Pathologic Predictors of Response to Treatment of Immune Checkpoint Inhibitor–Induced Kidney Injury
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Patient Data Collection
2.2. Tissue Evaluation
2.3. Renal Response and Survival
2.4. Statistical Analysis
3. Results
3.1. Renal Response
3.2. Predictors of Renal Response
3.3. OS and PFS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Postow, M.A.; Sidlow, R.; Hellmann, M.D. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. N. Engl. J. Med. 2018, 378, 158–168. [Google Scholar] [CrossRef]
- Cortazar, F.B.; Kibbelaar, Z.A.; Glezerman, I.G.; Abudayyeh, A.; Mamlouk, O.; Motwani, S.S.; Murakami, N.; Herrmann, S.M.; Manohar, S.; Shirali, A.C.; et al. Clinical Features and Outcomes of Immune Checkpoint Inhibitor-Associated AKI: A Multicenter Study. J. Am. Soc. Nephrol. 2020, 31, 435–446. [Google Scholar] [CrossRef] [PubMed]
- Seethapathy, H.; Zhao, S.; Chute, D.F.; Zubiri, L.; Oppong, Y.; Strohbehn, I.; Cortazar, F.B.; Leaf, D.E.; Mooradian, M.J.; Villani, A.C.; et al. The Incidence, Causes, and Risk Factors of Acute Kidney Injury in Patients Receiving Immune Checkpoint Inhibitors. Clin. J. Am. Soc. Nephrol. 2019, 14, 1692–1700. [Google Scholar] [CrossRef] [PubMed]
- Meraz-Munoz, A.; Amir, E.; Ng, P.; Avila-Casado, C.; Ragobar, C.; Chan, C.; Kim, J.; Wald, R.; Kitchlu, A. Acute kidney injury associated with immune checkpoint inhibitor therapy: Incidence, risk factors and outcomes. J. Immunother. Cancer 2020, 8, e000467. [Google Scholar] [CrossRef] [PubMed]
- García-Carro, C.; Bolufer, M.; Bury, R.; Catañeda, Z.; Muñoz, E.; Felip, E.; Lorente, D.; Carreras, M.J.; Gabaldon, A.; Agraz, I.; et al. Acute kidney injury as a risk factor for mortality in oncological patients receiving check-point inhibitors. Nephrol. Dial. Transplant. 2021, 37, 887–894. [Google Scholar] [CrossRef]
- Abdelrahim, M.; Mamlouk, O.; Lin, H.; Lin, J.; Page, V.; Abdel-Wahab, N.; Swan, J.; Selamet, U.; Yee, C.; Diab, A.; et al. Incidence, predictors, and survival impact of acute kidney injury in patients with melanoma treated with immune checkpoint inhibitors: A 10-year single-institution analysis. Oncoimmunology 2021, 10, 1927313. [Google Scholar] [CrossRef] [PubMed]
- Haslam, A.; Prasad, V. Estimation of the Percentage of US Patients with Cancer Who Are Eligible for and Respond to Checkpoint Inhibitor Immunotherapy Drugs. JAMA Netw. Open 2019, 2, e192535. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Short, S.A.P.; Sise, M.E.; Prosek, J.M.; Madhavan, S.M.; Soler, M.J.; Ostermann, M.; Herrmann, S.M.; Abudayyeh, A.; Anand, S.; et al. Acute kidney injury in patients treated with immune checkpoint inhibitors. J. Immunother. Cancer 2021, 9, e003467. [Google Scholar] [CrossRef]
- Robert, C.; Ribas, A.; Hamid, O.; Daud, A.; Wolchok, J.D.; Joshua, A.M.; Hwu, W.J.; Weber, J.S.; Gangadhar, T.C.; Joseph, R.W.; et al. Durable Complete Response After Discontinuation of Pembrolizumab in Patients with Metastatic Melanoma. J. Clin. Oncol. 2018, 36, 1668–1674. [Google Scholar] [CrossRef]
- Shoushtari, A.N.; Friedman, C.F.; Navid-Azarbaijani, P.; Postow, M.A.; Callahan, M.K.; Momtaz, P.; Panageas, K.S.; Wolchok, J.D.; Chapman, P.B. Measuring Toxic Effects and Time to Treatment Failure for Nivolumab Plus Ipilimumab in Melanoma. JAMA Oncol. 2018, 4, 98–101. [Google Scholar] [CrossRef]
- Cortazar, F.B.; Marrone, K.A.; Troxell, M.L.; Ralto, K.M.; Hoenig, M.P.; Brahmer, J.R.; Le, D.T.; Lipson, E.J.; Glezerman, I.G.; Wolchok, J.; et al. Clinicopathological features of acute kidney injury associated with immune checkpoint inhibitors. Kidney Int. 2016, 90, 638–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamlouk, O.; Selamet, U.; Machado, S.; Abdelrahim, M.; Glass, W.F.; Tchakarov, A.; Gaber, L.; Lahoti, A.; Workeneh, B.; Chen, S.; et al. Nephrotoxicity of immune checkpoint inhibitors beyond tubulointerstitial nephritis: Single-center experience. J. Immunother. Cancer 2019, 7, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitchlu, A.; Jhaveri, K.D.; Wadhwani, S.; Deshpande, P.; Harel, Z.; Kishibe, T.; Henriksen, K.; Wanchoo, R. A Systematic Review of Immune Checkpoint Inhibitor-Associated Glomerular Disease. Kidney Int. Rep. 2021, 6, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Mamlouk, O.; Lin, J.S.; Abdelrahim, M.; Tchakarov, A.S.; Glass, W.F.; Selamet, U.; Buni, M.; Abdel-Wahab, N.; Abudayyeh, A. Checkpoint inhibitor-related renal vasculitis and use of rituximab. J. Immunother. Cancer 2020, 8, e000750. [Google Scholar] [CrossRef] [PubMed]
- Loupy, A.; Haas, M.; Roufosse, C.; Naesens, M.; Adam, B.; Afrouzian, M.; Akalin, E.; Alachkar, N.; Bagnasco, S.; Becker, J.U.; et al. The Banff 2019 Kidney Meeting Report (I): Updates on and clarification of criteria for T cell- and antibody-mediated rejection. Am. J. Transplant. 2020, 20, 2318–2331. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, E.L.; Meier, P. Nonparametric-Estimation from Incomplete Observations. J. Am. Stat. Assoc. 1958, 53, 457–481. [Google Scholar] [CrossRef]
- Mantel, N. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother. Rep. 1966, 50, 163–170. [Google Scholar]
- Haanen, J.; Carbonnel, F.; Robert, C.; Kerr, K.M.; Peters, S.; Larkin, J.; Jordan, K.; Committee, E.G. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29, iv264–iv266. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Abu-Sbeih, H.; Ascierto, P.A.; Brufsky, J.; Cappelli, L.C.; Cortazar, F.B.; Gerber, D.E.; Hamad, L.; Hansen, E.; Johnson, D.B.; et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune checkpoint inhibitor-related adverse events. J. Immunother. Cancer 2021, 9, e002435. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Lacchetti, C.; Thompson, J.A. Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline Summary. J. Oncol. Pract. 2018, 14, 247–249. [Google Scholar] [CrossRef]
- Thompson, J.A.; Schneider, B.J.; Brahmer, J.; Andrews, S.; Armand, P.; Bhatia, S.; Budde, L.E.; Costa, L.; Davies, M.; Dunnington, D.; et al. NCCN Guidelines Insights: Management of Immunotherapy-Related Toxicities, Version 1.2020. J. Natl. Compr. Cancer Netw. 2020, 18, 230–241. [Google Scholar] [CrossRef]
- Perazella, M.A.; Sprangers, B. Checkpoint inhibitor therapy-associated acute kidney injury: Time to move on to evidence-based recommendations. Clin. Kidney J. 2021, 14, 1301–1306. [Google Scholar] [CrossRef]
- Takahashi, Y.; Nagaya, T.; Iwaya, Y.; Okamura, T.; Hirayama, A.; Iwaya, M.; Uehara, T.; Umemura, T. CD8(+) Lymphocyte Infiltration Is a Specific Feature of Colitis Induced by Immune Checkpoint Inhibitors. Dig. Dis. Sci. 2022; Online ahead of print. [Google Scholar] [CrossRef]
- Dutertre, M.; de Menthon, M.; Noel, N.; Albiges, L.; Lambotte, O. Cold agglutinin disease as a new immune-related adverse event associated with anti-PD-L1s and its treatment with rituximab. Eur. J. Cancer 2019, 110, 21–23. [Google Scholar] [CrossRef]
- Deftereos, S.N.; Georgonikou, D. Effectiveness of rituximab in treating immune-checkpoint-inhibitor-induced immune-related adverse events: Results of a systematic review. Ann. Oncol. 2021, 32, 282–283. [Google Scholar] [CrossRef]
- Sowerby, L.; Dewan, A.K.; Granter, S.; Gandhi, L.; LeBoeuf, N.R. Rituximab Treatment of Nivolumab-Induced Bullous Pemphigoid. JAMA Dermatol. 2017, 153, 603–605. [Google Scholar] [CrossRef]
- Lin, J.S.; Wang, D.Y.; Mamlouk, O.; Glass, W.F.; Abdelrahim, M.; Yee, C.; Abudayyeh, A. Immune checkpoint inhibitor associated reactivation of primary membranous nephropathy responsive to rituximab. J. Immunother. Cancer 2020, 8, e001287. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, L.; Depuydt, C.E.; Weckx, P.; Bechter, O.; Van Damme, P.; Thal, D.R.; Claeys, K.G. Myositis as a neuromuscular complication of immune checkpoint inhibitors. Acta Neurol. Belg. 2020, 120, 355–364. [Google Scholar] [CrossRef]
- Adam, B.A.; Murakami, N.; Reid, G.; Du, K.; Jasim, R.; Boils, C.L.; Bu, L.; Hill, P.D.; Murray, A.G.; Renaudin, K.; et al. Gene Expression Profiling in Kidney Transplants with Immune Checkpoint Inhibitor-Associated Adverse Events. Clin. J. Am. Soc. Nephrol. 2021, 16, 1376–1386. [Google Scholar] [CrossRef] [PubMed]
- Hagiwara, S.; Watanabe, T.; Kudo, M.; Minaga, K.; Komeda, Y.; Kamata, K.; Kimura, M.; Hayashi, H.; Nakagawa, K.; Ueshima, K.; et al. Clinicopathological analysis of hepatic immune-related adverse events in comparison with autoimmune hepatitis and graft-versus host disease. Sci. Rep. 2021, 11, 9242. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.H.; Zobniw, C.M.; Trinh, V.A.; Ma, J.; Bassett, R.L., Jr.; Abdel-Wahab, N.; Anderson, J.; Davis, J.E.; Joseph, J.; Uemura, M.; et al. Correction to: Infliximab associated with faster symptom resolution compared with corticosteroids alone for the management of immune-related enterocolitis. J. Immunother. Cancer 2019, 7, 107. [Google Scholar] [CrossRef] [PubMed]
- Abu-Sbeih, H.; Ali, F.S.; Alsaadi, D.; Jennings, J.; Luo, W.; Gong, Z.; Richards, D.M.; Charabaty, A.; Wang, Y. Outcomes of vedolizumab therapy in patients with immune checkpoint inhibitor-induced colitis: A multi-center study. J. Immunother. Cancer 2018, 6, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.S.; Mamlouk, O.; Selamet, U.; Tchakarov, A.; Glass, W.F.; Sheth, R.A.; Layman, R.M.; Dadu, R.; Abdelwahab, N.; Abdelrahim, M.; et al. Infliximab for the treatment of patients with checkpoint inhibitor-associated acute tubular interstitial nephritis. Oncoimmunology 2021, 10, 1877415. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Hu, J.; Betof Warner, A.; Quach, H.T.; Cann, C.G.; Zhang, M.Z.; Si, L.; Tang, B.; Cui, C.; Yang, X.; et al. Early use of high-dose-glucocorticoid for the management of irAE is associated with poorer survival in patients with advanced melanoma treated with anti-PD-1 monotherapy. Clin. Cancer Res. 2021. [Google Scholar] [CrossRef] [PubMed]
Variable | No. (%) |
---|---|
Sex | |
Female | 13(37) |
Male | 22 (63) |
Hypertension | |
No | 15 (43) |
Yes | 20 (57) |
Hyperlipidemia | |
No | 26 (74) |
Yes | 9 (26) |
Diabetes mellitus | |
No | 28 (80) |
Yes | 7 (20) |
Coronary artery disease | |
No | 34 (97) |
Yes | 1 (3) |
Malignancy | |
Breast cancer | 1 (3) |
Chronic lymphocytic leukemia | 1 (3) |
Colorectal cancer | 1 (3) |
Hodgkin lymphoma | 2 (6) |
Lung cancer | 7 (20) |
Non-Hodgkin lymphoma | 1 (3) |
Melanoma | 10 (29) |
Pancreatic cancer | 1 (3) |
Renal cell carcinoma | 2 (6) |
Renal cell carcinoma and chronic myelogenous leukemia | 1 (3) |
Rectal cancer | 1 (3) |
Smoldering myeloma | 2 (6) |
Thyroid cancer | 1 (3) |
Tonsil squamous cell carcinoma | 1 (3) |
Urothelial cancer | 3 (9) |
Immunotherapy | |
Atezolizumab | 3 (9) |
Durvalumab | 2 (6) |
Nivolumab | 17 (49) |
Pembrolizumab | 13 (37) |
Concurrent nephrotoxic chemotherapy | |
No | 21 (60) |
Yes | 14 (40) |
Concurrent nephrotoxic chemotherapy or immunotherapy | 19 (54) |
Use of concurrent immune checkpoint inhibitors | |
No | 29 (83) |
Yes | 6 (17) |
Dialysis | |
No | 29 (83) |
Yes | 6 (17) |
Steroids before biopsy | |
No | 25 (71) |
Yes | 10 (29) |
Proton pump inhibitors or nonsteroidal anti-inflammatory drugs | |
Nonsteroidal anti-inflammatory drug | 1 (3) |
Proton pump inhibitor | 11 (31) |
Both | 1 (3) |
None | 22 (63) |
Immune checkpoint inhibitor re-challenge | |
No | 29 (83) |
Yes | 6 (17) |
Renal toxicity 1 | |
Grade II | 13 (37) |
Grade III | 10 (29) |
Grade IV | 12 (34) |
Red or white blood cells present in urine | |
No | 10 (29) |
Yes | 25 (71) |
Other immune-related adverse events | |
Arthritis | 2 (6) |
Colitis | 3 (9) |
Hepatitis | 1 (3) |
Hypothyroidism, myositis, and hypophysitis | 1 (3) |
Hypothyroidism | 1 (3) |
Neuritis | 1 (3) |
Pneumonitis | 2 (6) |
Pneumonitis and hepatitis | 1 (3) |
Pulmonary event and Sjogren syndrome | 1 (3) |
Rash | 1 (3) |
Uveitis | 1 (3) |
None | 20 (57) |
Biopsy results | |
Chronic interstitial nephritis | |
No | 4 (11) |
Yes | 31 (89) |
Acute tubular necrosis | |
No | 9 (26) |
Yes | 26 (74) |
Granuloma | |
No | 30 (86) |
Yes | 5 (14) |
Immunohistochemistry staining | |
CD4 | |
Negative | 10 (29) |
Positive | 25 (71) |
CD4 clustering | |
Negative | 23 (66) |
Positive | 12 (34) |
CD4 tubulitis | |
Negative | 27 (77) |
Positive | 8 (23) |
CD8 | |
Negative | 10 (29) |
Positive | 25 (71) |
CD8 clustering | |
Negative | 16 (46) |
Positive | 19 (54) |
CD8 tubulitis | |
Negative | 11 (31) |
Positive | 24 (69) |
CD20 | |
Negative | 11 (31) |
Positive | 24 (69) |
CD20 clustering | |
Negative | 20 (57) |
Positive | 15 (43) |
CD20 tubulitis | |
Negative | 34 (97) |
Positive | 1 (3) |
CD68 | |
Negative | 11 (31) |
Positive | 24 (69) |
CD68 clustering | |
Negative | 35 (100) |
Positive | 0 (0) |
CD68 tubulitis | |
Negative | 19 (54) |
Positive | 16 (46) |
Covariate | No. (% of Covariate Group) | p | |
---|---|---|---|
Responders, n = 29 | Non-Responders, n = 6 | ||
Sex | >0.99 | ||
Female | 11 (84.6) | 2 (15.4) | |
Male | 18 (81.8) | 4 (18.2) | |
Hypertension | 0.37 | ||
No | 11 (73.3) | 4 (26.7) | |
Yes | 18 (90) | 2 (10) | |
Hyperlipidemia | 0.31 | ||
No | 20 (76.9) | 6 (23.1) | |
Yes | 9 (100) | 0 (0) | |
Diabetes mellitus | >0.99 | ||
No | 23 (82.1) | 5 (17.9) | |
Yes | 6 (85.7) | 1 (14.3) | |
Coronary artery disease | >0.99 | ||
No | 28 (82.4) | 6 (17.6) | |
Yes | 1 (100) | 0 (0) | |
Immunotherapy | 0.21 | ||
Atezolizumab | 2 (66.7) | 1 (33.3) | |
Durvalumab | 2 (100) | 0 (0) | |
Nivolumab | 16 (94.1) | 1 (5.9) | |
Pembrolizumab | 9 (69.2) | 4 (30.8) | |
Concurrent nephrotoxic chemotherapy | 0.66 | ||
No | 18 (85.7) | 3 (14.3) | |
Yes | 11 (78.6) | 3 (21.4) | |
Concurrent immune checkpoint inhibitors | 0.56 | ||
No | 23 (79.3) | 6 (20.7) | |
Yes | 6 (100) | 0 (0) | |
Dialysis | >0.99 | ||
No | 24 (82.8) | 5 (17.2) | |
Yes | 5 (83.3) | 1 (16.7) | |
Steroids before biopsy | 0.65 | ||
No | 20 (80) | 5 (20) | |
Yes | 9 (90) | 1 (10) | |
Proton pump inhibitors or nonsteroidal anti-inflammatory drugs | 0.38 | ||
Yes | 12 (92.3) | 1 (7.7) | |
No | 17 (77.3) | 5 (22.7) | |
Immune checkpoint inhibitor re-challenge | 0.56 | ||
No | 23 (79.3) | 6 (20.7) | |
Yes | 6 (100) | 0 (0) | |
Renal toxicity | 0.65 | ||
Grade III-IV | 19 (86.4) | 3 (13.6) | |
Grade I-II | 10 (76.9) | 3 (23.1) | |
Red or white blood cells present in urine | 0.32 | ||
No | 7 (70) | 3 (30) | |
Yes | 22 (88) | 3 (12) | |
Chronic interstitial nephritis | 0.55 | ||
No | 3 (75) | 1 (25) | |
Yes | 26 (83.9) | 5 (16.1) | |
Acute tubular necrosis | >0.99 | ||
No | 8 (88.9) | 1 (11.1) | |
Yes | 21 (80.8) | 5 (19.2) | |
Granuloma | 0.56 | ||
No | 24 (80) | 6 (20) | |
Yes | 5 (100) | 0 (0) | |
Banff inflammation score | 0.07 | ||
0 | 4 (80) | 1 (20) | |
1 | 6 (85.7) | 1 (14.3) | |
2 | 3 (50) | 3 (50) | |
3 | 16 (94.1) | 1 (5.9) | |
Low or high Banff inflammation score | >0.99 | ||
0–1 | 10 (83.3) | 2 (16.7) | |
2–3 | 19 (82.6) | 4 (17.4) | |
Maximum Banff inflammation score | 0.18 | ||
0–2 | 13 (72.2) | 5 (27.8) | |
3 | 16 (94.1) | 1 (5.9) | |
Banff tubulitis score | 0.13 | ||
0 | 5 (83.3) | 1 (16.7) | |
1 | 5 (62.5) | 3 (37.5) | |
2 | 7 (77.8) | 2 (22.2) | |
3 | 12 (100) | 0 (0) | |
CD4 | >0.99 | ||
Negative | 8 (80) | 2 (20) | |
Positive | 21 (84) | 4 (16) | |
CD4 clustering | 0.64 | ||
Negative | 18 (78.3) | 5 (21.7) | |
Positive | 11 (91.7) | 1 (8.3) | |
CD4 tubulitis | >0.99 | ||
Negative | 22 (81.5) | 5 (18.5) | |
Positive | 7 (87.5) | 1 (12.5) | |
CD8 | >0.99 | ||
Negative | 8 (80) | 2 (20) | |
Positive | 21 (84) | 4 (16) | |
CD8 clustering | >0.99 | ||
Negative | 13 (81.3) | 3 (18.8) | |
Positive | 16 (84.2) | 3 (15.8) | |
CD8 tubulitis | 0.35 | ||
Negative | 8 (72.7) | 3 (27.3) | |
Positive | 21 (87.5) | 3 (12.5) | |
CD20 | >0.99 | ||
Negative | 9 (81.8) | 2 (18.2) | |
Positive | 20 (83.3) | 4 (16.7) | |
CD20 clustering | 0.68 | ||
Negative | 16 (80) | 4 (20) | |
Positive | 13 (86.7) | 2 (13.3) | |
CD20 tubulitis | >0.99 | ||
Negative | 28 (82.4) | 6 (17.6) | |
Positive | 1 (100) | 0 (0) | |
CD68 | >0.99 | ||
Negative | 9 (81.8) | 2 (18.2) | |
Positive | 20 (83.3) | 4 (16.7) | |
CD68 clustering | – | ||
Negative | 29 (82.9) | 6 (17.1) | |
Positive | 0 (0) | 0 (0) | |
CD68 tubulitis | >0.99 | ||
Negative | 16 (84.2) | 3 (15.8) | |
Positive | 13 (81.3) | 3 (18.8) |
Marker | Response | No. | Mean | SD | SE | Min | Max | Median | Quartile 1 | Quartile 3 | p |
---|---|---|---|---|---|---|---|---|---|---|---|
Baseline creatinine mg/dL | Non-responders | 6 | 1.10 | 0.29 | 0.12 | 0.76 | 1.50 | 1.03 | 0.90 | 1.37 | 0.57 |
Responders | 29 | 1.06 | 0.48 | 0.09 | 0.50 | 3.05 | 0.93 | 0.85 | 1.08 | ||
Global glomerulosclerosis % | Non-responders | 6 | 16.67 | 16.97 | 6.93 | 6.00 | 50.00 | 10.50 | 6.00 | 17.00 | >0.99 |
Responders | 29 | 16.62 | 16.52 | 3.07 | 0.00 | 55.00 | 14.00 | 4.00 | 20.00 | ||
Interstitial fibrosis with tubular atrophy % | Non-responders | 5 | 33.00 | 13.04 | 5.83 | 20.00 | 50.00 | 35.00 | 20.00 | 40.00 | 0.02 |
Responders | 29 | 15.17 | 16.93 | 3.14 | 0.00 | 70.00 | 10.00 | 0.00 | 20.00 | ||
Inflammation score | Non-responders | 6 | 1.67 | 1.03 | 0.42 | 0.00 | 3.00 | 2.00 | 1.00 | 2.00 | 0.30 |
Responders | 29 | 2.07 | 1.16 | 0.22 | 0.00 | 3.00 | 3.00 | 1.00 | 3.00 | ||
No. of eosinophils per 40× field | Non-responders | 6 | 7.00 | 11.44 | 4.67 | 0.00 | 30.00 | 2.00 | 2.00 | 6.00 | 0.82 |
Responders | 29 | 8.83 | 20.61 | 3.83 | 0.00 | 101.00 | 2.00 | 0.00 | 5.00 | ||
No. of neutrophils per 40× field | Non-responders | 6 | 14.83 | 14.19 | 5.79 | 0.00 | 33.00 | 15.00 | 1.00 | 25.00 | 0.93 |
Responders | 29 | 17.76 | 24.57 | 4.56 | 0.00 | 89.00 | 7.00 | 2.00 | 28.00 | ||
Peak creatinine | Non-responders | 6 | 3.73 | 2.28 | 0.93 | 1.91 | 7.84 | 2.88 | 2.14 | 4.71 | 0.93 |
Responders | 29 | 3.63 | 2.05 | 0.38 | 1.46 | 9.57 | 2.96 | 2.26 | 4.83 | ||
Tubulitis score | Non-responders | 6 | 1.17 | 0.75 | 0.31 | 0.00 | 2.00 | 1.00 | 1.00 | 2.00 | 0.12 |
Responders | 29 | 1.90 | 1.14 | 0.21 | 0.00 | 3.00 | 2.00 | 1.00 | 3.00 | ||
Final creatinine | Non-responders | 5 | 3.00 | 1.94 | 0.87 | 1.91 | 6.43 | 2.00 | 1.97 | 2.69 | 0.003 |
Responders | 28 | 1.40 | 0.73 | 0.14 | 0.89 | 4.50 | 1.15 | 1.02 | 1.41 | ||
No. of cycles | Non-responders | 6 | 5.17 | 5.91 | 2.41 | 1.00 | 17.00 | 3.50 | 2.00 | 4.00 | 0.23 |
Responders | 29 | 10.76 | 22.12 | 4.11 | 1.00 | 123.00 | 7.00 | 3.00 | 8.00 | ||
No. of CD20 cells | Non-responders | 4 | 19.50 | 13.70 | 6.85 | 3 | 35 | 20.0 | 9.0 | 30.0 | 0.16 |
Responders | 21 | 40.67 | 29.81 | 6.50 | 0 | 115 | 33.0 | 19.0 | 54.0 | ||
CD20 density % | Non-responders | 4 | 25.50 | 20.42 | 10.21 | 2 | 50 | 25.0 | 10.0 | 41.0 | 0.22 |
Responders | 21 | 46.57 | 32.08 | 7.00 | 0 | 95 | 46.0 | 22.0 | 68.0 | ||
CD20 (number per 10 epithelial cells) | Non-responders | 4 | 0.00 | 0.00 | 0.00 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.74 |
Responders | 21 | 0.10 | 0.44 | 0.10 | 0 | 2 | 0.0 | 0.0 | 0.0 | ||
No. of CD4 cells | Non-responders | 4 | 46.00 | 44.37 | 22.18 | 19 | 112 | 26.5 | 20.0 | 72.0 | 0.63 |
Responders | 21 | 69.67 | 63.04 | 13.76 | 1 | 215 | 57.0 | 20.0 | 88.0 | ||
CD4 density % | Non-responders | 4 | 30.50 | 24.58 | 12.29 | 13 | 66 | 21.5 | 14.0 | 47.0 | 0.60 |
Responders | 21 | 45.90 | 35.35 | 7.71 | 3 | 140 | 45.0 | 13.0 | 70.0 | ||
CD4 (number per 10 epithelial cells) | Non-responders | 4 | 0.75 | 1.50 | 0.75 | 0 | 3 | 0.0 | 0.0 | 1.5 | 0.62 |
Responders | 21 | 1.48 | 2.25 | 0.49 | 0 | 6 | 0.0 | 0.0 | 3.0 | ||
No. of CD68 cells | Non-responders | 4 | 49.25 | 7.89 | 3.94 | 42 | 60 | 47.5 | 43.5 | 55.0 | 0.24 |
Responders | 21 | 87.43 | 71.55 | 15.61 | 0 | 220 | 70.0 | 30.0 | 85.0 | ||
CD68 density % | Non-responders | 4 | 35.50 | 15.84 | 7.92 | 21 | 58 | 31.5 | 25.5 | 45.5 | 0.50 |
Responders | 21 | 42.38 | 26.16 | 5.71 | 0 | 98 | 35.0 | 26.0 | 60.0 | ||
CD68 (number per 10 epithelial cells) | Non-responders | 4 | 3.00 | 2.45 | 1.22 | 0 | 5 | 3.5 | 1.0 | 5.0 | 0.97 |
Responders | 21 | 3.38 | 3.28 | 0.72 | 0 | 10 | 4.0 | 0.0 | 6.0 | ||
No. of CD8 cells | Non-responders | 4 | 83.50 | 32.56 | 16.28 | 35 | 105 | 97.0 | 65.5 | 101.5 | 0.05 |
Responders | 21 | 181.14 | 124.40 | 27.15 | 29 | 525 | 144.0 | 104.0 | 195.0 | ||
CD8 density | Non-responders | 4 | 46.75 | 21.76 | 10.88 | 17 | 69 | 50.5 | 32.5 | 61.0 | 0.07 |
Responders | 21 | 82.19 | 37.91 | 8.27 | 20 | 173 | 80.0 | 62.0 | 99.0 | ||
CD8 (number per 10 epithelial cells) | Non-responders | 4 | 4.50 | 3.42 | 1.71 | 0 | 8 | 5.0 | 2.0 | 7.0 | 0.33 |
Responders | 21 | 6.62 | 3.73 | 0.81 | 1 | 15 | 7.0 | 3.0 | 8.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abudayyeh, A.; Suo, L.; Lin, H.; Mamlouk, O.; Abdel-Wahab, N.; Tchakarov, A. Pathologic Predictors of Response to Treatment of Immune Checkpoint Inhibitor–Induced Kidney Injury. Cancers 2022, 14, 5267. https://doi.org/10.3390/cancers14215267
Abudayyeh A, Suo L, Lin H, Mamlouk O, Abdel-Wahab N, Tchakarov A. Pathologic Predictors of Response to Treatment of Immune Checkpoint Inhibitor–Induced Kidney Injury. Cancers. 2022; 14(21):5267. https://doi.org/10.3390/cancers14215267
Chicago/Turabian StyleAbudayyeh, Ala, Liye Suo, Heather Lin, Omar Mamlouk, Noha Abdel-Wahab, and Amanda Tchakarov. 2022. "Pathologic Predictors of Response to Treatment of Immune Checkpoint Inhibitor–Induced Kidney Injury" Cancers 14, no. 21: 5267. https://doi.org/10.3390/cancers14215267
APA StyleAbudayyeh, A., Suo, L., Lin, H., Mamlouk, O., Abdel-Wahab, N., & Tchakarov, A. (2022). Pathologic Predictors of Response to Treatment of Immune Checkpoint Inhibitor–Induced Kidney Injury. Cancers, 14(21), 5267. https://doi.org/10.3390/cancers14215267