [CrossRef]
- Iadeluca, L.; Mardekian, J.; Chander, P.; Hopps, M.; Makinson, G.T. The Burden of Selected Cancers in the US: Health Behaviors and Health Care Resource Utilization. Cancer Manag. Res. 2017, 9, 721–730. [Google Scholar] [CrossRef] [Green Version]
- Furuya-Kanamori, L.; Sedrakyan, A.; Onitilo, A.A.; Bagheri, N.; Glasziou, P.; Doi, S.A.R. Differentiated Thyroid Cancer: Millions Spent with No Tangible Gain? Endocr. Relat. Cancer 2018, 25, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Lang, B.H.; Wong, C.K.; Chan, C.T. Initial Attributable Cost and Economic Burden of Clinically-Relevant Differentiated Thyroid Cancer: A Health Care Service Provider Perspective. Eur. J. Surg. Oncol. 2015, 41, 758–765. [Google Scholar] [CrossRef] [PubMed]
- Finnerty, B.M.; Brunaud, L.; Mirallie, E.; McIntyre, C.; Aronova, A.; Fahey, T.J., 3rd; Zarnegar, R. Cost Disparity between Health Care Systems—It’s Not the Surgeons: A Cost Analysis of Thyroid Cancer Care between the United States and France. Surgery 2016, 159, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, S.; Khobrani, M.; Alrabiah, Z.; Bilal, J.; Riaz, I.B. Healthcare Expenditures among Community-Dwelling Adults with Thyroid Cancer in the United States: A Propensity Score Matched Analysis. Heliyon 2019, 5, e01995. [Google Scholar] [CrossRef] [Green Version]
- White, C.; Weinstein, M.C.; Fingeret, A.L.; Randolph, G.W.; Miyauchi, A.; Ito, Y.; Zhan, T.; Ali, A.; Gazelle, G.S.; Lubitz, C.C. Is Less More? A Microsimulation Model Comparing Cost-Effectiveness of the Revised American Thyroid Association’s 2015 to 2009 Guidelines for the Management of Patients with Thyroid Nodules and Differentiated Thyroid Cancer. Ann. Surg. 2020, 271, 765–773. [Google Scholar] [CrossRef]
- Hyun, M.K.; Kim, J.H.; Kwon, J.W. Incidence of Thyroid Cancer and Medical Cost among Patients with Newly Diagnosed Thyroid Nodules in Korea: A Retrospective Cohort Study Using Nationwide Data. J. Cancer Res. Ther. 2019, 15, 676–680. [Google Scholar] [CrossRef] [PubMed]
- Ver Hoeve, E.S.; Ali-Akbarian, L.; Price, S.N.; Lothfi, N.M.; Hamann, H.A. Patient-Reported Financial Toxicity, Quality of Life, and Health Behaviors in Insured US Cancer Survivors. Support Care Cancer 2021, 29, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Esserman, L.J.; Thompson, I.M.; Reid, B.; Nelson, P.; Ransohoff, D.F.; Welch, H.G.; Hwang, S.; Berry, D.A.; Kinzler, K.W.; Black, W.C.; et al. Addressing Overdiagnosis and Overtreatment in Cancer: A Prescription for Change. Lancet Oncol. 2014, 15, e234–e242. [Google Scholar] [CrossRef] [Green Version]
- Canberk, S. Precursor and Borderline Lesions of the Thyroid (Indolent Lesions of Epithelial Origin): From Theory to Practice. Gland Surg. 2020, 9, 1724–1734. [Google Scholar] [CrossRef] [PubMed]
- Schnadig, V.J. Overdiagnosis of Thyroid Cancer: Is This Not an Ethical Issue for Pathologists as Well as Radiologists and Clinicians? Arch. Pathol. Lab. Med. 2018, 142, 1018–1020. [Google Scholar] [CrossRef]
- Culyer, A.J.; Newhouse, J.P. Handbook of Health Economics; Elsevier North Holland: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Neumann, P.J.; Sanders, G.D. Cost-Effectiveness Analysis 2.0. N. Engl. J. Med. 2017, 376, 203–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Grossetta Nardini, H.K.; Ruger, J.P. Micro-costing studies in the health and medical literature: Protocol for a systematic review. Syst. Rev. 2014, 3, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutter, C.M.; Zaslavsky, A.M.; Feuer, E.J. Dynamic microsimulation models for health outcomes: A review. Med. Decis. Making. 2011, 31, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Latouche, G.; Ramaswami, V. Introduction to Matrix Analytic Methods in Stochastic Modeling; SIAM: Philadelphia, PA, USA, 1999. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Den Heede, K.; Tolley, N.S.; Di Marco, A.N.; Palazzo, F.F. Differentiated Thyroid Cancer: A Health Economic Review. Cancers 2021, 13, 2253. https://doi.org/10.3390/cancers13092253
Van Den Heede K, Tolley NS, Di Marco AN, Palazzo FF. Differentiated Thyroid Cancer: A Health Economic Review. Cancers. 2021; 13(9):2253. https://doi.org/10.3390/cancers13092253
Chicago/Turabian StyleVan Den Heede, Klaas, Neil S. Tolley, Aimee N. Di Marco, and Fausto F. Palazzo. 2021. "Differentiated Thyroid Cancer: A Health Economic Review" Cancers 13, no. 9: 2253. https://doi.org/10.3390/cancers13092253
APA StyleVan Den Heede, K., Tolley, N. S., Di Marco, A. N., & Palazzo, F. F. (2021). Differentiated Thyroid Cancer: A Health Economic Review. Cancers, 13(9), 2253. https://doi.org/10.3390/cancers13092253