Prognostic Potential of Immune Inflammatory Biomarkers in Breast Cancer Patients Treated with Neoadjuvant Chemotherapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients Population
2.2. Blood Count and Data Collection
2.3. Study Design and Endpoint
2.4. Statistical Analysis
3. Results
3.1. Patient and Tumor Characteristics
3.2. Implication of Immune Inflammatory Biomarkers on Survival Outcome
3.3. Prediction Model According to Inflammatory Biomarkers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zahorec, R. Ratio of neutrophil to lymphocyte counts—Rapid and simple parameter of systemic inflammation and stress in critically ill. Bratisl. Lek. Listy. 2001, 102, 5–14. [Google Scholar] [PubMed]
- Sato, H.; Tsubosa, Y.; Kawano, T. Correlation between the pretherapeutic neutrophil to lymphocyte ratio and the pathologic response to neoadjuvant chemotherapy in patients with advanced esophageal cancer. World J. Surg. 2012, 36, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Shibutani, M.; Maeda, K.; Nagahara, H.; Ohtani, H.; Sakurai, K.; Yamazoe, A.; Kimura, K.; Toyokawa, T.; Amano, R.; Kubo, N.; et al. Significance of Markers of Systemic Inflammation for Predicting Survival and Chemotherapeutic Outcomes and Monitoring Tumor Progression in Patients with Unresectable Metastatic Colorectal Cancer. Anticancer Res. 2015, 35, 5037–5046. [Google Scholar]
- Cho, U.; Sung, Y.E.; Kim, M.S.; Lee, Y.S. Prognostic Role of Systemic Inflammatory Markers in Patients Undergoing Surgical Resection for Oral Squamous Cell Carcinoma. Biomedicines 2022, 10, 1268. [Google Scholar] [CrossRef]
- Asano, Y.; Kashiwagi, S.; Onoda, N.; Noda, S.; Kawajiri, H.; Takashima, T.; Ohsawa, M.; Kitagawa, S.; Hirakawa, K. Platelet–Lymphocyte Ratio as a Useful Predictor of the Therapeutic Effect of Neoadjuvant Chemotherapy in Breast Cancer. PLoS ONE 2016, 11, e0153459. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Si, W.; Sun, Q.; Qin, B.; Zhao, W.; Yang, J. Platelet-lymphocyte ratio acts as an indicator of poor prognosis in patients with breast cancer. Oncotarget 2017, 8, 1023–1030. [Google Scholar] [CrossRef] [Green Version]
- Tiainen, S.; Rilla, K.; Hämäläinen, K.; Oikari, S.; Auvinen, P. The prognostic and predictive role of the neutrophil-to-lymphocyte ratio and the monocyte-to-lymphocyte ratio in early breast cancer, especially in the HER2+ subtype. Breast Cancer Res. Treat. 2021, 185, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.J.; Cha, Y.J.; Yoon, C.; Kim, D.; Lee, J.; Park, S.; Cha, C.; Kim, J.Y.; Ahn, S.G.; Park, H.S.; et al. Prognostic value of neutrophil-to-lymphocyte ratio in human epidermal growth factor receptor 2-negative breast cancer patients who received neoadjuvant chemotherapy. Sci. Rep. 2020, 10, 13078. [Google Scholar] [CrossRef]
- Guo, W.; Lu, X.; Liu, Q.; Lu, X.; Liu, Q.; Zhang, T.; Li, P.; Qiao, W.; Deng, M. Prognostic value of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio for breast cancer patients: An updated meta-analysis of 17079 individuals. Cancer Med. 2019, 8, 4135–4148. [Google Scholar] [CrossRef] [Green Version]
- Ethier, J.L.; Desautels, D.; Templeton, A.; Sha, P.S.; Amir, E. Prognostic role of neutrophil-to-lymphocyte ratio in breast cancer: A systematic review and meta-analysis. Breast Cancer Res. 2017, 19, 2. [Google Scholar] [CrossRef] [Green Version]
- Tan, K.W.; Chong, S.Z.; Wong, F.H.; Evrard, M.; Tan, S.M.; Keeble, J.; Kemeny, D.M.; Ng, L.G.; Abastado, J.P.; Angeli, V. Neutrophils contribute to inflammatory lymphangiogenesis by increasing VEGF-A bioavailability and secreting VEGF-D. Blood 2013, 122, 3666–3677. [Google Scholar] [CrossRef] [PubMed]
- McMillan, D.C. Systemic inflammation, nutritional status and survival in patients with cancer. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 223–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grassadonia, A.; Graziano, V.; Iezzi, L.; Vici, P.; Barba, M.; Pizzuti, L.; Cicero, G.; Krasniqi, E.; Mazzotta, M.; Marinelli, D.; et al. Prognostic Relevance of Neutrophil toLymphocyte Ratio (NLR) in Luminal Breast Cancer: A Retrospective Analysis in the Neoadjuvant Setting. Cells 2021, 10, 1685. [Google Scholar] [CrossRef]
- Corbeau, I.; Jacot, W.; Guiu, S. Neutrophil to lymphocyte ratio as prognostic and predictive factor in breast cancer patients: A systematic review. Cancers 2020, 12, 958. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wang, S.; Ding, N.; Li, N.; Huang, J.; Xiao, Z. Platelet/Lymphocyte Ratio Is Superior to Neutrophil/Lymphocyte Ratio asa Predictor of Chemotherapy Response and Disease-free Survival in Luminal B-like (HER2−) Breast Cancer. Clin. Breast Cancer. 2020, 20, e403–e409. [Google Scholar] [CrossRef]
- Zhou, Q.; Dong, J.; Sun, Q.; Lu, N.; Pan, Y.; Han, X. Role of neutrophil-tolymphocyte ratio as a prognostic biomarker in patients with breast cancer receiving neoadjuvant chemotherapy: A meta-analysis. BMJ Open 2021, 11, e047957. [Google Scholar] [CrossRef]
- Chae, S.; Kang, K.M.; Kim, H.J.; Kang, E.; Park, S.Y.; Kim, J.H.; Kim, S.H.; Kim, S.W.; Kim, E.K. Neutrophil-lymphocyte ratio predicts response to chemotherapy intriple-negative breast cancer. Curr. Oncol. 2018, 25, e113–e119. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Chen, R.; Qu, F.; Ye, Y.; Fu, Y.; Tang, Z.; Wang, Y.; Zong, B.; Yu, H.; Luo, F.; et al. Low pre-treatment lymphocyte/monocyte ratio is associated with the better efficacy of neoadjuvant chemotherapy in breast cancer patients. Cancer Biol. Ther. 2020, 21, 189–196. [Google Scholar] [CrossRef]
- Cuello-López, J.; Fidalgo-Zapata, A.; López-Agudelo, L.; Vásquez-Trespalacios, E. Platelet-To-lymphocyte ratio as a predictive factor of complete pathologic response to neoadjuvant chemotherapy in breast cancer. PLoS ONE 2018, 13, e0207224. [Google Scholar] [CrossRef] [Green Version]
- Şahin, A.B.; Cubukcu, E.; Ocak, B.; Deligonul, A.; Oyucu Orhan, S.; Tolunay, S.; Gokgoz, M.S.; Cetintas, S.; Yarbas, G.; Senol, K.; et al. Low pan-immune-inflammation-value predicts better chemotherapy response and survival in breast cancer patients treated with neoadjuvant chemotherapy. Sci. Rep. 2021, 11, 14662. [Google Scholar] [CrossRef]
- Lin, F.; Zhang, L.-P.; Xie, S.-Y.; Huang, H.-Y.; Chen, X.-Y.; Jiang, T.-C.; Guo, L.; Lin, H.X. Pan-Immune-Inflammation Value: A New Prognostic Index in Operative Breast Cancer. Front. Oncol. 2022, 12, 830138. [Google Scholar] [CrossRef] [PubMed]
- Truffi, M.; Piccotti, F.; Albasini, S.; Tibollo, V.; Morasso, C.F.; Sottotetti, F.; Corsi, F. Preoperative Systemic Inflammatory Biomarkers Are Independent Predictors of Disease Recurrence in ER+ HER2- Early Breast Cancer. Front. Oncol. 2021, 11, 773078. [Google Scholar] [CrossRef] [PubMed]
- Huszno, J.; Kolosza, Z. Prognostic value of the neutrophil-lymphocyte, platelet-lymphocyte and monocyte-lymphocyte ratio in breast cancer patients. Oncol. Lett. 2019, 18, 6275–6283. [Google Scholar] [CrossRef] [Green Version]
- Lenti, M.V.; Sottotetti, F.; Corazza, G.R. Tackling the clinical complexity of breast cancer. Drugs Context 2022, 11, 2022-2-3. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ocaña, A.; Chacón, J.I.; Calvo, L.; Antón, A.; Mansutti, M.; Albanell, J.; Martínez, M.T.; Lahuerta, A.; Bisagni, G.; Bermejo, B.; et al. Derived Neutrophil-to-Lymphocyte Ratio Predicts Pathological Complete Response to Neoadjuvant Chemotherapy in Breast Cancer. Front. Oncol. 2022, 11, 827625. [Google Scholar] [CrossRef] [PubMed]
- Cho, U.; Park, H.S.; Im, S.Y.; Yoo, C.Y.; Jung, J.H.; Suh, Y.J.; Choi, H.J. Prognostic value of systemic inflammatory markers and development of a nomogram in breast cancer. PLoS ONE 2018, 13, e0200936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Losada, B.; Guerra, J.A.; Malón, D.; Jara, C.; Rodriguez, L.; Del Barco, S. Pretreatment neutrophil/lymphocyte, platelet/lymphocyte, lymphocyte/monocyte, and neutrophil/monocyte ratios and outcome in elderly breast cancer patients. Clin. Transl. Oncol. 2019, 21, 855–863. [Google Scholar] [CrossRef]
- Orlandini, L.F.; Pimentel, F.F.; Andrade, J.M.; Reis, F.J.C.D.; Mattos-Arruda, L.; Tiezzi, D.G. Obesity and high neutrophil-to-lymphocyte ratio are prognostic factors in non-metastatic breast cancer patients. Braz. J. Med. Biol. Res. 2021, 54, e11409. [Google Scholar] [CrossRef]
- Hamarsheh, S.; Zeiser, R. NLRP3 Inflammasome Activation in Cancer: A Double-Edged Sword. Front. Immunol. 2020, 11, 1444. [Google Scholar] [CrossRef]
- Guo, B.; Fu, S.; Zhang, J.; Liu, B.; Li, Z. Targeting inflammasome/IL-1 pathways for cancer immunotherapy. Sci. Rep. 2016, 6, 36107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | BC (n = 217) | Variable | BC (n = 217) |
---|---|---|---|
Age at diagnosis | 52 ± 11 [27–80] | Ki67 at biopsy | |
Hormonal status | ≤14% | 62 (29.0%) | |
Pre-menopause | 99 (45.8%) | >14% | 152 (71.0%) |
Menopause | 117 (54.2%) | Breast cCR after NACT | |
NACT regimen | No | 164 (77.0%) | |
Type 1 | 59 (27.2%) | Yes | 49 (23.0%) |
Type 2 | 63 (29.0%) | Type of surgery | |
Type 3 | 82 (37.8%) | Conservative surgery | 101 (46.5%) |
Others | 13 (6.0%) | Mastectomy | 116 (53.5%) |
Clinical tumor stage (cT) | Axillary dissection | ||
1 | 43 (19.9%) | No | 41 (18.9%) |
2 | 119 (55.1%) | Yes | 176 (81.1%) |
3 | 23 (10.7%) | SLN biopsy | |
4 | 31 (14.3%) | No | 140 (64.5%) |
Clinical node stage (cN) | Yes | 77 (35.5%) | |
0 | 106 (49.1%) | Breast pCR | |
1 | 85 (39.3%) | No | 134 (61.7%) |
2 | 19 (8.8%) | Yes | 83 (38.3%) |
3 | 6 (2.8%) | Radiotherapy | |
Histological type at biopsy | No | 68 (31.3%) | |
Ductal | 184 (84.8%) | Yes | 149 (68.7%) |
Lobular | 30 (13.8%) | Hormonal therapy | |
Unknown | 3 (1.4%) | No | 66 (30.4%) |
Multifocality | Yes | 151 (69.6%) | |
No | 167 (77.0%) | NLR | 3.3 ± 2.6 [0.9–17.1] |
Yes | 50 (23.0%) | PLR | 179.1 ± 114.2 [43.5–974.5] |
Grading at biopsy | MLR | 0.3 ± 0.2 [0.1–1.6] | |
I | 5 (2.3%) | PIV | 474.4 ± 573.9 [46.3–4964.5] |
II | 136 (63.9%) | Death | |
III | 72 (33.8%) | No | 200 (92.2%) |
Biological portrait at biopsy | Yes | 17 (7.8%) | |
ER+/HER2- | 81 (37.7%) | Follow-up (months) | 44 ± 18 [3–60] |
ER+/HER2+ | 66 (30.7%) | DM | |
ER-/HER2+ | 32 (14.9%) | No | 170 (78.3%) |
ER-/HER2- | 36 (16.7%) | Yes | 47 (21.7%) |
Progesteron receptor at biopsy | Time to DM (months) | 40 ± 20 [0–60] | |
Negative | 87 (40.5%) | ||
Positive | 128 (59.5%) |
NLR | PLR | MLR | PIV | |
---|---|---|---|---|
AUC | 0.50 | 0.55 | 0.57 | 0.47 |
Cutoff | 2.25 | 152.46 | 0.25 | 438.68 |
NLR | PLR | MLR | PIV | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | HR | 95% CI | p-Value | HR | 95% CI | p-Value | |
Value inferior to ROC cutoff (low) | 0.98 | 0.54–1.75 | 0.94 | 1.49 | 0.84–2.67 | 0.17 | 0.52 | 0.29–0.92 | 0.03 | 1.27 | 0.70–2.28 | 0.43 |
Value superior to ROC cutoff (high) | Ref. | Ref. | Ref. | Ref. |
Variable | HR | 95% CI | p-Value | Variable | HR | 95% CI | p-Value |
---|---|---|---|---|---|---|---|
NLR | MLR | ||||||
High | 0.84 | 0.44–1.59 | 0.59 | High | 0.44 | 0.22–0.86 | 0.02 |
Low | Ref. | Low | Ref. | ||||
Age at diagnosis | 0.99 | 0.96–1.02 | 0.56 | Age at diagnosis | 0.99 | 0.96–1.02 | 0.42 |
Clinical tumor stage (cT) | Clinical tumor stage (cT) | ||||||
1 | 0.18 | 0.05–0.65 | 0.01 | 1 | 0.18 | 0.05–0.62 | 0.01 |
2 | 0.22 | 0.11–0.43 | <0.0001 | 2 | 0.18 | 0.09–0.36 | <0.0001 |
3-4 | Ref. | 3-4 | Ref. | ||||
Clinical node stage (cN) | Clinical node stage (cN) | ||||||
cN0 | 0.43 | 0.23–0.83 | 0.01 | cN0 | 0.46 | 0.24–0.89 | 0.02 |
cN+ | Ref. | cN+ | Ref. | ||||
Ki67 at core biopsy | Ki67 at core biopsy | ||||||
≤14% | 0.59 | 0.29–1.22 | 0.15 | ≤14% | 0.45 | 0.21–0.97 | 0.04 |
>14% | Ref. | >14% | Ref. | ||||
Grading at biopsy | Grading at biopsy | ||||||
I-II | 4.84 | 1.84–12.75 | 0.001 | I-II | 4.03 | 1.52–10.68 | 0.01 |
III | Ref. | III | Ref. | ||||
Histological type at biopsy | Histological type at biopsy | ||||||
Ductal | 0.73 | 0.31–1.74 | 0.48 | Ductal | 0.62 | 0.27–1.42 | 0.26 |
Lobular | Ref. | Lobular | Ref. | ||||
Biological portrait | Biological portrait | ||||||
ER+/HER2- | 0.47 | 0.21–1.06 | 0.07 | ER+/HER2- | 0.49 | 0.21–1.11 | 0.09 |
ER+/HER2+ | 0.28 | 0.08–1 | 0.05 | ER+/HER2+ | 0.36 | 0.1–1.27 | 0.11 |
ER-/HER2+ | 0.85 | 0.16–4.58 | 0.85 | ER-/HER2+ | 0.91 | 0.17–4.91 | 0.91 |
ER-/HER2- | Ref. | ER-/HER2- | Ref. | ||||
NACT regimen | NACT regimen | ||||||
Type 1 | 0.73 | 0.15–3.6 | 0.70 | Type 1 | 0.86 | 0.17–4.27 | 0.85 |
Type 2 | 1.44 | 0.31–6.72 | 0.64 | Type 2 | 1.75 | 0.37–8.16 | 0.48 |
Type 3 | 0.58 | 0.09–3.92 | 0.57 | Type 3 | 0.49 | 0.07–3.35 | 0.47 |
Others | Ref. | Others | Ref. | ||||
PLR | PIV | ||||||
High | 0.92 | 0.49–1.74 | 0.80 | High | 0.81 | 0.41–1.6 | 0.55 |
Low | Ref. | Low | Ref. | ||||
Age at diagnosis | 0.99 | 0.96–1.02 | 0.52 | Age at diagnosis | 0.99 | 0.96–1.02 | 0.52 |
Clinical tumor stage (cT) | Clinical tumor stage (cT) | ||||||
1 | 0.18 | 0.05–0.65 | 0.01 | 1 | 0.18 | 0.05–0.65 | 0.01 |
2 | 0.22 | 0.11–0.43 | <0.0001 | 2 | 0.21 | 0.11–0.42 | <0.0001 |
3-4 | Ref. | 3-4 | Ref. | ||||
Clinical node stage (cN) | Clinical node stage (cN) | ||||||
cN0 | 0.42 | 0.22–0.8 | 0.01 | cN0 | 0.43 | 0.23–0.82 | 0.010 |
cN+ | Ref. | cN+ | Ref. | ||||
Ki67 at core biopsy | Ki67 at core biopsy | ||||||
≤14% | 0.59 | 0.29–1.22 | 0.15 | ≤14% | 0.58 | 0.28–1.21 | 0.15 |
>14% | Ref. | >14% | Ref. | ||||
Grading at biopsy | Grading at biopsy | ||||||
I-II | 4.98 | 1.89–13.07 | 0.001 | I-II | 4.90 | 1.86–12.87 | 0.001 |
III | Ref. | III | Ref. | ||||
Histological type at biopsy | Histological type at biopsy | ||||||
Ductal | 0.68 | 0.3–1.56 | 0.36 | Ductal | 0.66 | 0.29–1.52 | 0.33 |
Lobular | Ref. | Lobular | Ref. | ||||
Biological portrait | Biological portrait | ||||||
ER+/HER2- | 0.46 | 0.2–1.05 | 0.07 | ER+/HER2- | 0.45 | 0.2–1.03 | 0.06 |
ER+/HER2+ | 0.28 | 0.08–0.97 | 0.04 | ER+/HER2+ | 0.29 | 0.08–1.01 | 0.05 |
ER-/HER2+ | 0.84 | 0.15–4.59 | 0.84 | ER-/HER2+ | 0.85 | 0.16–4.56 | 0.85 |
ER-/HER2- | Ref. | ER-/HER2- | Ref. | ||||
NACT regimen | NACT regimen | ||||||
Type 1 | 0.73 | 0.15–3.63 | 0.70 | Type 1 | 0.72 | 0.14–3.55 | 0.68 |
Type 2 | 1.47 | 0.31–6.91 | 0.63 | Type 2 | 1.48 | 0.32–6.91 | 0.62 |
Type 3 | 0.60 | 0.09–4.04 | 0.60 | Type 3 | 0.55 | 0.08–3.81 | 0.54 |
Others | Ref. | Others | Ref. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Truffi, M.; Sottotetti, F.; Gafni, N.; Albasini, S.; Piccotti, F.; Morasso, C.; Tibollo, V.; Mocchi, M.; Zanella, V.; Corsi, F. Prognostic Potential of Immune Inflammatory Biomarkers in Breast Cancer Patients Treated with Neoadjuvant Chemotherapy. Cancers 2022, 14, 5287. https://doi.org/10.3390/cancers14215287
Truffi M, Sottotetti F, Gafni N, Albasini S, Piccotti F, Morasso C, Tibollo V, Mocchi M, Zanella V, Corsi F. Prognostic Potential of Immune Inflammatory Biomarkers in Breast Cancer Patients Treated with Neoadjuvant Chemotherapy. Cancers. 2022; 14(21):5287. https://doi.org/10.3390/cancers14215287
Chicago/Turabian StyleTruffi, Marta, Federico Sottotetti, Nadav Gafni, Sara Albasini, Francesca Piccotti, Carlo Morasso, Valentina Tibollo, Michela Mocchi, Valentina Zanella, and Fabio Corsi. 2022. "Prognostic Potential of Immune Inflammatory Biomarkers in Breast Cancer Patients Treated with Neoadjuvant Chemotherapy" Cancers 14, no. 21: 5287. https://doi.org/10.3390/cancers14215287
APA StyleTruffi, M., Sottotetti, F., Gafni, N., Albasini, S., Piccotti, F., Morasso, C., Tibollo, V., Mocchi, M., Zanella, V., & Corsi, F. (2022). Prognostic Potential of Immune Inflammatory Biomarkers in Breast Cancer Patients Treated with Neoadjuvant Chemotherapy. Cancers, 14(21), 5287. https://doi.org/10.3390/cancers14215287