Regulation of B-Cell Receptor Signaling and Its Therapeutic Relevance in Aggressive B-Cell Lymphomas
Abstract
:Simple Summary
Abstract
1. Introduction
2. Main Characteristics of Aggressive B-Cell Lymphoma
3. B-Cell Receptor (BCR) Signaling
3.1. Physiological Roles of BCR Signaling
3.2. Dysregulated BCR Signaling in Aggressive B-Cell Lymphomas
4. Pharmacological Targeting of BCR Upstream Kinases and Its Limitations in MCL and DLBCL
4.1. Preclinical Drug Development
4.2. Clinical Experience with the Targeting of Apical BCR Kinases in DLBCL and MCL
5. BTKi- and PI3Ki-Based Combination Therapies in DLBCL and MCL
6. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Teras, L.R.; DeSantis, C.E.; Cerhan, J.R.; Morton, L.M.; Jemal, A.; Flowers, C.R. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA Cancer J. Clin. 2016, 66, 443–459. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin. 2017, 67, 7–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alizadeh, A.A.; Elsen, M.B.; Davis, R.E.; Ma, C.L.; Lossos, I.S.; Rosenwald, A.; Boldrick, J.C.; Sabet, H.; Tran, T.; Yu, X.; et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000, 403, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Susanibar-Adaniya, S.; Barta, S.K. 2021 Update on Diffuse large B cell lymphoma: A review of current data and potential applications on risk stratification and management. Am. J. Hematol. 2021, 96, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Swerdlow, S.H.; Campo, E.; Pileri, S.A.; Lee Harris, N.; Stein, H.; Siebert, R.; Advani, R.; Ghielmini, M.; Salles, G.A.; Zelenetz, A.D.; et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016, 127, 2375–2390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, N.A.; Savage, K.J.; Ludkovski, O.; Ben-Neriah, S.; Woods, R.; Steidl, C.; Dyer, M.J.S.; Siebert, R.; Kuruvilla, J.; Klasa, R.; et al. Lymphomas with concurrent BCL2 and MYC translocations: The critical factors associated with survival. Blood 2009, 114, 2273–2279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savage, K.J.; Johnson, N.A.; Ben-Neriah, S.; Connors, J.M.; Sehn, L.H.; Farinha, P.; Horsman, D.E.; Gascoyne, R.D. MYC gene rearrangements are associated with a poor prognosis in diffuse large B-cell lymphoma patients treated with R-CHOP chemotherapy. Blood 2009, 114, 3533–3537. [Google Scholar] [CrossRef] [Green Version]
- Dreyling, M.; Campo, E.; Hermine, O.; Jerkeman, M.; Le Gouill, S.; Rule, S.; Shpilberg, O.; Walewski, J.; Ladetto, M. Newly diagnosed and relapsed mantle cell lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017, 28, iv62–iv71. [Google Scholar] [CrossRef]
- Küppers, R. Mechanisms of B-cell lymphoma pathogenesis. Nat. Rev. Cancer 2005, 5, 251–262. [Google Scholar] [CrossRef]
- Silkenstedt, E.; Dreyling, M. Mantle cell lymphoma—Advances in molecular biology, prognostication and treatment approaches. Hematol. Oncol. 2021, 39, 31–38. [Google Scholar] [CrossRef]
- Herrmann, A.; Hoster, E.; Zwingers, T.; Brittinger, G.; Engelhard, M.; Meusers, P.; Reiser, M.; Forstpointner, R.; Metzner, B.; Peter, N.; et al. Improvement of overall survival in advanced stage mantle cell lymphoma. J. Clin. Oncol. 2009, 27, 511–518. [Google Scholar] [CrossRef] [Green Version]
- Bhanja, A.; Rey-Suarez, I.; Song, W.; Upadhyaya, A. Bidirectional feedback between BCR signaling and actin cytoskeletal dynamics. FEBS J. 2021. [Google Scholar] [CrossRef] [PubMed]
- Kraus, M.; Alimzhanov, M.B.; Rajewsky, N.; Rajewsky, K. Survival of resting mature B lymphocytes depends on BCR signaling via the Igα/β heterodimer. Cell 2004, 117, 787–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwak, K.; Akkaya, M.; Pierce, S.K. B cell signaling in context. Nat. Immunol. 2019, 20, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Lam, K.P.; Kühn, R.; Rajewsky, K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 1997, 90, 1073–1083. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, L.; Sasaki, Y.; Calado, D.P.; Zhang, B.; Paik, J.H.; DePinho, R.A.; Kutok, J.L.; Kearney, J.F.; Otipoby, K.L.; Rajewsky, K. PI3 Kinase Signals BCR-Dependent Mature B Cell Survival. Cell 2009, 139, 573–586. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.R.; Flaswinkel, H.; Reth, M.; Scott, D.W. Immunoreceptor tyrosine-based activation motif is required to signal pathways of receptor-mediated growth arrest and apoptosis in murine B lymphoma cells. J. Immunol. 1995, 155, 652–65261. [Google Scholar]
- Satpathy, S.; Wagner, S.A.; Beli, P.; Gupta, R.; Kristiansen, T.A.; Malinova, D.; Francavilla, C.; Tolar, P.; Bishop, G.A.; Hostager, B.S.; et al. Systems-wide analysis of BCR signalosomes and downstream phosphorylation and ubiquitylation. Mol. Syst. Biol. 2015, 11, 810. [Google Scholar] [CrossRef]
- Harwood, N.E.; Batista, F.D. Visualizing the molecular and cellular events underlying the initiation of B-cell activation. Curr. Top. Microbiol. Immunol. 2009, 334, 153–177. [Google Scholar] [CrossRef]
- Cheng, P.C.; Dykstra, M.L.; Mitchell, R.N.; Pierce, S.K. A role for lipid rafts in B cell antigen receptor signaling and antigen targeting. J. Exp. Med. 1999, 190, 1549–1560. [Google Scholar] [CrossRef] [Green Version]
- Hae, W.S.; Tolar, P.; Pierce, S.K. Membrane heterogeneities in the formation of B cell receptor-Lyn kinase microclusters and the immune synapse. J. Cell Biol. 2008, 182, 367–379. [Google Scholar] [CrossRef] [Green Version]
- Efremov, D.G.; Turkalj, S.; Laurenti, L. Mechanisms of b cell receptor activation and responses to b cell receptor inhibitors in b cell malignancies. Cancers 2020, 12, 1396. [Google Scholar] [CrossRef]
- Tsubata, T. Ligand recognition determines the role of inhibitory B cell co-receptors in the regulation of B cell homeostasis and autoimmunity. Front. Immunol. 2018, 9, 2276. [Google Scholar] [CrossRef]
- Rhee, I.; Veillette, A. Protein tyrosine phosphatases in lymphocyte activation and autoimmunity. Nat. Immunol. 2012, 13, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.J.; Yu, L.; Bäckesjö, C.M.; Vargas, L.; Faryal, R.; Aints, A.; Christensson, B.; Berglöf, A.; Vihinen, M.; Nore, B.F.; et al. Bruton’s tyrosine kinase (Btk): Function, regulation, and transformation with special emphasis on the PH domain. Immunol. Rev. 2009, 228, 58–73. [Google Scholar] [CrossRef]
- Mohamed, A.J.; Nore, B.F.; Christensson, B.; Smith, C.I.E. Signalling of Bruton’s tyrosine kinase, Btk. Scand. J. Immunol. 1999, 49, 113–118. [Google Scholar] [CrossRef]
- Niiro, H.; Clark, E.A. Regulation of B-cell fate by antigen-receptor signals. Nat. Rev. Immunol. 2002, 2, 945–956. [Google Scholar] [CrossRef] [PubMed]
- McDonald, C.; Xanthopoulos, C.; Kostareli, E. The role of Bruton’s tyrosine kinase in the immune system and disease. Immunology 2021, 164, 722–736. [Google Scholar] [CrossRef]
- Corneth, O.B.J.; Klein Wolterink, R.G.J.; Hendriks, R.W. BTK signaling in B cell differentiation and autoimmunity. Curr. Top. Microbiol. Immunol. 2015, 393, 67–105. [Google Scholar] [CrossRef]
- Burger, J.A.; Wiestner, A. Targeting B cell receptor signalling in cancer: Preclinical and clinical advances. Nat. Rev. Cancer 2018, 18, 148–167. [Google Scholar] [CrossRef]
- Wen, T.; Wang, J.; Shi, Y.; Qian, H.; Liu, P. Inhibitors targeting Bruton’s tyrosine kinase in cancers: Drug development advances. Leukemia 2021, 35, 312–332. [Google Scholar] [CrossRef] [PubMed]
- Young, R.M.; Staudt, L.M. Targeting pathological B cell receptor signalling in lymphoid malignancies. Nat. Rev. Drug Discov. 2013, 12, 229–243. [Google Scholar] [CrossRef] [PubMed]
- Warsame, A.A.; Aasheim, H.C.; Nustad, K.; Trøen, G.; Tierens, A.; Wang, V.; Randen, U.; Dong, H.P.; Heim, S.; Brech, A.; et al. Splenic marginal zone lymphoma with VH1-02 gene rearrangement expresses poly- and self-reactive antibodies with similar reactivity. Blood 2011, 118, 3331–3339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, V.J.; Arnold, I.; Gerke, C.; Huynh, M.Q.; Wündisch, T.; Neubauer, A.; Renner, C.; Falkow, S.; Müller, A. Gastric MALT lymphoma B cells express polyreactive, somatically mutated immunoglobulins. Blood 2010, 115, 581–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sachen, K.L.; Strohman, M.J.; Singletary, J.; Alizadeh, A.A.; Kattah, N.H.; Lossos, C.; Mellins, E.D.; Levy, S.; Levy, R. Self-antigen recognition by follicular lymphoma B-cell receptors. Blood Blood 2012, 120, 4182–4190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, C.C.; Catera, R.; Zhang, L.; Didier, S.; Agagnina, B.M.; Damle, R.N.; Kaufman, M.S.; Kolitz, J.E.; Allen, S.L.; Rai, K.R.; et al. Many chronic lymphocytic leukemia antibodies recognize apoptotic cells with exposed nonmuscle myosin heavy chain IIA: Implications for patient outcome and cell of origin. Blood 2010, 115, 3907–3915. [Google Scholar] [CrossRef]
- Biernat, M.M.; Wróbel, T. Bacterial infection and non-hodgkin b-cell lymphoma: Interactions between pathogen, host and the tumor environment. Int. J. Mol. Sci. 2021, 22, 7372. [Google Scholar] [CrossRef]
- Young, R.M.; Wu, T.; Schmitz, R.; Dawood, M.; Xiao, W.; Phelan, J.D.; Xu, W.; Menard, L.; Meffre, E.; Chan, W.C.C.; et al. Survival of human lymphoma cells requires B-cell receptor engagement by self-antigens. Proc. Natl. Acad. Sci. USA 2015, 112, 13447–13454. [Google Scholar] [CrossRef] [Green Version]
- Rui, L.; Schmitz, R.; Ceribelli, M.; Staudt, L.M. Malignant pirates of the immune system. Nat. Immunol. 2011, 12, 933–940. [Google Scholar] [CrossRef]
- Davis, R.E.; Ngo, V.N.; Lenz, G.; Tolar, P.; Young, R.M.; Romesser, P.B.; Kohlhammer, H.; Lamy, L.; Zhao, H.; Yang, Y.; et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature 2010, 463, 88–92. [Google Scholar] [CrossRef] [Green Version]
- Lenz, G.; Davis, R.E.; Ngo, V.N.; Lam, L.; George, T.C.; Wright, G.W.; Dave, S.S.; Zhao, H.; Xu, W.; Rosenwald, A.; et al. Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science 2008, 319, 1676–1679. [Google Scholar] [CrossRef] [PubMed]
- Compagno, M.; Lim, W.K.; Grunn, A.; Nandula, S.V.; Brahmachary, M.; Shen, Q.; Bertoni, F.; Ponzoni, M.; Scandurra, M.; Califano, A.; et al. Mutations of multiple genes cause deregulation of NF-B in diffuse large B-cell lymphoma. Nature 2009, 459, 717–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngo, V.N.; Young, R.M.; Schmitz, R.; Jhavar, S.; Xiao, W.; Lim, K.H.; Kohlhammer, H.; Xu, W.; Yang, Y.; Zhao, H.; et al. Oncogenically active MYD88 mutations in human lymphoma. Nature 2011, 470, 115–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phelan, J.D.; Young, R.M.; Webster, D.E.; Roulland, S.; Wright, G.W.; Kasbekar, M.; Shaffer, A.L.; Ceribelli, M.; Wang, J.Q.; Schmitz, R.; et al. A multiprotein supercomplex controlling oncogenic signalling in lymphoma. Nature 2018, 560, 387–391. [Google Scholar] [CrossRef]
- Choi, J.; Phelan, J.D.; Wright, G.W.; Häupl, B.; Huang, D.W.; Shaffer, A.L.; Young, R.M.; Wang, Z.; Zhao, H.; Yu, X.; et al. Regulation of B cell receptor-dependent NF-κB signaling by the tumor suppressor KLHL14. Proc. Natl. Acad. Sci. USA 2020, 117, 6092–6102. [Google Scholar] [CrossRef]
- Rahal, R.; Frick, M.; Romero, R.; Korn, J.M.; Kridel, R.; Chan, F.C.; Meissner, B.; Bhang, H.E.; Ruddy, D.; Kauffmann, A.; et al. Pharmacological and genomic profiling identifies NF-κB-targeted treatment strategies for mantle cell lymphoma. Nat. Med. 2014, 20, 87–92. [Google Scholar] [CrossRef]
- Saba, N.S.; Liu, D.; Herman, S.E.M.; Underbayev, C.; Tian, X.; Behrend, D.; Weniger, M.A.; Skarzynski, M.; Gyamfi, J.; Fontan, L.; et al. Pathogenic role of B-cell receptor signaling and canonical NF-κB activation in mantle cell lymphoma. Blood 2016, 128, 82–92. [Google Scholar] [CrossRef] [Green Version]
- Rinaldi, A.; Kwee, I.; Taborelli, M.; Largo, C.; Uccella, S.; Martin, V.; Poretti, G.; Gaidano, G.; Calabrese, G.; Martinelli, G.; et al. Genomic and expression profiling identifies the B-cell associated tyrosine kinase Syk as a possible therapeutic target in mantle cell lymphoma. Br. J. Haematol. 2006, 132, 303–316. [Google Scholar] [CrossRef]
- Wu, C.; de Miranda, N.F.; Chen, L.; Wasik, A.M.; Mansouri, L.; Jurczak, W.; Galazka, K.; Dlugosz-Danecka, M.; Machaczka, M.; Zhang, H.; et al. Genetic heterogeneity in primary and relapsed mantle cell lymphomas: Impact of recurrent CARD11 mutations. Oncotarget 2016, 7, 38180–38190. [Google Scholar] [CrossRef]
- Honma, K.; Tsuzuki, S.; Nakagawa, M.; Tagawa, H.; Nakamura, S.; Morishima, Y.; Seto, M. TNFAIP3/A20 functions as a novel tumor suppressor gene in several subtypes of non-Hodgkin lymphomas. Blood 2009, 114, 2467–2475. [Google Scholar] [CrossRef] [Green Version]
- Havranek, O.; Xu, J.; Köhrer, S.; Wang, Z.; Becker, L.; Comer, J.M.; Henderson, J.; Ma, W.; Ma, J.M.C.; Westin, J.R.; et al. Tonic B-cell receptor signaling in diffuse large B-cell lymphoma. Blood 2017, 130, 995–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulathu, Y.; Grothe, G.; Reth, M. Autoinhibition and adapter function of Syk. Immunol. Rev. 2009, 232, 286–299. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Monti, S.; Juszczynski, P.; Daley, J.; Chen, W.; Witzig, T.E.; Habermann, T.M.; Kutok, J.L.; Shipp, M.A. SYK-dependent tonic B-cell receptor signaling is a rational treatment target in diffuse large B-cell lymphoma. Blood 2008, 111, 2230–2237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Monti, S.; Juszczynski, P.; Ouyang, J.; Chapuy, B.; Neuberg, D.; Doench, J.G.; Bogusz, A.M.; Habermann, T.M.; Dogan, A.; et al. SYK Inhibition Modulates Distinct PI3K/AKT- Dependent Survival Pathways and Cholesterol Biosynthesis in Diffuse Large B Cell Lymphomas. Cancer Cell 2013, 23, 826–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greer, E.L.; Brunet, A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 2005, 24, 7410–7425. [Google Scholar] [CrossRef] [Green Version]
- Szydlowski, M.; Kiliszek, P.; Sewastianik, T.; Jablonska, E.; Bialopiotrowicz, E.; Gorniak, P.; Polak, A.; Markowicz, S.; Nowak, E.; Grygorowicz, M.A.; et al. FOXO1 activation is an effector of SYK and AKT inhibition in tonic BCR signal-dependent diffuse large B-cell lymphomas. Blood 2016, 127, 739–748. [Google Scholar] [CrossRef] [Green Version]
- Rudelius, M.; Pittaluga, S.; Nishizuka, S.; Pham, T.H.T.; Fend, F.; Jaffe, E.S.; Quintanilla-Martinez, L.; Raffeld, M. Constitutive activation of Akt contributes to the pathogenesis and survival of mantle cell lymphoma. Blood 2006, 108, 1668–1676. [Google Scholar] [CrossRef] [Green Version]
- Harris, C.M.; Foley, S.E.; Goedken, E.R.; Michalak, M.; Murdock, S.; Wilson, N.S. Merits and Pitfalls in the Characterization of Covalent Inhibitors of Bruton’s Tyrosine Kinase. SLAS Discov. 2018, 23, 1040–1050. [Google Scholar] [CrossRef] [Green Version]
- Honigberg, L.A.; Smith, A.M.; Sirisawad, M.; Verner, E.; Loury, D.; Chang, B.; Li, S.; Pan, Z.; Thamm, D.H.; Miller, R.A.; et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc. Natl. Acad. Sci. USA 2010, 107, 13075–13080. [Google Scholar] [CrossRef] [Green Version]
- Dasmahapatra, G.; Patel, H.; Dent, P.; Fisher, R.I.; Friedberg, J.; Grant, S. The Bruton tyrosine kinase (BTK) inhibitor PCI-32765 synergistically increases proteasome inhibitor activity in diffuse large-B cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) cells sensitive or resistant to bortezomib. Br. J. Haematol. 2013, 161, 43–56. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Li, J.; Ding, N.; Wang, X.; Deng, L.; Xie, Y.; Ying, Z.; Liu, W.; Ping, L.; Zhang, C.; et al. Combination of Enzastaurin and Ibrutinib synergistically induces anti-tumor effects in diffuse large B cell lymphoma. J. Exp. Clin. Cancer Res. 2019, 38, 86. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Shaffer, A.L.; Emre, N.C.T.; Ceribelli, M.; Zhang, M.; Wright, G.; Xiao, W.; Powell, J.; Platig, J.; Kohlhammer, H.; et al. Exploiting Synthetic Lethality for the Therapy of ABC Diffuse Large B Cell Lymphoma. Cancer Cell 2012, 21, 723–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barf, T.; Covey, T.; Izumi, R.; Van De Kar, B.; Gulrajani, M.; Van Lith, B.; Van Hoek, M.; De Zwart, E.; Mittag, D.; Demont, D.; et al. Acalabrutinib (ACP-196): A covalent Bruton tyrosine kinase inhibitor with a differentiated selectivity and in vivo potency profile. J. Pharmacol. Exp. Ther. 2017, 363, 240–252. [Google Scholar] [CrossRef] [PubMed]
- Harrington, B.K.; Gardner, H.L.; Izumi, R.; Hamdy, A.; Rothbaum, W.; Coombes, K.R.; Covey, T.; Kaptein, A.; Gulrajani, M.; Van Lith, B.; et al. Preclinical evaluation of the novel BTK inhibitor acalabrutinib in canine models of B-cell non-hodgkin lymphoma. PLoS ONE 2016, 11, e0159607. [Google Scholar] [CrossRef] [PubMed]
- Spriano, F.; Tarantelli, C.; Gaudio, E.; Gerlach, M.M.; Priebe, V.; Cascione, L.; Bernasconi, E.; Targa, A.; Mascia, M.; Dirnhofer, S.; et al. Single and combined BTK and PI3Kδ inhibition with acalabrutinib and ACP-319 in pre-clinical models of aggressive lymphomas. Br. J. Haematol. 2019, 187, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Tarantelli, C.; Zhang, L.; Curti, E.; Gaudio, E.; Spriano, F.; Priebe, V.; Cascione, L.; Arribas, A.J.; Zucca, E.; Rossi, D.; et al. The Bruton tyrosine kinase inhibitor zanubrutinib (BGB-3111) demonstrated synergies with other anti-lymphoma targeted agents. Haematologica 2019, 104, e307–e309. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Sun, Z.; Liu, Y.; Guo, M.; Zhang, Y.; Zhou, D.; Zhang, B.; Su, D.; Zhang, S.; Han, J.; et al. Abstract 2597: BGB-3111 is a novel and highly selective Bruton’s tyrosine kinase (BTK) inhibitor. Cancer Res. 2015, 75, 2597. [Google Scholar] [CrossRef] [Green Version]
- Gaudio, E.; Tarantelli, C.; Zucca, E.; Rossi, D.; Stathis, A.; Bertoni, F. Abstract 4182: The two novel BTK-inhibitors M2951 and M7583 show in vivo anti-tumor activity in pre-clinical models of B cell lymphoma. Cancer Res. 2017, 77, 4182. [Google Scholar] [CrossRef]
- Cerulli, R.A.; Dashnamoorthy, R.; Evens, A.M. The Bruton’s Tyrosine Kinase Inhibitor CC-292 in Diffuse Large B-Cell Lymphoma (DLBCL), T-Cell Lymphoma (TCL), and Hodgkin Lymphoma (HL): Induction of Cell Death and Examination of Rational Novel/Novel Therapeutic Combinations. Blood 2014, 124, 1772. [Google Scholar] [CrossRef]
- Yasuhiro, T.; Yoshizawa, T.; Daub, H.; Weber, C.; Narita, M.; Kawabata, K. Abstract 2021: ONO-WG-307, a novel, potent and selective inhibitor of Bruton’s tyrosine kinase (Btk), results in sustained inhibition of the ERK, AKT and PKD signaling pathways. Cancer Res. 2012, 72, 2021. [Google Scholar] [CrossRef]
- Kozaki, R.; Yoshizawa, T.; Tohda, S.; Yasuhiro, T.; Hotta, S.; Ariza, Y.; Ueda, Y.; Narita, M.; Kawabata, K. Development of a Bruton’s Tyrosine Kinase (Btk) Inhibitor, ONO-WG-307: Efficacy in ABC-DLBCL Xenograft Model—Potential Treatment for B-Cell Malignancies. Blood 2011, 118, 3731. [Google Scholar] [CrossRef]
- Ribeiro, M.L.; Reyes-Garau, D.; Vinyoles, M.; Profitós Pelejà, N.; Santos, J.C.; Armengol, M.; Fernández-Serrano, M.; Sedó Mor, A.; Bech-Serra, J.J.; Blecua, P.; et al. Antitumor Activity of the Novel BTK Inhibitor TG-1701 Is Associated with Disruption of Ikaros Signaling in Patients with B-cell Non–Hodgkin Lymphoma. Clin. Cancer Res. 2021, 5, 13. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Wang, W.; Liu, F.; Weisberg, E.L.; Tian, B.; Chen, Y.; Li, B.; Wang, A.; Wang, B.; Zhao, Z.; et al. Discovery of a potent, covalent BTK inhibitor for B-cell lymphoma. ACS Chem. Biol. 2014, 9, 1086–1091. [Google Scholar] [CrossRef] [PubMed]
- Woyach, J.A.; Furman, R.R.; Liu, T.-M.; Ozer, H.G.; Zapatka, M.; Ruppert, A.S.; Xue, L.; Li, D.H.-H.; Steggerda, S.M.; Versele, M.; et al. Resistance Mechanisms for the Bruton’s Tyrosine Kinase Inhibitor Ibrutinib. N. Engl. J. Med. 2014, 370, 2286–2294. [Google Scholar] [CrossRef] [Green Version]
- Eathiraj, S.; Savage, R.; Yu, Y.; Schwartz, B.; Woyach, J.; Johnson, A.; Reiff, S.; Abbadessa, G. Targeting Ibrutinib-Resistant BTK-C481S Mutation with ARQ 531, a Reversible Non-Covalent Inhibitor of BTK. Clin. Lymphoma Myeloma Leuk. 2016, 16, S47–S48. [Google Scholar] [CrossRef]
- Yu, Y.; Eathiraj, S.; Savage, R.E.; Abbadessa, G.; Reiff, S.D.; Woyach, J.A.; Johnson, A.J.; Schwartz, B. ARQ 531, a Reversible BTK Inhibitor, Demonstrates Potent Anti-Tumor Activity in ABC-DLBCL and GCB-DLBCL biobehavioral aspects of chronic lymphocytic leukemia View project small-molecule inhibitors View project ARQ 531, A Reversible BTK Inhibitor, Demonstr. EHA Congr. 2017, E1400. [Google Scholar] [CrossRef]
- Uckun, F.; Dibirdik, I.; Sarkissian, A.; Qazi, S. In vitro and in vivo chemosensitizing activity of LFM-A13, a dual-function inhibitor of Bruton’s tyrosine kinase and polo-like kinases, against human leukemic B-cell precursors. Arzneimittel-Forschung/Drug Res. 2011, 61, 252–259. [Google Scholar] [CrossRef]
- Lee, N.; Li, Y.; Yuan, C.; Liu, G.; Yue, C. Discovery of HBW-3-10: A potent, orally active, reversible Bruton’s tyrosine kinase (BTK) inhibitor with antitumor activity in mice. J. Clin. Oncol. 2021, 39, e15062. [Google Scholar] [CrossRef]
- Crawford, J.J.; Zhang, H. Discovery and Development of Non-Covalent, Reversible Bruton’s Tyrosine Kinase Inhibitor Fenebrutinib (GDC-0853). ACS Symp. Ser. 2019, 1332, 239–266. [Google Scholar] [CrossRef]
- Thieme, E.; Lam, V.; Bruss, N.; Xu, F.; Kurtz, S.E.; Tyner, J.W.; Danilov, A.; Liu, T. Pharmacologic Inhibition of B Cell-Receptor-Associated Kinases with CG-806 Induces Apoptosis and Metabolic Reprogramming in Aggressive Non-Hodgkin Lymphoma (NHL) Models. Blood 2020, 136, 29. [Google Scholar] [CrossRef]
- Asami, T.; Kawahata, W.; Kashimoto, S.; Sawa, M. Abstract B152: CB1763, a highly selective, novel non-covalent BTK inhibitor, targeting ibrutinib-resistant BTK C481S mutant. Mol. Cancer Ther. 2018, 17, B152. [Google Scholar] [CrossRef]
- Gomez, E.B.; Wu, W.; Stephens, J.R.; Rosendahl, M.S.; Brandhuber, B.J. In Vivo Pre-Clinical Evaluation of LOXO-305 Alone and in Combination with Venetoclax, Rituximab, R-CHOP or Obinutuzumab on Human Xenograft Lymphoma Tumor Models in Mice. Blood 2020, 136, 32–33. [Google Scholar] [CrossRef]
- Brandhuber, B.; Gomez, E.; Smith, S.; Eary, T.; Spencer, S.; Rothenberg, S.M.; Andrews, S. LOXO-305, A Next Generation Reversible BTK Inhibitor, for Overcoming Acquired Resistance to Irreversible BTK Inhibitors. Clin. Lymphoma Myeloma Leuk. 2018, 18, S216. [Google Scholar] [CrossRef]
- Sun, Y.; Ding, N.; Song, Y.; Yang, Z.; Liu, W.; Zhu, J.; Rao, Y. Degradation of Bruton’s tyrosine kinase mutants by PROTACs for potential treatment of ibrutinib-resistant non-Hodgkin lymphomas. Leukemia 2019, 33, 2105–2110. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Shu, Y.; Lin, J.; Chen, Z.; Xie, Q.; Bao, Y.; Lu, L.; Sun, N.; Wang, Y. Discovery of novel BTK PROTACs for B-Cell lymphomas. Eur. J. Med. Chem. 2021, 225, 113820. [Google Scholar] [CrossRef]
- Tinworth, C.P.; Lithgow, H.; Dittus, L.; Bassi, Z.I.; Hughes, S.E.; Muelbaier, M.; Dai, H.; Smith, I.E.D.; Kerr, W.J.; Burley, G.A.; et al. PROTAC-Mediated Degradation of Bruton’s Tyrosine Kinase Is Inhibited by Covalent Binding. ACS Chem. Biol. 2019, 14, 342–347. [Google Scholar] [CrossRef] [Green Version]
- Jaime-Figueroa, S.; Buhimschi, A.D.; Toure, M.; Hines, J.; Crews, C.M. Design, synthesis and biological evaluation of Proteolysis Targeting Chimeras (PROTACs) as a BTK degraders with improved pharmacokinetic properties. Bioorganic Med. Chem. Lett. 2020, 30, 126877. [Google Scholar] [CrossRef]
- Zorba, A.; Nguyen, C.; Xu, Y.; Starr, J.; Borzilleri, K.; Smith, J.; Zhu, H.; Farley, K.A.; Ding, W.D.; Schiemer, J.; et al. Delineating the role of cooperativity in the design of potent PROTACs for BTK. Proc. Natl. Acad. Sci. USA 2018, 115, E7285–E7292. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.; Coffey, G.; Zhang, X.H.; Shaknovich, R.; Song, Z.; Lu, P.; Pandey, A.; Melnick, A.M.; Sinha, U.; Wang, Y.L. SYK inhibition and response prediction in diffuse large B-cell lymphoma. Blood 2011, 118, 6342–6352. [Google Scholar] [CrossRef] [Green Version]
- Suljagic, M.; Longo, P.G.; Bennardo, S.; Perlas, E.; Leone, G.; Laurenti, L.; Efremov, D.G. The Syk inhibitor fostamatinib disodium (R788) inhibits tumor growth in the Eμ-TCL1 transgenic mouse model of CLL by blocking antigen-dependent B-cell receptor signaling. Blood 2010, 116, 4894–4905. [Google Scholar] [CrossRef]
- Young, R.M.; Hardy, I.R.; Clarke, R.L.; Lundy, N.; Pine, P.; Turner, B.C.; Potter, T.A.; Refaeli, Y. Mouse models of non-hodgkin lymphoma reveal Syk as an important therapeutic target. Blood 2009, 113, 2508–2516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.; Xing, W.; Coffey, G.; Dresser, K.; Lu, K.; Guo, A.; Raca, G.; Pandey, A.; Conley, P.; Yu, H.; et al. Cerdulatinib, a novel dual SYK/JAK kinase inhibitor, has broad anti-tumor activity in both ABC and GCB types of diffuse large B cell lymphoma. Oncotarget 2015, 6, 43881–43896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Axelrod, M.J.; Fowles, P.; Silverman, J.; Clarke, A.; Tang, J.; Rousseau, E.; Webb, H.K.; Di Paolo, J. The Combination of Entospletinib and Vincristine Demonstrates Synergistic Activity in a Broad Panel of Hematological Cancer Cell Lines and Anti-Tumor Efficacy in a DLBCL Xenograft Model. Blood 2015, 126, 5123. [Google Scholar] [CrossRef]
- Huck, J.; Brake, R.; Tirrell, S.; He, H.; Theisen, M.; Yu, J.; Zhang, M.; Balani, S.; Atienza, J.; Vincent, P.; et al. Antitumor activity of inhibiting SYK kinase with TAK-659, an investigational agent, in DLBCL models. J. Clin. Oncol. 2014, 32, 8580. [Google Scholar] [CrossRef]
- Lam, B.; Arikawa, Y.; Cramlett, J.; Dong, Q.; de Jong, R.; Feher, V.; Grimshaw, C.E.; Farrell, P.J.; Hoffman, I.D.; Jennings, A.; et al. Discovery of TAK-659 an orally available investigational inhibitor of Spleen Tyrosine Kinase (SYK). Bioorganic Med. Chem. Lett. 2016, 26, 5947–5950. [Google Scholar] [CrossRef] [Green Version]
- Barta, S.K.; Rasco, D.W.; Chen, A.I.; Elkins, S.; Wang, M.; Denis, L.J.; Toker, S.; Usansky, H.; Reddy, S.; Rao, N.S. Clinical activity, safety and tolerability of ASN002, a dual JAK/SYK inhibitor, in patients with non-Hodgkin lymphoma (NHL), myeolfibrosis (MF), chronic lymphocytic leukemia (CLL) and solid tumors. J. Clin. Oncol. 2018, 36, TPS7084. [Google Scholar] [CrossRef]
- Brana, I.; Siu, L.L. Clinical development of phosphatidylinositol 3-kinase inhibitors for cancer treatment. BMC Med. 2012, 10, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Maira, S.M.; Pecchi, S.; Huang, A.; Burger, M.; Knapp, M.; Sterker, D.; Schnell, C.; Guthy, D.; Nagel, T.; Wiesmann, M.; et al. Identification and characterization of NVP-BKM120, an orally available pan-class I PI3-kinase inhibitor. Mol. Cancer Ther. 2012, 11, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Narkhede, M.; Cheson, B.D. Copanlisib in the treatment of non-Hodgkin lymphoma. Futur. Oncol. 2020, 16, 1947–1955. [Google Scholar] [CrossRef]
- Gaudio, E.; Kwee, I.; Spriano, F.; Tarantelli, C.; Rinaldi, A.; Jourdan, T.; Berthold, M.; Arribas, A.; Stathis, A.; Rossi, D.; et al. The Pan Class-I PI3K Inhibitor Copanlisib Has Preclinical Activity in Mantle Cell Lymphoma, Marginal Zone Lymphoma and Chronic Lymphocytic Leukemia As Single Agent and in Combination with Other Targeted and Conventional Agents. Blood 2016, 128, 4185. [Google Scholar] [CrossRef]
- Huang, S.; Nastoupil, L.J.; Guo, H.; Bell, T.; Ahmed, M.; Li, C.J.; Wang, J.; Liu, Y.; Zhang, V.; Kim, C.R.; et al. Pre-Clinical Evaluation of the PI3K-p110β/δ Inhibitor KA2237 in Mantle Cell Lymphoma. Blood 2016, 128, 1837. [Google Scholar] [CrossRef]
- Locatelli, S.L.; Careddu, G.; Serio, S.; Consonni, F.M.; Maeda, A.; Viswanadha, S.; Vakkalanka, S.; Castagna, L.; Santoro, A.; Allavena, P.; et al. Targeting cancer cells and tumor microenvironment in preclinical and clinical models of Hodgkin lymphoma using the dual PI3Kd/G inhibitor RP6530. Clin. Cancer Res. 2019, 25, 1098–1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertram, K.; Leary, P.J.; Boudesco, C.; Fullin, J.; Stirm, K.; Dalal, V.; Zenz, T.; Tzankov, A.; Müller, A. Inhibitors of Bcl-2 and Bruton’s tyrosine kinase synergize to abrogate diffuse large B-cell lymphoma growth in vitro and in orthotopic xenotransplantation models. Leukemia 2021, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Jain, N.; Singh, S.; Laliotis, G.; Hart, A.; Muhowski, E.; Kupcova, K.; Chrbolkov, T.; Khashab, T.; Chowdhury, S.M.; Sircar, A.; et al. Targeting phosphatidylinositol 3 kinase-b and -d for Bruton tyrosine kinase resistance in diffuse large B-cell lymphoma. Blood Adv. 2020, 4, 4382–4392. [Google Scholar] [CrossRef] [PubMed]
- Pongas, G.N.; Annunziata, C.M.; Staudt, L.M. PI3Kδ inhibition causes feedback activation of PI3Kα in the ABC subtype of diffuse large B-cell lymphoma. Oncotarget 2017, 8, 81794–81802. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Ke, K.; Xu, L.; Jin, J. Discovery of a novel phosphoinositide 3-kinase gamma (PI3Kγ) inhibitor against hematologic malignancies and theoretical studies on its PI3Kγ-specific binding mechanisms. RSC Adv. 2019, 9, 20207–20215. [Google Scholar] [CrossRef] [Green Version]
- Lannutti, B.J.; Meadows, S.A.; Herman, S.E.M.; Kashishian, A.; Steiner, B.; Johnson, A.J.; Byrd, J.C.; Tyner, J.W.; Loriaux, M.M.; Deininger, M.; et al. CAL-101, a p110δ selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood 2011, 117, 591–594. [Google Scholar] [CrossRef] [Green Version]
- Faia, K.; White, K.; Murphy, E.; Proctor, J.; Pink, M.; Kosmider, N.; McGovern, K.; Kutok, J. The phosphoinositide-3 kinase (PI3K)-δ,γ inhibitor, duvelisib shows preclinical synergy with multiple targeted therapies in hematologic malignancies. PLoS ONE 2018, 13, e0200725. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, V.; Bell, T.; Liu, Y.; Guo, H.; Zhang, L. The Effects of PI3K-δ/γ Inhibitor, Duvelisib, in Mantle Cell Lymphoma in Vitro and in Patient-Derived Xenograft Studies. Blood 2016, 128, 3016. [Google Scholar] [CrossRef]
- Deng, C.; McIntosh, C.; Rodriguez, R.; Sportelli, P.; Miskin, H.P.; Vakkalanka, S.; Viswanadha, S.; Lipstein, M.; O’Connor, O.A. The PI3K Delta Inhibitor TGR-1202 and Proteasome Inhibitor Carfilzomib Are Highly Synergistic In Killing Human B- and T-Cell Lymphoma Cells. Blood 2013, 122, 4421. [Google Scholar] [CrossRef]
- Normant, E.; Ribeiro, M.L.; Profitos-Peleja, N.; Blecua, P.; Reyes-Garau, D.; Santos, J.C.; Armengol, M.; Fernández-Serrano, M.; Miskin, H.P.; Roue, G. The Ublituximab-Umbralisib (U2) Drug Regimen Potentiates the Activity of the Novel CD47-CD19 Bispecific Antibody, TG-1801, through the Activation of the G Protein-Coupled Receptor EBI2/GPR183. Blood 2021, 138, 1196. [Google Scholar] [CrossRef]
- Fan, L.; Wang, C.; Zhao, L.; Wang, Z.; Zhang, X.; Liu, X.; Cao, L.; Xu, W.; Li, J. SHC014748M, a novel selective inhi-bitor of PI3Kδ, demonstrates promising preclinical antitumor activity in B cell lymphomas and chronic lymphocytic leukemia. Neoplasia 2020, 22, 714–724. [Google Scholar] [CrossRef]
- Younes, A.; Samad, N. Utility of mTOR Inhibition in Hematologic Malignancies. Oncologist 2011, 16, 730–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yazbeck, V.Y.; Buglio, D.; Georgakis, G.V.; Li, Y.; Iwado, E.; Romaguera, J.E.; Kondo, S.; Younes, A. Temsirolimus downregulates p21 without altering cyclin D1 expression and induces autophagy and synergizes with vorinostat in mantle cell lymphoma. Exp. Hematol. 2008, 36, 443–450. [Google Scholar] [CrossRef]
- Haritunians, T.; Mori, A.; O’Kelly, J.; Luong, Q.T.; Giles, F.J.; Koeffler, H.P. Antiproliferative activity of RAD001 (everolimus) as a single agent and combined with other agents in mantle cell lymphoma. Leukemia 2007, 21, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, D.S.; Fultz, K.E.; Xu, S.; Xu, W.; Packard, G.; Khambatta, G.; Gamez, J.C.; Leisten, J.; Zhao, J.; Apuy, J.; et al. CC-223, a potent and selective inhibitor of mTOR kinase: In vitro and in vivo characterization. Mol. Cancer Ther. 2015, 14, 1295–1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ezell, S.A.; Mayo, M.; Bihani, T.; Tepsuporn, S.; Wang, S.; Passino, M.; Grosskurth, S.E.; Collins, M.; Parmentier, J.; Reimer, C.; et al. Synergistic induction of apoptosis by combination of BTK and dual mTORC1/2 inhibitors in diffuse large B cell lymphoma. Oncotarget 2014, 5, 4990–5001. [Google Scholar] [CrossRef] [Green Version]
- Tarantelli, C.; Gaudio, E.; Arribas, A.J.; Kwee, I.; Hillmann, P.; Rinaldi, A.; Cascione, L.; Spriano, F.; Bernasconi, E.; Guidetti, F.; et al. PQR309 is a novel dual PI3K/mTOR inhibitor with preclinical antitumor activity in lymphomas as a single agent and in combination therapy. Clin. Cancer Res. 2018, 24, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.L.; Rule, S.; Martin, P.; Goy, A.; Auer, R.; Kahl, B.S.; Jurczak, W.; Advani, R.H.; Romaguera, J.E.; Williams, M.E.; et al. Targeting BTK with Ibrutinib in Relapsed or Refractory Mantle-Cell Lymphoma. N. Engl. J. Med. 2013, 369, 507–516. [Google Scholar] [CrossRef] [Green Version]
- Fisher, R.I.; Bernstein, S.H.; Kahl, B.S.; Djulbegovic, B.; Robertson, M.J.; De Vos, S.; Epner, E.; Krishnan, A.; Leonard, J.P.; Lonial, S.; et al. Multicenter phase II study of bortezomib in patients with relapsed or refractory mantle cell lymphoma. J. Clin. Oncol. 2006, 24, 4867–4874. [Google Scholar] [CrossRef] [Green Version]
- Witzig, T.E.; Geyer, S.M.; Ghobrial, I.; Inwards, D.J.; Fonseca, R.; Kurtin, P.; Ansell, S.M.; Luyun, R.; Flynn, P.J.; Morton, R.F.; et al. Phase II trial of single-agent temsirolimus (CCI-779) for relapsed mantle cell lymphoma. J. Clin. Oncol. 2005, 23, 5347–5356. [Google Scholar] [CrossRef] [PubMed]
- Ansell, S.M.; Inwards, D.J.; Rowland, K.M.; Flynn, P.J.; Morton, R.F.; Moore, D.F.; Kaufmann, S.H.; Ghobrial, I.; Kurtin, P.J.; Maurer, M.; et al. Low-dose, single-agent temsirolimus for relapsed mantle cell lymphoma: A phase 2 trial in the North Central Cancer Treatment Group. Cancer 2008, 113, 508–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hess, G.; Herbrecht, R.; Romaguera, J.; Verhoef, G.; Crump, M.; Gisselbrecht, C.; Laurell, A.; Offner, F.; Strahs, A.; Berkenblit, A.; et al. Phase III study to evaluate temsirolimus compared with investigator’s choice therapy for the treatment of relapsed or refractory mantle cell lymphoma. J. Clin. Oncol. 2009, 27, 3822–3829. [Google Scholar] [CrossRef] [PubMed]
- Goy, A.; Sinha, R.; Williams, M.E.; Besisik, S.K.; Drach, J.; Ramchandren, R.; Zhang, L.; Cicero, S.; Fu, T.; Witzig, T.E. Single-agent lenalidomide in patients with mantle-cell lymphoma who relapsed or progressed after or were refractory to bortezomib: Phase II MCL-001 (EMERGE) study. J. Clin. Oncol. 2013, 31, 3688–3695. [Google Scholar] [CrossRef]
- Trněný, M.; Lamy, T.; Walewski, J.; Belada, D.; Mayer, J.; Radford, J.; Jurczak, W.; Morschhauser, F.; Alexeeva, J.; Rule, S.; et al. Lenalidomide versus investigator’s choice in relapsed or refractory mantle cell lymphoma (MCL-002; SPRINT): A phase 2, randomised, multicentre trial. Lancet Oncol. 2016, 17, 319–331. [Google Scholar] [CrossRef]
- Dreyling, M.; Jurczak, W.; Jerkeman, M.; Silva, R.S.; Rusconi, C.; Trneny, M.; Offner, F.; Caballero, D.; Joao, C.; Witzens-Harig, M.; et al. Ibrutinib versus temsirolimus in patients with relapsed or refractory mantle-cell lymphoma: An international, randomised, open-label, phase 3 study. Lancet 2016, 387, 770–778. [Google Scholar] [CrossRef] [Green Version]
- Rule, S.; Dreyling, M.; Goy, A.; Hess, G.; Auer, R.; Kahl, B.; Cavazos, N.; Liu, B.; Yang, S.; Clow, F.; et al. Outcomes in 370 patients with mantle cell lymphoma treated with ibrutinib: A pooled analysis from three open-label studies. Br. J. Haematol. 2017, 179, 430–438. [Google Scholar] [CrossRef]
- Wang, M.; Rule, S.; Zinzani, P.L.; Goy, A.; Casasnovas, O.; Smith, S.D.; Damaj, G.; Doorduijn, J.; Lamy, T.; Morschhauser, F.; et al. Acalabrutinib in relapsed or refractory mantle cell lymphoma (ACE-LY-004): A single-arm, multicentre, phase 2 trial. Lancet 2018, 391, 659–667. [Google Scholar] [CrossRef]
- Song, Y.; Zhou, K.; Zou, D.; Zhou, J.; Hu, J.; Yang, H.; Zhang, H.; Ji, J.; Xu, W.; Jin, J.; et al. Treatment of Patients with Relapsed or Refractory Mantle–Cell Lymphoma with Zanubrutinib, a Selective Inhibitor of Bruton’s Tyrosine Kinase. Clin. Cancer Res. 2020, 26, 4216–4224. [Google Scholar] [CrossRef]
- Dyer, M.J.; De Vos, S.; Ruan, J.; Flowers, C.; Maddocks, K.J.; Rule, S.; Hamdy, A.M.; Izumi, R.; Slatter, J.G.; Cheung, J.; et al. Acalabrutinib monotherapy in patients (pts) with relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL). J. Clin. Oncol. 2018, 36, 7547. [Google Scholar] [CrossRef]
- Song, Y.; Schuster, S.J.; He, W.; Zhu, J.; Deng, L.; Sun, Y.; Ding, N.; Wang, X.; Gill, J.; Chatburn, E.T.; et al. Simultaneous Global Phase I Studies of a Differentiated BTK Inhibitor, Dtrmwxhs-12, in Relapsed/Refractory Patients with Chronic Lymphocytic Leukemia and B-Cell Lymphomas. Blood 2017, 130, 4056. [Google Scholar] [CrossRef]
- Advani, R.H.; Buggy, J.J.; Sharman, J.P.; Smith, S.M.; Boyd, T.E.; Grant, B.; Kolibaba, K.S.; Furman, R.R.; Rodriguez, S.; Chang, B.Y.; et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J. Clin. Oncol. 2013, 31, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Tobinai, K.; Ogura, M.; Ishizawa, K.; Suzuki, T.; Munakata, W.; Uchida, T.; Aoki, T.; Morishita, T.; Ushijima, Y.; Takahara, S. Safety and tolerability of ibrutinib monotherapy in Japanese patients with relapsed/refractory B cell malignancies. Int. J. Hematol. 2016, 103, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Wilson, W.H.; Young, R.M.; Schmitz, R.; Yang, Y.; Pittaluga, S.; Wright, G.; Lih, C.J.; Williams, P.M.; Shaffer, A.L.; Gerecitano, J.; et al. Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma. Nat. Med. 2015, 21, 922–926. [Google Scholar] [CrossRef] [PubMed]
- Graf, S.A.; Cassaday, R.D.; Morris, K.K.; Behnia, S.; Wu, Q.V.; Voutsinas, J.M.; Lynch, R.C.; Krakow, E.; Rasmussen, H.A.; Chauncey, T.R.; et al. Ibrutinib in Relapsed or Refractory Transformed Indolent B-Cell Non-Hodgkin Lymphoma: Final Results from a Prospective Phase II Study. Blood 2019, 134, 1596. [Google Scholar] [CrossRef]
- Rule, S.; Dreyling, M.H.; Goy, A.; Hess, G.; Auer, R.; Kahl, B.S.; Hernandez-Rivas, J.A.; Qi, K.; Deshpande, S.; Parisi, L.; et al. Long-Term Outcomes with Ibrutinib Versus the Prior Regimen: A Pooled Analysis in Relapsed/Refractory (R/R) Mantle Cell Lymphoma (MCL) with up to 7.5 Years of Extended Follow-up. Blood 2019, 134, 1538. [Google Scholar] [CrossRef]
- Yang, H.; Xiang, B.; Song, Y.; Zhang, H.; Zhao, W.; Zou, D.; Lv, F.; Bai, O.; Liu, A.; Li, C.; et al. Zanubrutinib monotherapy for patients with relapsed or refractory non-germinal center diffuse large B-cell lymphoma: Results from a phase II, single-arm, multicenter, study. J. Clin. Oncol. 2020, 38, e20051. [Google Scholar] [CrossRef]
- Goy, A.; Ribrag, V.; Varga, A.; Witzig, T.E.; Ocio, E.M.; Paz-Ares, L.G.; Mita, M.M.; Meyer, T.; Munster, P.N.; Mahipal, A.; et al. Phase I expansion trial of an oral TORC1/TORC2 inhibitor (CC-223) in diffuse large B-cell lymphoma (DLBCL) and multiple myeloma (MM). J. Clin. Oncol. 2013, 31, 8522. [Google Scholar] [CrossRef]
- Kater, A.P.; Tonino, S.H.; Spiering, M.; Chamuleau, M.E.D.; Liu, R.; Adewoye, A.H.; Gao, J.; Dreiling, L.; Xin, Y.; Doorduijn, J.K.; et al. Final results of a phase 1b study of the safety and efficacy of the PI3Kδ inhibitor acalisib (GS-9820) in relapsed/refractory lymphoid malignancies. Blood Cancer J. 2018, 8, 16. [Google Scholar] [CrossRef] [Green Version]
- Lanasa, M.C.; Glenn, M.; Mato, A.R.; Allgood, S.D.; Wong, S.; Amore, B.; Means, G.; Stevens, E.; Yan, C.; Friberg, G.; et al. First-In-Human Study Of AMG 319, a Highly Selective, Small Molecule Inhibitor Of PI3Kδ, In Adult Patients With Relapsed Or Refractory Lymphoid Malignancies. Blood 2013, 122, 678. [Google Scholar] [CrossRef]
- Younes, A.; Salles, G.; Martinelli, G.; Bociek, R.G.; Barrigon, D.C.; Barca, E.G.; Turgut, M.; Gerecitano, J.; Kong, O.; Pisal, C.B.; et al. Pan-phosphatidylinositol 3-kinase inhibition with buparlisib in patients with relapsed or refractory non-Hodgkin lymphoma. Haematologica 2017, 102, 2104–2112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berdeja, J.G.; Oki, Y.; Patel, M.R.; Copeland, A.; Flinn, I.; Neelapu, S.S.; Viner, J.; Wang, J.; Gerecitano, J.F.; Younes, A. Phase 1 first-in-human trial of oral CUDC-907, a dual inhibitor of PI3K and HDAC, in patients with refractory/relapsed lymphoma or multiple myeloma. J. Clin. Oncol. 2015, 33, 8537. [Google Scholar] [CrossRef]
- Nastoupil, L.J.; Neelapu, S.S.; Davis, E.; Samaniego, F.; Fowler, N.H.; Westin, J.R.; Lee, H.J.; Wang, M.; Hagemeister, F.B.; Beer, P.; et al. Results of a First in Human, Dose Ascending, Phase I Study Examining the Safety and Tolerability of KA2237, an Oral PI3K p110β/δ Inhibitor in Patients with Relapsed/Refractory (R/R) B-Cell Lymphoma. Blood 2019, 134, 4099. [Google Scholar] [CrossRef]
- Coleman, M.; Belada, D.; Casasnovas, R.O.; Gressin, R.; Lee, H.P.; Mehta, A.; Munoz, J.; Verhoef, G.; Corrado, C.; DeMarini, D.J.; et al. Phase 2 study of parsaclisib (INCB050465), a highly selective, next-generation PI3Kδ inhibitor, in relapsed or refractory diffuse large B-cell lymphoma (CITADEL-202). Leuk. Lymphoma 2021, 62, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Carlo-Stella, C.; Barde, P.; Delarue, R.; Scarfò, L.; Viswanadha, S.; Locatelli, S.; Gandolfi, S.; Pittari, V.; Morello, L.; Magagnoli, M.; et al. Safety and clinical activity of RP6530, a dual PI3Kδ/γ inhibitor, in patients with advanced hematologic malignancies: Final analysis of a phase 1 multi-center study. Hematol. Oncol. 2017, 35, 263. [Google Scholar] [CrossRef] [Green Version]
- Burris, H.A.; Patel, M.R.; Lanasa, M.C.; Brander, D.; O’Connor, O.A.; Deng, C.; Gutierrez, M.; Jones, S.F.; Kuhn, J.G.; Miskin, H.P.; et al. Activity of TGR-1202, a novel once-daily PI3Kδ inhibitor, in patients with relapsed or refractory hematologic malignancies. J. Clin. Oncol. 2014, 32, 2513. [Google Scholar] [CrossRef] [Green Version]
- Burris, H.A.; Flinn, I.; Lunning, M.A.; Vose, J.; Fowler, N.H.; Nastoupil, L.J.; O’Brien, S.M.; Schreeder, M.T.; Patel, M.R.; Fenske, T.; et al. Long-term follow-up of the PI3Kδ inhibitor TGR-1202 to demonstrate a differentiated safety profile and high response rates in CLL and NHL: Integrated-analysis of TGR-1202 monotherapy and combined with ublituximab. J. Clin. Oncol. 2016, 34, 7512. [Google Scholar] [CrossRef]
- Friedberg, J.W.; Sharman, J.; Sweetenham, J.; Johnston, P.B.; Vose, J.M.; LaCasce, A.; Schaefer-Cutillo, J.; De Vos, S.; Sinha, R.; Leonard, J.P.; et al. Inhibition of Syk with fostamatinib disodium has significant clinical activity in non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood 2010, 115, 2578–2585. [Google Scholar] [CrossRef]
- Forero-Torres, A.; Ramchandren, R.; Yacoub, A.; Wertheim, M.S.; Edenfield, W.J.; Caimi, P.; Gutierrez, M.; Akard, L.; Escobar, C.; Call, J.; et al. Parsaclisib, a potent and highly selective PI3Kd inhibitor, in patients with relapsed or refractory B-cell malignancies. Blood 2019, 133, 1742–1752. [Google Scholar] [CrossRef] [Green Version]
- Mehta, A.; Trněný, M.; Walewski, J.; Ribrag, V.; Dartigeas, C.; Christensen, J.H.; Pane, F.; Rodriguez, G.; Taszner, M.; Venugopal, P.; et al. Efficacy and Safety of Parsaclisib in Patients with Relapsed or Refractory Mantle Cell Lymphoma Not Previously Treated with a BTK Inhibitor: Primary Analysis from a Phase 2 Study (CITADEL-205). Blood 2021, 138, 382. [Google Scholar] [CrossRef]
- Mehta, A.; Trněný, M.; Walewski, J.; Ribrag, V.; Dartigeas, C.; Christensen, J.H.; Pane, F.; Rodríguez, G.; Taszner, M.; Venugopal, P.; et al. Phase 2 Study Evaluating the Efficacy and Safety of Parsaclisib in Patients with Relapsed or Refractory Mantle Cell Lymphoma Not Previously Treated with a BTK Inhibitor (CITADEL-205). Blood 2020, 136, 22–23. [Google Scholar] [CrossRef]
- Gordon, L.I.; Kaplan, J.B.; Popat, R.; Burris, H.A.; Ferrari, S.; Madan, S.; Patel, M.R.; Gritti, G.; El-Sharkawi, D.; Chau, I.; et al. Phase I Study of TAK-659, an Investigational, Dual SYK/FLT3 Inhibitor, in Patients with B-Cell Lymphoma A C. Clin. Cancer Res. 2020, 26, 3546–3556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witzig, T.E.; Maddocks, K.J.; De Vos, S.; Lyons, R.M.; Edenfield, W.J.; Sharman, J.P.; Vose, J.; Yimer, H.A.; Wei, H.; Chan, E.M.; et al. Phase 1/2 trial of acalabrutinib plus pembrolizumab (Pem) in relapsed/refractory (r/r) diffuse large B-cell lymphoma (DLBCL). J. Clin. Oncol. 2019, 37, 7519. [Google Scholar] [CrossRef]
- Younes, A.; Sehn, L.H.; Johnson, P.; Zinzani, P.L.; Hong, X.; Zhu, J.; Patti, C.; Belada, D.; Samoilova, O.; Suh, C.; et al. Randomized phase III trial of ibrutinib and rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone in non–germinal center B-cell diffuse large B-cell lymphoma. J. Clin. Oncol. 2019, 37, 1285–1295. [Google Scholar] [CrossRef]
- Sauter, C.S.; Matasar, M.J.; Schoder, H.; Devlin, S.M.; Drullinsky, P.; Gerecitano, J.; Kumar, A.; Noy, A.; Palomba, M.L.; Portlock, C.S.; et al. A phase 1 study of ibrutinib in combination with R-ICE in patients with relapsed or primary refractory DLBCL. Blood 2018, 131, 1805–1808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gauthier, J.; Hirayama, A.V.; Purushe, J.; Hay, K.A.; Lymp, J.; Li, D.H.; Yeung, C.C.S.; Sheih, A.; Pender, B.S.; Hawkins, R.M.; et al. Feasibility and efficacy of CD19-targeted CAR T cells with concurrent ibrutinib for CLL after ibrutinib failure. Blood 2020, 135, 1650–1660. [Google Scholar] [CrossRef]
- Bonnet, C.M.; Lamy, T.; Fruchart, C.; Le Gouill, S.; Gunzer, K.; Gastinne, T.; Jardin, F.; Karlin, L.; Houot, R.; Dupuis, J.; et al. Ibrutinib in association with R-DHAP/ox for patients with relapsed/refractory b-cell lymphoma: Results of the escalating phase of the BIBLOS phase Ib LYSA study. J. Clin. Oncol. 2018, 36, e19550. [Google Scholar] [CrossRef]
- Beatty, G.L.; Shahda, S.; Beck, T.; Uppal, N.; Cohen, S.J.; Donehower, R.; Gabayan, A.E.; Assad, A.; Switzky, J.; Zhen, H.; et al. A Phase Ib/II Study of the JAK1 Inhibitor, Itacitinib, plus nab -Paclitaxel and Gemcitabine in Advanced Solid Tumors. Oncologist 2019, 24, 14. [Google Scholar] [CrossRef]
- Fowler, N.H.; Nastoupil, L.; De Vos, S.; Knapp, M.; Flinn, I.W.; Chen, R.; Advani, R.H.; Bhatia, S.; Martin, P.; Mena, R.; et al. The combination of ibrutinib and rituximab demonstrates activity in first-line follicular lymphoma. Br. J. Haematol. 2020, 189, 650–660. [Google Scholar] [CrossRef]
- Maddocks, K.; Christian, B.; Jaglowski, S.; Flynn, J.; Jones, J.A.; Porcu, P.; Wei, L.; Jenkins, C.; Lozanski, G.; Byrd, J.C.; et al. A phase 1/1b study of rituximab, bendamustine, and ibrutinib in patients with untreated and relapsed/refractory non-Hodgkin lymphoma. Blood 2015, 125, 242–248. [Google Scholar] [CrossRef] [Green Version]
- Westin, J.R.; Nastoupil, L.J.; Fayad, L.; Hagemeister, F.B.; Oki, Y.; Turturro, F.; Ahmed, S.; Rodriguez, M.A.; Lee, H.J.; Steiner, R.E.; et al. Smart Start: Rituximab, Lenalidomide, and Ibrutinib Alone and in Combination with Standard Chemotherapy for Patients with Newly Diagnosed Diffuse Large B-Cell Lymphoma: Final Phase II Results. Blood 2019, 134, 1581. [Google Scholar] [CrossRef]
- Ramchandren, R.; Johnson, P.; Ghosh, N.; Ruan, J.; Ardeshna, K.M.; Johnson, R.; Verhoef, G.; Cunningham, D.; de Vos, S.; Kassam, S.; et al. Phase 2 Results of the iR2 Regimen (Ibrutinib, Lenalidomide, and Rituximab) in Patients with Relapsed/Refractory (R/R) Non-Germinal Center B Cell-like (Non-GCB) Diffuse Large B-Cell Lymphoma (DLBCL). Blood 2019, 134, 761. [Google Scholar] [CrossRef]
- Brown, J.R.; Harb, W.A.; Hill, B.T.; Gabrilove, J.; Sharman, J.P.; Schreeder, M.T.; Barr, P.M.; Foran, J.M.; Miller, T.P.; Burger, J.A.; et al. Phase I study of single-agent CC-292, a highly selective bruton’s tyrosine kinase inhibitor, in relapsed/refractory chronic lymphocytic leukemia. Haematologica 2016, 101, e295–e298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Tao, R.; Li, Z.; Guo, H.; Ji, M.; Zhang, L.; Huang, J.; Zhong, J.; Zhou, J. Zanubrutinib (BGB-3111) in combination with rituximab in patients with relapsed/refractory nonhodgkin lymphoma. HemaSphere 2020, 4, 596. [Google Scholar]
- Dhillon, S.; Keam, S.J. Umbralisib: First Approval. Drugs 2021, 81, 857–866. [Google Scholar] [CrossRef] [PubMed]
- Davids, M.S.; Kim, H.T.; Nicotra, A.; Savell, A.; Francoeur, K.; Hellman, J.M.; Bazemore, J.; Miskin, H.P.; Sportelli, P.; Stampleman, L.; et al. Umbralisib in combination with ibrutinib in patients with relapsed or refractory chronic lymphocytic leukaemia or mantle cell lymphoma: A multicentre phase 1–1b study. Lancet Haematol. 2019, 6, e38–e47. [Google Scholar] [CrossRef]
- Lunning, M.; Vose, J.; Nastoupil, L.; Fowler, N.; Burger, J.A.; Wierda, W.G.; Schreeder, M.T.; Siddiqi, T.; Flowers, C.R.; Cohen, J.B.; et al. Ublituximab and umbralisib in relapsed/refractory B-cell non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood 2019, 134, 1811–1820. [Google Scholar] [CrossRef]
- Padrnos, L.; Ernst, B.; Dueck, A.C.; Kosiorek, H.E.; Ginos, B.F.; Toro, A.; Johnston, P.B.; Habermann, T.M.; Leis, J.F.; Mikhael, J.R.; et al. A Novel Combination of the mTORC1 Inhibitor Everolimus and the Immunomodulatory Drug Lenalidomide Produces Durable Responses in Patients With Heavily Pretreated Relapsed Lymphoma. Clin. Lymphoma Myeloma Leuk. 2018, 18, 664–672.e2. [Google Scholar] [CrossRef]
- Oki, Y.; Buglio, D.; Fanale, M.; Fayad, L.; Copeland, A.; Romaguera, J.; Kwak, L.W.; Pro, B.; De Castro Faria, S.; Neelapu, S.; et al. Phase i study of panobinostat plus everolimus in patients with relapsed or refractory lymphoma. Clin. Cancer Res. 2013, 19, 6882–6890. [Google Scholar] [CrossRef] [Green Version]
- Islam, P.; Rizzieri, D.; Lin, C.; de Castro, C.; Diehl, L.; Li, Z.; Moore, J.; Morris, T.; Beaven, A. Phase II Study of Single-Agent and Combination Everolimus and Panobinostat in Relapsed or Refractory Diffuse Large B-Cell Lymphoma. Cancer Investig. 2021, 39, 871–879. [Google Scholar] [CrossRef]
- Barnes, J.A.; Jacobsen, E.; Feng, Y.; Freedman, A.; Hochberg, E.P.; LaCasce, A.S.; Armand, P.; Joyce, R.; Sohani, A.R.; Rodig, S.J.; et al. Everolimus in combination with rituximab induces complete responses in heavily pretreated diffuse large B-cell lymphoma. Haematologica 2013, 98, 615–619. [Google Scholar] [CrossRef] [PubMed]
- Witzig, T.E.; Reeder, C.B.; Laplant, B.R.; Gupta, M.; Johnston, P.B.; Micallef, I.N.; Porrata, L.F.; Ansell, S.M.; Colgan, J.P.; Jacobsen, E.D.; et al. A phase II trial of the oral mTOR inhibitor everolimus in relapsed aggressive lymphoma. Leukemia 2011, 25, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Pirosa, M.C.; Zhang, L.; Hitz, F.; Novak, U.; Hess, D.; Terrot, T.; Pascale, M.; Mazzucchelli, L.; Bertoni, F.; Cavalli, F.; et al. A phase I trial of inotuzumab ozogamicin in combination with temsirolimus in patients with relapsed or refractory CD22-positive B-cell non-Hodgkin lymphomas. Leuk. Lymphoma 2021, 63, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Barr, P.M.; Saylors, G.B.; Spurgeon, S.E.; Cheson, B.D.; Greenwald, D.R.; O’Brien, S.M.; Liem, A.K.D.; Mclntyre, R.E.; Joshi, A.; Abella-Dominicis, E.; et al. Phase 2 study of idelalisib and entospletinib: Pneumonitis limits combination therapy in relapsed refractory CLL and NHL. Blood 2016, 127, 2411–2415. [Google Scholar] [CrossRef] [Green Version]
- Walter, H.S.; Rule, S.A.; Dyer, M.J.S.; Karlin, L.; Jones, C.; Cazin, B.; Quittet, P.; Shah, N.; Hutchinson, C.V.; Honda, H.; et al. A phase 1 clinical trial of the selective BTK inhibitor ONO/GS-4059 in relapsed and refractory mature B-cell malignancies. Blood 2016, 127, 411–419. [Google Scholar] [CrossRef] [Green Version]
- De Rooij, M.F.M.; Kuil, A.; Kater, A.P.; Kersten, M.J.; Pals, S.T.; Spaargaren, M. Ibrutinib and idelalisib synergistically target BCR-controlled adhesion in MCL and CLL: A rationale for combination therapy. Blood 2015, 125, 2306–2309. [Google Scholar] [CrossRef] [Green Version]
- Nastoupil, L.J.; Lunning, M.A.; Vose, J.M.; Schreeder, M.T.; Siddiqi, T.; Flowers, C.R.; Cohen, J.B.; Burger, J.A.; Wierda, W.G.; O’Brien, S.; et al. Tolerability and activity of ublituximab, umbralisib, and ibrutinib in patients with chronic lymphocytic leukaemia and non-Hodgkin lymphoma: A phase 1 dose escalation and expansion trial. Lancet Haematol. 2019, 6, e100–e109. [Google Scholar] [CrossRef]
- Cheah, C.Y.; Wickham, N.; Yannakou, C.K.; Lewis, K.L.; Hui, C.-H.; Tang, P.S.; Turpuseema, T.; Miskin, H.P.; Tang, J.-P.; Normant, E.; et al. Phase 1 Study of TG-1701, a Selective Irreversible Inhibitor of Bruton’s Tyrosine Kinase (BTK), in Patients with Relapsed/Refractory B-Cell Malignancies. Blood 2019, 134, 4001. [Google Scholar] [CrossRef]
- Cheah, C.Y.; Jurczak, W.; Lasica, M.; Wróbel, T.; Cheung, S.; Walewski, J.; Giannopoulos, K.; Yannakou, C.K.; Lewis, K.L.; Dlugosz-Danecka, M.; et al. The Selective Bruton Tyrosine Kinase (BTK) Inhibitor TG-1701 As Monotherapy and in Combination with Ublituximab and Umbralisib (U2) in Patients with B-Cell Malignancies. Blood 2021, 138, 1549. [Google Scholar] [CrossRef]
- Barr, P.M.; Smith, S.D.; Roschewski, M.J.; O’Brien, S.M.; Sharman, J.P.; Melear, J.M.; Hamdy, A.M.; Izumi, R.; Slatter, J.G.; Chernyukhin, N.; et al. Acalabrutinib combined with PI3Kδ inhibitor ACP-319 in patients (pts) with relapsed/refractory (R/R) B-cell malignancies. J. Clin. Oncol. 2018, 36, 7518. [Google Scholar] [CrossRef]
- Yang, M.; Qian, J.; Huang, J.; Jiao, Y.; Tang, W.; Xu, X.; Xu, W.; Luo, F.R.; Jin, J. PF515 A Phase I Study of the BTK inhibitor abivertinib (AC0010) in patients with relapsed or refractory B-cell lymphoma. HemaSphere 2019, 3, 210. [Google Scholar] [CrossRef]
- Hall, T.; Yu, Y.; Eathiraj, S.; Stephens, D.; Flinn, I.; Woyach, J.; Schwartz, B.; Savage, R.E. Abstract LB-018: ARQ 531, a novel and reversible inhibitor of Bruton’s tyrosine kinase, displays favorable oral bioavailability and exposure in patients with B-cell malignancies. Cancer Res. 2018, 78. [Google Scholar] [CrossRef]
- Jiang, B.; Qi, J.; Song, Y.; Li, Z.; Tu, M.; Ping, L.; Liu, Z.; Bao, H.; Xu, Z.; Qiu, L. Phase 1 clinical trial of the PI3Kδ inhibitor YY-20394 in patients with B-cell hematological malignancies. J. Hematol. Oncol. 2021, 14, 130. [Google Scholar] [CrossRef] [PubMed]
- Bailey, N.; Tsomo, T.; Szeto, J.; Bensinger, W.I.; Egan, D.; Hegerova, L.; Mawad, R.; Batchelder, A.; Fesler, J.; Holdread, H.; et al. Acalabrutinib Plus RICE Followed By Autologous Hematopoietic Cell Transplantation and/or Acalabrutinib Maintenance Therapy for Patients with Relapsed/Refractory Diffuse Large B-Cell Lymphoma. Blood 2020, 136, 34. [Google Scholar] [CrossRef]
- Hillmen, P.; Qamoos, H.; Uyei, A.; Rothbaum, W.M.; Jurczak, W.; Thieblemont, C.; Byrd, J.C. A Phase 1b-2 Study of KRT-232, a First-in-Class, Oral, Small Molecule Inhibitor of Murine Double Minute 2 (MDM2), in Combination with Acalabrutinib for the Treatment of Relapsed/Refractory (R/R) Chronic Lymphocytic Leukemia (CLL) or R/R Diffuse Large B-Ce. Blood 2020, 136, 23–24. [Google Scholar] [CrossRef]
- Shree, T.; Khodadoust, M.S.; Czerwinski, D.K.; Frank, M.J.; Beygi, S.; Long, S.R.; Martin, B.; Levy, R. Intratumoral CpG, Local Radiation, and Oral Ibrutinib Combine to Produce Effective in Situ Vaccination in Patients with Low-Grade B-Cell Lymphoma. Blood 2020, 136, 48. [Google Scholar] [CrossRef]
- Minson, A.; Hamad, N.; Butler, J.P.; Westerman, D.A.; Ritchie, D.; Blombery, P.; Seymour, J.F.; Tam, C.S.; Dickinson, M. A Phase II, Open-Label, Single Arm Trial to Assess the Efficacy and Safety of the Combination of Tisagenlecleucel and Ibrutinib in Mantle Cell Lymphoma (TARMAC). Blood 2020, 136, 34–35. [Google Scholar] [CrossRef]
- Andreadis, C.; Fenske, T.S.; Hill, B.T.; Stiff, P.J.; Grinblatt, D.L.; Hsi, E.D.; Kelley, T.; Richards, K.L.; Kostakoglu, L.; Schöder, H.; et al. Ironclad: A randomized phase III study of ibrutinib (Ibr) or no consolidation following autologous hematopoietic stem cell transplantation (AutoHCT) for relapsed/refractory activated-B-cell (ABC) subtype diffuse large B-cell lymphoma (DLBCL). J. Clin. Oncol. 2017, 35, TPS7566. [Google Scholar] [CrossRef]
- Lee, H.J.; Choi, M.Y.; Siddiqi, T.; Wierda, W.G.; Barrientos, J.C.; Lamanna, N.; Goldenberg, A.; Isufi, I.; Tuscano, J.M.; Subbiah, S.; et al. Clinical activity of cirmtuzumab, an anti-ROR1 antibody, in combination with ibrutinib: Interim results of a phase Ib/II study in mantle cell lymphoma (MCL) or chronic lymphocytic leukemia (CLL). J. Clin. Oncol. 2020, 38, 8036. [Google Scholar] [CrossRef]
- Shi, Y.-K.; Qin, Y.; Zhang, W.; Wang, X.; Liu, H.; Zang, A.; Yang, L.; Lin, D.; Li, F.; Zhu, H.; et al. 840P Preliminary phase I/II study results of orelabrutinib combined with MIL62 in patients with relapsed or refractory B-cell non-Hodgkin lymphoma. Ann. Oncol. 2021, 32, S778. [Google Scholar] [CrossRef]
- Coombs, C.C.; Pagel, J.M.; Shah, N.N.; Lamanna, N.; Lech-Maranda, E.; Eyre, T.A.; Woyach, J.A.; Wierda, W.G.; Cheah, C.Y.; Roeker, L.; et al. CLL-039: Pirtobrutinib (LOXO-305), a Next-Generation, Highly Selective, Non-Covalent BTK Inhibitor in Previously Treated CLL/SLL: Results from the Phase 1/2 BRUIN Study. Clin. Lymphoma Myeloma Leuk. 2021, 21, S315–S316. [Google Scholar] [CrossRef]
- Cheah, C.; Jurczak, W.; Lasica, M.; Wickham, N.; Wrobel, T.; Walewski, J.; Yannakou, C.; Cheung, S.; Lewi, K.; Długosz-Danecka, M.; et al. TG-1701 A selective bruton tyrosine kinase (btk) inhibitor, as monotherapy and in combination with ublituximab and umbralisib (u2) in chronic lymphocytic leukemia (cll) and lymphoma. HemaSphere 2021, 5, 286. [Google Scholar]
Targets | Drug/Regimen | Clinical Trial | Phase | Nb Pts | Status | Conditions | Response Data | References |
---|---|---|---|---|---|---|---|---|
BTK | Acalabrutinib | NCT02112526 | 1 | 21 | Active | R/R DLBCL | ORR 24%, CR 19% AEs Grade 3/4 44% | [130] |
BTK | DTRMWXHS-12 | NCT02891590 | 1 | 13 | Completed | R/R B-cell Lymphomas | Well-tolerated and no DLT achieved | [131] |
BTK | Ibrutinib | NCT00849654 | 1 | 66 | Completed | B-cell Lymphomas | ORR 60% CR 16% PFS 13.6 months | [132] |
BTK | Ibrutinib | NCT01704963 | 1 | 15 | Completed | R/R B-cell Lymphomas | ORR 73.3% | [133] |
BTK | Ibrutinib | NCT01325701 | 2 | 78 | Completed | R/R DLBCL | CR or PR in 37% (ABC) and in 5% (GCB) | [134] |
BTK | Ibrutinib | NCT02207062 | 2 | 20 | Active | R/R B-cell Lymphomas | ORR 35% CR 15% PFS 4.1 months OS 22.8 months | [135] |
BTK | Ibrutinib | NCT01804686 | 3 | 700 | Active | CLL, SLL, MCL, FL DLBCL, WM | CR 27.6% PR 42.2% PFS 12.5 months | [136] |
BTK | TG1701 | NCT03664297 | 1 | 86 | Active | B-cell Lymphomas | NA | NA |
BTK | Vecabrutinib | NCT03037645 | 1 & 2 | 39 | Terminated | CLL, SLL, MCL, WM, DLBCL, FL, MZL | Well tolerated but terminated due to insufficient evidence of activity | NA |
BTK | Zanubrutinib | NCT03189524 | 1 | 44 | Completed | R/R MCL | CR 86.6% DOR 19.5 months PFS 22.1 months | [129] |
BTK | Zanubrutinib | NCT03145064 | 2 | 41 | Completed | DLBCL | ORR 29.3% CR 17.1% DOR 4.5 months PFS 2.8 months? | [137] |
mTOR | Onatasertib | NCT01177397 | 1 & 2 | 173 | Completed | MM, DLBCL | Acceptable safety PR 17.6% | [138] |
PI3K | Acalisib | NCT01705847 | 1 | 39 | Completed | B-cell Lymphomas | ORR 28.6% AEs grade > 3 55.3% | [139] |
PI3K | AMG-319 | NCT01300026 | 1 | 28 | Completed | CLL, DLBCL, MCL | AEs grade > 3 25% | [140] |
PI3K | Buparlisib | NCT01693614 | 2 | 72 | Completed | DLBCL, MCL, FL | ORR 11.5% in DLBCL and 22.7% in MCL | [141] |
PI3K | Buparlisib | NCT01719250 | Early 1 | 7 | Completed | R/R DLBCL, R/R FL, R/R MCL | NA | NA |
PI3K | Fimepinostat | NCT01742988 | 1 | 106 | Completed | R/R DLBCL | CR 12.5% PR 37.5% SD 37.5% | [142] |
PI3K | Idelalisib | NCT03151057 | 1 | 60 | Active | CLL, FL, MCL, DLBCL | NA | NA |
PI3K | KA2237 | NCT02679196 | 1 | 23 | Completed | B-cell Lymphomas | ORR 37% AEs grade > 3 43% | [143] |
PI3K | Parsaclisib | NCT03688152 | 1 | 9 | Completed | R/R DLBCL | NA | NA |
PI3K | Parsaclisib | NCT03314922 | 1 | 17 | Active | B-cell Lymphomas | NA | NA |
PI3K | Parsaclisib | NCT02998476 | 2 | 60 | Completed | R/R DLBCL | ORR 25.5% DOR 6.2 months | [144] |
PI3K | Tenalisib | NCT02017613 | 1 | 35 | Completed | B-cell Lymphomas | ORR 19% CR 6% PR 13% | [145] |
PI3K | Umbralisib | NCT01767766 | 1 | 90 | Completed | NHL, CLL | ORR 24% CR 8% PR 16% AEs grade > 3 in less than 5% | [146,147] |
SYK | Fostamatinib | NCT00446095 | 1 & 2 | 81 | Completed | B-cell Lymphomas | ORR 22% in DLBCL and 11% in MCL PFS 4.2 months | [148] |
Targets | Drug/Regimen | Clinical Trial | Phase | Nb Pts | Status | Conditions | Response Data | References |
---|---|---|---|---|---|---|---|---|
BTK PD1 | Acalabrutinib + Pembrolizumab | NCT02362035 | 1 & 2 | 161 | Active | R/R DLBCL | ORR 26% Discontinuation was due to PD (62%) and AEs (26%) | [153] |
BTK | Acalabrutinib + R-CHOP | NCT03571308 | 1 & 2 | 39 | Active | nHL | NA | NA |
BTK | Ibrutinib + R-CHOP | NCT01855750 | 3 | 838 | Completed | B-cell Lymphomas | ORR 93.6% | [154] |
BTK | Ibrutinib + R-ICE | NCT02219737 | 1 | 26 | Completed | DLBCL | ORR 90% | [155] |
BTK | Ibrutinib + CAR-T cell | NCT05020392 | 3 | 24 | Active | DLBCL, MCL, CLL, SLL, BL | ORR 83% | [156] |
BTK PDL1 4-1BB CD20 | Ibrutinib + Avelumab + Utomilumab + Rituximab | NCT03440567 | 1 | 16 | Active | R/R DLBCL, R/R MCL, Transformed FL | NA | NA |
BTK | Ibrutinib + Immuno-chemotherapy | NCT02055924 | 1 | 85 | Terminated | B-cell Lymphomas | CR 42% PR 25% Terminated due to due to veno occlusive disease | [157] |
BTK JAK1 | Ibrutinib + Itacitinib | NCT02760485 | 1 & 2 | 33 | Active | B-cell Lymphomas | ORR 24% | [158] |
BTK | Ibrutinib + Lenalidomide | NCT01955499 | 1 | 34 | Active | R/R DLBCL, R/R FL, R/R MZL, R/R MCL | NA | NA |
BTK CD20 | Ibrutinib + Rituximab | NCT01980654 | 2 | 80 | Completed | B-cell Lymphomas | ORR 85–75% | [159] |
BTK CD20 | Ibrutinib + Rituximab + Bendamustine | NCT01479842 | 1 | 48 | Active | MZL, FL, MCL, WM | OR 94% in MCL and 37% in DLBCL CR 76% in MCL and 31% in DLBCL | [160] |
BTK | Ibrutinib + Rituximab + Lenalidomide | NCT02636322 | 2 | 60 | Active | DLBCL | ORR 65% DOR 15.9 months | [161] |
BTK CD20 | Ibrutinib + Rituximab + Lenalidomide | NCT02077166 | 1 & 2 | 134 | Completed | R/R DLBCL | ORR 47% CR 28% PFS 21 months AEs grade > 3 in less 30% patients | [162] |
BTK CD20 | Ibrutinib + Rituximab + Venetoclax | NCT03136497 | 1 | 10 | Active | R/R DLBCL | NA | NA |
BTK | Spebrutinib | NCT01351935 | 1 | 113 | Completed | B-cell Lymphomas | ORR 53% | [163] |
BTK | Spebrutinib + Lenalidomide | NCT01766583 | 1 | 18 | Completed | R/R B-cell Lymphomas | NA | NA |
BTK CD20 | Zanubrutinib + Rituximab | NCT03520920 | 2 | 41 | Completed | MZL, FL, DLBCL | ORR 35% PFS 3.38 months | [164] |
BTK mTOR | DTRMWXHS-12 + Everolimus + Pomalidomide | NCT02900716 | 1 | 48 | Completed | B-cell Lymphomas | Well-tolerated and no DLT achieved | [131] |
BTK PI3K | Ibrutinib + Umbralisib | NCT02874404 | 2 | 13 | Completed | R/R DLBCL | ORR 31% PFS 3 months | [165] |
BTK PI3K CD20 | Ibrutinib + Parsaclisib+ Rituximab+ Bendamustine | NCT03424122 | 1 | 50 | Active | B-cell Lymphomas | NA | NA |
BTK PI3K | Ibrutinib + Umbralisib | NCT02268851 | 1 | 45 | Active | CLL, SLL, MCL | ORR 67% CR 19% PR 48% AEs grade >3 in less than 10% | [166] |
BTK PI3K CD20 | Ibrutinib + Umbralisib + Ublituximab + Bendamustine | NCT02006485 | 1 | 160 | Completed | B-cell Lymphomas | DOR 20 months | [167] |
mTOR | Everolimus + Lenalidomide | NCT01075321 | 1 & 2 | 58 | Completed | MZL, FL, MCL, WM | ORR 27% | [168] |
mTOR | Everolimus + Panobinostat | NCT00962507 | 1 | 11 | Completed | B-cell Lymphomas | ORR 43% CR 15% | [169] |
mTOR | Everolimus + Panobinostat | NCT00978432 | 2 | 50 | Terminated | DLBCL | Terminated due to toxicities, which seemed to outweigh the benefits | [170] |
mTOR | Everolimus + Panobinostat | NCT00918333 | 1 & 2 | 124 | Completed | MZL, BL, MCL, SLL, CLL, ALL, WM | NA | NA |
mTOR CD20 | Everolimus + Rituximab | NCT00869999 | 2 | 26 | Completed | DLBCL | OR 38% SD 8% DOR 8.1 months | [171] |
mTOR | Everolimus + Sorafenib | NCT00474929 | 1 & 2 | 103 | Completed | B-cell Lymphomas | ORR 30% in DLBCL and 38% in MCL DOR 5.7 months | [172] |
mTOR | Everolimus + Sotrastaurin | NCT01854606 | 1 | 31 | Completed | ABC DLBCL | Due to suboptimal tolerability of the combinations the phase II is not conducted | NA |
mTOR | Sirolimus + hyperCVAD | NCT01184885 | Early 1 | 7 | Completed | ALL, BL, MCL NA | NA | NA |
mTOR CD22 | Temsirolimus + Inotuzumab oxogamicin | NCT01535989 | 1 | 25 | Completed | R/R B-cell Lymphomas | PR 39% This drug combination is not possible due to toxicities | [173] |
PI3K CD20 | Buparlisib + Rituximab | NCT02049541 | 1 | 18 | Active | R/R FL, R/R MZL, R/R MCL, WM | NA | NA |
PI3K SYK | Idelalisib + Entospletinib | NCT01796470 | 2 | 66 | Terminated | B-cell Lymphomas | Terminated due to pneumonitis in 18% of patients | [174] |
SYK | TAK-659 + R-CHOP | NCT03742258 | 1 | 12 | Active | DLBCL | NA | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Profitós-Pelejà, N.; Santos, J.C.; Marín-Niebla, A.; Roué, G.; Ribeiro, M.L. Regulation of B-Cell Receptor Signaling and Its Therapeutic Relevance in Aggressive B-Cell Lymphomas. Cancers 2022, 14, 860. https://doi.org/10.3390/cancers14040860
Profitós-Pelejà N, Santos JC, Marín-Niebla A, Roué G, Ribeiro ML. Regulation of B-Cell Receptor Signaling and Its Therapeutic Relevance in Aggressive B-Cell Lymphomas. Cancers. 2022; 14(4):860. https://doi.org/10.3390/cancers14040860
Chicago/Turabian StyleProfitós-Pelejà, Núria, Juliana Carvalho Santos, Ana Marín-Niebla, Gaël Roué, and Marcelo Lima Ribeiro. 2022. "Regulation of B-Cell Receptor Signaling and Its Therapeutic Relevance in Aggressive B-Cell Lymphomas" Cancers 14, no. 4: 860. https://doi.org/10.3390/cancers14040860
APA StyleProfitós-Pelejà, N., Santos, J. C., Marín-Niebla, A., Roué, G., & Ribeiro, M. L. (2022). Regulation of B-Cell Receptor Signaling and Its Therapeutic Relevance in Aggressive B-Cell Lymphomas. Cancers, 14(4), 860. https://doi.org/10.3390/cancers14040860