Improving Patients’ Life Quality after Radiotherapy Treatment by Predicting Late Toxicities
Abstract
:Simple Summary
Abstract
1. Introduction
2. Development of the Radiation-Induced Lymphocyte Apoptosis (RILA) Assay
3. Clinical Data
4. Molecular Rationale for the RILA Assay
5. RILA Compared to Other Radiosensitivity Assays
6. Use of RILA in Clinical Routine
7. Conclusions
8. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Delaney, G.; Jacob, S.; Featherstone, C.; Barton, M. The role of radiotherapy in cancer treatment. Cancer 2005, 104, 1129–1137. [Google Scholar] [CrossRef] [PubMed]
- Emami, B.; Lyman, J.; Brown, A.; Cola, L.; Goitein, M.; Munzenrider, J.E.; Shank, B.; Solin, L.J.; Wesson, M. Tolerance of normal tissue to therapeutic irradiation. Int. J. Radiat. Oncol. Biol. Phys. 1991, 21, 109–122. [Google Scholar] [CrossRef]
- Bentzen, S.M.; Constine, L.S.; Deasy, J.; Eisbruch, A.; Jackson, A.; Marks, L.B.; Haken, R.T.; Yorke, E.D. Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC): An Introduction to the Scientific Issues. Int. J. Radiat. Oncol. 2010, 76, S3–S9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumann, M. Impact of Endogenous and Exogenous Factors on Radiation Sequelae. In Late Sequelae in Oncology; Dunst, J., Sauer, R., Eds.; Springer: Berlin/Heidelberg, Germany, 1995; pp. 3–12. [Google Scholar] [CrossRef]
- Holthusen, H. Erfahrungen über die Verträglichkeitsgrenze für Röntgenstrahlen und deren Nutzanwendung zur Verhütung von Schäden. Strahlentherapie 1936, 57, 254–269. [Google Scholar]
- Taylor, A.M.R.; Harnden, D.G.; Arlett, C.F.; Harcourt, S.A.; Lehmann, A.R.; Stevens, S.; Bridges, B.A. Ataxia telangiectasia: A human mutation with abnormal radiation sensitivity. Nature 1975, 258, 427–429. [Google Scholar] [CrossRef] [PubMed]
- Barnett, G.C.; West, C.; Dunning, A.M.; Elliott, R.M.; Coles, C.E.; Pharoah, P.D.P.; Burnet, N.G. Normal tissue reactions to radiotherapy: Towards tailoring treatment dose by genotype. Nat. Cancer 2009, 9, 134–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bentzen, S.M.; Overgaard, M. Relationship between early and late normal-tissue injury after postmastectomy radiotherapy. Radiother. Oncol. 1991, 20, 159–165. [Google Scholar] [CrossRef]
- Turesson, I.; Nyman, J.; Holmberg, E.; Odén, A. Prognostic factors for acute and late skin reactions in radiotherapy patients. Int. J. Radiat. Oncol. Biol. Phys. 1996, 36, 1065–1075. [Google Scholar] [CrossRef]
- Andreassen, C.N.; Alsner, J.; Overgaard, J. Does variability in normal tissue reactions after radiotherapy have a genetic basis—Where and how to look for it? Radiother. Oncol. 2002, 64, 131–140. [Google Scholar] [CrossRef]
- Azria, D.; Belkacemi, Y.; Lagrange, J.-L.; Chapet, O.; Mornex, F.; Maingon, P.; Hennequin, C.; Rosenstein, B.; Ozsahin, M. Séquelles radio-induites et tests prédictifs. Cancer/Radiothérapie 2008, 12, 619–624. [Google Scholar] [CrossRef]
- Azria, D.; Lapierre, A.; Gourgou, S.; De Ruysscher, D.; Colinge, J.; Lambin, P.; Brengues, M.; Ward, T.; Bentzen, S.M.; Thierens, H.; et al. Data-Based Radiation Oncology: Design of Clinical Trials in the Toxicity Biomarkers Era. Front. Oncol. 2017, 7, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres-Roca, J.F.; Eschrich, S.; Zhao, H.; Bloom, G.; Sung, J.; McCarthy, S.; Cantor, A.B.; Scuto, A.; Li, C.; Zhang, S.; et al. Prediction of Radiation Sensitivity Using a Gene Expression Classifier. Cancer Res. 2005, 65, 7169–7176. [Google Scholar] [CrossRef] [Green Version]
- Eschrich, S.A.; Pramana, J.; Zhang, H.; Zhao, H.; Boulware, D.; Lee, J.-H.; Bloom, G.; Rocha-Lima, C.; Kelley, S.; Calvin, D.P.; et al. A Gene Expression Model of Intrinsic Tumor Radiosensitivity: Prediction of Response and Prognosis after Chemoradiation. Int. J. Radiat. Oncol. 2009, 75, 489–496. [Google Scholar] [CrossRef] [Green Version]
- Hall, W.A.; Bergom, C.; Thompson, R.F.; Baschnagel, A.; Vijayakumar, S.; Willers, H.; Li, X.A.; Schultz, C.J.; Wilson, G.; West, C.; et al. Precision Oncology and Genomically Guided Radiation Therapy: A Report From the American Society for Radiation Oncology/American Association of Physicists in Medicine/National Cancer Institute Precision Medicine Conference. Int. J. Radiat. Oncol. 2018, 101, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Mayer, C.; Popanda, O.; Greve, B.; Fritz, E.; Illig, T.; Eckardt-Schupp, F.; Gomolka, M.; Benner, A.; Schmezer, P. A radiation-induced gene expression signature as a tool to predict acute radiotherapy-induced adverse side effects. Cancer Lett. 2011, 302, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Burnet, N.; Nyman, J.; Turesson, I.; Wurm, R.; Yarnold, J.; Peacock, J. The relationship between cellular radiation sensitivity and tissue response may provide the basis for individualising radiotherapy schedules. Radiother. Oncol. 1994, 33, 228–238. [Google Scholar] [CrossRef]
- Burnet, N.G.; Wurm, R.; Yarnold, J.R.; Peacock, J.H.; Nyman, J.; Turesson, I. Prediction of normal-tissue tolerance to radiotherapy from in-vitro cellular radiation sensitivity. Lancet 1992, 339, 1570–1571. [Google Scholar] [CrossRef]
- Johansen, J.; Bentzen, S.M.; Overgaard, J.; Overgaard, M. Evidence for a positive correlation between in vitro radiosensitivity of normal human skin fibroblasts and the occurrence of subcutaneous fibrosis after radiotherapy. Int. J. Radiat. Biol. 1994, 66, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Russell, N.S.; Grummels, A.; Hart, A.A.; Smolders, I.J.; Borger, J.; Bartelink, H.; Begg, A.C. Low predictive value of intrinsic fibroblast radiosensitivity for fibrosis development following radiotherapy for breast cancer. Int. J. Radiat. Biol. 1998, 73, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Oppitz, U.; Denzinger, S.; Nachtrab, U.; Flentje, M.; Stopper, H. Radiation-induced comet-formation in human skin fibroblasts from radiotherapy patients with different normal tissue reactions. Strahlenther. Onkol. 1999, 175, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Kaspler, P.; Chen, R.; Hyrien, O.; Jelveh, S.; Bristow, R.G.; Hill, R.P. Biodosimetry using radiation-induced micronuclei in skin fibroblasts. Int. J. Radiat. Biol. 2011, 87, 824–838. [Google Scholar] [CrossRef] [PubMed]
- Bentzen, S.M. Randomized controlled trials in health technology assessment: Overkill or overdue? Radiother. Oncol. 2008, 86, 142–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heylmann, D.; Badura, J.; Becker, H.; Fahrer, J.; Kaina, B. Sensitivity of CD3/CD28-Stimulated versus Non-Stimulated Lymphocytes to Ionizing Radiation and Genotoxic Anticancer Drugs: Key Role of ATM in the Differential Radiation Response. Cell Death Dis. 2018, 9, 1053. [Google Scholar] [CrossRef] [PubMed]
- Elyan, S.A.; West, C.M.; Roberts, S.A.; Hunter, R.D. Use of an internal standard in comparative measurements of the intrinsic radiosensitivities of human T-lymphocytes. Int. J. Radiat. Biol. 1993, 64, 385–391. [Google Scholar] [CrossRef]
- Elyan, S.A.; West, C.M.; Roberts, S.A.; Hunter, R.D. Use of low-dose rate irradiation to measure the intrinsic radiosensitivity of human T-lymphocytes. Int. J. Radiat. Biol. 1993, 64, 375–383. [Google Scholar] [CrossRef]
- Jones, L.; Scott, D.; Cowan, R.; Roberts, S. Abnormal Radiosensitivity of Lymphocytes from Breast Cancer Patients with Excessive Normal Tissue Damage after Radiotherapy: Chromosome Aberrations after Low Dose-rate Irradiation. Int. J. Radiat. Biol. 1995, 67, 519–528. [Google Scholar] [CrossRef]
- West, C.; Elyan, S.A.G.; Berry, P.; Cowan, R.; Scott, D. A Comparison of the Radiosensitivity of Lymphocytes from Normal Donors, Cancer Patients, Individuals with Ataxia-telangiectasia (AT) and AT Heterozygotes. Int. J. Radiat. Biol. 1995, 68, 197–203. [Google Scholar] [CrossRef]
- Huber, R.; Braselmann, H.; Bauchinger, M. Intra- and Inter-individual Variation of Background and Radiation-induced Micronucleus Frequencies in Human Lymphocytes. Int. J. Radiat. Biol. 1992, 61, 655–661. [Google Scholar] [CrossRef]
- Rached, E.; Schindler, R.; Beer, K.; Vetterli, D.; Greiner, R. No predictive value of the micronucleus assay for patients with severe acute reaction of normal tissue after radiotherapy. Eur. J. Cancer 1998, 34, 378–383. [Google Scholar] [CrossRef]
- Widel, M.; Jedrus, S.; Lukaszczyk, B.; Raczek-Zwierzycka, K.; Swierniak, A. Radiation-induced micronucleus frequency in peripheral blood lymphocytes is correlated with normal tissue damage in patients with cervical carcinoma undergoing radiotherapy. Radiat. Res. 2003, 159, 713–721. [Google Scholar] [CrossRef]
- Twardella, D.; Popanda, O.; Helmbold, I.; Ebbeler, R.; Benner, A.; von Fournier, D.; Haase, W.; Sautter-Bihl, M.L.; Wenz, F.; Schmezer, P.; et al. Personal characteristics, therapy modalities and individual DNA repair capacity as predictive factors of acute skin toxicity in an unselected cohort of breast cancer patients receiving radiotherapy. Radiother. Oncol. 2003, 69, 145–153. [Google Scholar] [CrossRef]
- Crompton, N.E.; Shi, Y.-Q.; Emery, G.C.; Wisser, L.; Blattmann, H.; Maier, A.; Li, L.; Schindler, D.; Ozsahin, H.; Ozsahin, M. Sources of variation in patient response to radiation treatment. Int. J. Radiat. Oncol. 2001, 49, 547–554. [Google Scholar] [CrossRef]
- Sia, J.; Szmyd, R.; Hau, E.; Gee, H.E. Molecular Mechanisms of Radiation-Induced Cancer Cell Death: A Primer. Front. Cell Dev. Biol. 2020, 8, 41. [Google Scholar] [CrossRef]
- Zamai, L.; Falcieri, E.; Zauli, G.; Cataldi, A.; Vitale, M. Optimal detection of apoptosis by flow cytometry depends on cell morphology. Cytometry 1993, 14, 891–897. [Google Scholar] [CrossRef]
- Ozsahin, M.; Ozsahin, H.; Shi, Y.; Larsson, B.; Würgler, F.E.; Crompton, N.E. Rapid assay of intrinsic radiosensitivity based on apoptosis in human CD4 and CD8 T-lymphocytes. Int. J. Radiat. Oncol. 1997, 38, 429–440. [Google Scholar] [CrossRef]
- Ozsahin, M.; Crompton, N.E.; Gourgou, S.; Kramar, A.; Li, L.; Shi, Y.; Sozzi, W.J.; Zouhair, A.; Mirimanoff, R.O.; Azria, D. CD4 and CD8 T-Lymphocyte Apoptosis Can Predict Radiation-Induced Late Toxicity: A Prospective Study in 399 Patients. Clin. Cancer Res. 2005, 11, 7426–7433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azria, D.; Belkacemi, Y.; Romieu, G.; Gourgou, S.; Gutowski, M.; Zaman, K.; Moscardo, C.L.; Lemanski, C.; Coelho, M.; Rosenstein, B.; et al. Concurrent or sequential adjuvant letrozole and radiotherapy after conservative surgery for early-stage breast cancer (CO-HO-RT): A phase 2 randomised trial. Lancet Oncol. 2010, 11, 258–265. [Google Scholar] [CrossRef]
- Azria, D.; Riou, O.; Castan, F.; Nguyen, T.D.; Peignaux, K.; Lemanski, C.; Lagrange, J.-L.; Kirova, Y.; Lartigau, E.; Belkacemi, Y.; et al. Radiation-induced CD8 T-lymphocyte Apoptosis as a Predictor of Breast Fibrosis after Radiotherapy: Results of the Prospective Multicenter French Trial. EBioMedicine 2015, 2, 1965–1973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourgier, C.; Kerns, S.; Gourgou, S.; Lemanski, C.; Gutowski, M.; Fenoglietto, P.; Romieu, G.; Crompton, N.; Lacombe, J.; Pèlegrin, A.; et al. Concurrent or sequential letrozole with adjuvant breast radiotherapy: Final results of the CO-HO-RT phase II randomized trial. Ann. Oncol. 2016, 27, 474–480. [Google Scholar] [CrossRef]
- Bourgier, C.; Castan, F.; Riou, O.; Nguyen, T.-D.; Peignaux, K.; Lemanski, C.; Lagrange, J.-L.; Kirova, Y.; Lartigau, E.; Belkacemi, Y.; et al. Impact of adjuvant hormonotherapy on radiation-induced breast fibrosis according to the individual radiosensitivity: Results of a multicenter prospective French trial. Oncotarget 2018, 9, 15757–15765. [Google Scholar] [CrossRef]
- Fhoghlú, M.N.; Barrett, S. A Review of Radiation-Induced Lymphocyte Apoptosis as a Predictor of Late Toxicity after Breast Radiotherapy. J. Med Imaging Radiat. Sci. 2019, 50, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Bordón, E.; Hernández, L.A.H.; Lara, P.C.; Pinar, B.; Fontes, F.; Gallego, C.R.; Lloret, M. Prediction of clinical toxicity in localized cervical carcinoma by radio-induced apoptosis study in peripheral blood lymphocytes (PBLs). Radiat. Oncol. 2009, 4, 58. [Google Scholar] [CrossRef] [Green Version]
- Bordón, E.; Henríquez-Hernández, L.A.; Lara, P.C.; Ruíz, A.; Pinar, B.; Rodríguez-Gallego, C.; Lloret, M. Prediction of clinical toxicity in locally advanced head and neck cancer patients by radio-induced apoptosis in peripheral blood lymphocytes (PBLs). Radiat. Oncol. 2010, 5, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foro, P.; Algara, M.; Lozano, J.; Rodriguez, N.; Sanz, X.; Torres, E.; Carles, J.; Reig, A.; Membrive, I.; Quera, J.; et al. Relationship Between Radiation-Induced Apoptosis of T Lymphocytes and Chronic Toxicity in Patients With Prostate Cancer Treated by Radiation Therapy: A Prospective Study. Int. J. Radiat. Oncol. 2014, 88, 1057–1063. [Google Scholar] [CrossRef]
- Pinkawa, M.; Brzozowska, K.; Kriehuber, R.; Eble, M.J.; Schmitz, S. Prediction of radiation-induced toxicity by in vitro radiosensitivity of lymphocytes in prostate cancer patients. Futur. Oncol. 2016, 12, 617–624. [Google Scholar] [CrossRef]
- Schnarr, K.; Boreham, D.; Sathya, J.; Julian, J.; Dayes, I.S. Radiation-Induced Lymphocyte Apoptosis to Predict Radiation Therapy Late Toxicity in Prostate Cancer Patients. Int. J. Radiat. Oncol. 2009, 74, 1424–1430. [Google Scholar] [CrossRef]
- Azria, D.; Créhange, G.; Castan, F.; Belkacemi, Y.; Lagrange, J.; Nguyen, T.; Chapet, O.; Mornex, F.; Noel, G.; Lartigau, E.; et al. Le taux d’apoptose lymphocytaire radio-induit CD8 prédicteur de la toxicité pelvienne après radiothérapie prostatique: Résultats de l’étude prospective multicentrique française. Progrès Urol. 2019, 29, 745. [Google Scholar] [CrossRef]
- West, C.; Azria, D.; Chang-Claude, J.; Davidson, S.; Lambin, P.; Rosenstein, B.; De Ruysscher, D.; Talbot, C.; Thierens, H.; Valdagni, R.; et al. The REQUITE Project: Validating Predictive Models and Biomarkers of Radiotherapy Toxicity to Reduce Side-effects and Improve Quality of Life in Cancer Survivors. Clin. Oncol. 2014, 26, 739–742. [Google Scholar] [CrossRef] [PubMed]
- Talbot, C.; Azria, D.; Burr, T.; Chang-Claude, J.; Dunning, A.; Jacquet, M.F.; Herskind, C.; De Ruysscher, D.; Elliott, R.; Gutiérrez-Enríquez, S.; et al. OC-0647 Analysis of biomarkers for late radiotherapy toxicity in the REQUITE project. Radiother. Oncol. 2019, 133, S343. [Google Scholar] [CrossRef]
- Seibold, P.; Webb, A.; Aguado-Barrera, M.E.; Azria, D.; Bourgier, C.; Brengues, M.; Briers, E.; Bultijnck, R.; Calvo-Crespo, P.; Carballo, A.; et al. REQUITE: A prospective multicentre cohort study of patients undergoing radiotherapy for breast, lung or prostate cancer. Radiother. Oncol. 2019, 138, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Cozzarini, C. Radiation Induced Lymphocyte Apoptosis: An Effective Way of “Tailoring” Radiotherapy to the Right Patients Only? EBioMedicine 2015, 2, 1852–1853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirjolet, C.; Merlin, J.; Dalban, C.; Maingon, P.; Azria, D. Correlation between radio-induced lymphocyte apoptosis measurements obtained from two French centres. Cancer/Radiothérapie 2016, 20, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Talbot, C.J.; Veldwijk, M.R.; Azria, D.; Batini, C.; Bierbaum, M.; Brengues, M.; Chang-Claude, J.; Johnson, K.; Keller, A.; Smith, S.; et al. Multi-centre technical evaluation of the radiation-induced lymphocyte apoptosis assay as a predictive test for radiotherapy toxicity. Clin. Transl. Radiat. Oncol. 2019, 18, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Vogin, G.; Merlin, J.-L.; Rousseau, A.; Peiffert, D.; Harlé, A.; Husson, M.; El Hajj, L.; Levitchi, M.; Simon, T.; Simon, J.-M. Absence of correlation between radiation-induced CD8 T-lymphocyte apoptosis and sequelae in patients with prostate cancer accidentally overexposed to radiation. Oncotarget 2018, 9, 32680–32689. [Google Scholar] [CrossRef] [PubMed]
- Mirjolet, C.; Merlin, J.; Truc, G.; Noël, G.; Thariat, J.; Domont, J.; Sargos, P.; Renard-Oldrini, S.; Ray-Coquard, I.; Liem, X.; et al. RILA blood biomarker as a predictor of radiation-induced sarcoma in a matched cohort study. eBioMedicine 2019, 41, 420–426. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Wei, J.; Meng, L.; Wang, H.; Qu, C.; Chen, X.; Xin, Y.; Jiang, X. Advances in pathogenic mechanisms and management of radiation-induced fibrosis. Biomed. Pharmacother. 2019, 121, 109560. [Google Scholar] [CrossRef]
- Dewey, W.C.; Ling, C.C.; Meyn, R.E. Radiation-induced apoptosis: Relevance to radiotherapy. Int. J. Radiat. Oncol. 1995, 33, 781–796. [Google Scholar] [CrossRef]
- Hendry, J.H.; West, C.M.L. Apoptosis and mitotic cell death: Their relative contributions to normal-tissue and tumour radiation response. Int. J. Radiat. Biol. 1997, 71, 709–719. [Google Scholar] [CrossRef]
- Blotnick, S.; Peoples, G.E.; Freeman, M.R.; Eberlein, T.J.; Klagsbrun, M. T lymphocytes synthesize and export heparin-binding epidermal growth factor-like growth factor and basic fibroblast growth factor, mitogens for vascular cells and fibroblasts: Differential production and release by CD4+ and CD8+ T cells. Proc. Natl. Acad. Sci. USA 1994, 91, 2890–2894. [Google Scholar] [CrossRef] [Green Version]
- Fuks, Z.; Persaud, R.S.; Alfieri, A.; McLoughlin, M.; Ehleiter, D.; Schwartz, J.L.; Seddon, A.P.; Cordon-Cardo, C.; Haimovitz-Friedman, A. Basic fibroblast growth factor protects endothelial cells against radiation-induced programmed cell death in vitro and in vivo. Cancer Res. 1994, 54, 2582–2590. [Google Scholar]
- Nguyen, H.Q.; Belkacemi, Y.; Mann, C.; Hoffschir, F.; Kerbrat, S.; Surenaud, M.; Zadigue, P.; de La Taille, A.; Romeo, P.-H.; Le Gouvello, S. Human CCR6+ Th17 Lymphocytes Are Highly Sensitive to Radiation-Induced Senescence and Are a Potential Target for Prevention of Radiation-Induced Toxicity. Int. J. Radiat. Oncol. 2019, 108, 314–325. [Google Scholar] [CrossRef] [PubMed]
- Paun, A.; Bergeron, M.-E.; Haston, C.K. The Th1/Th17 balance dictates the fibrosis response in murine radiation-induced lung disease. Sci. Rep. 2017, 7, 11586. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Zou, L.; Ni, J.; Zhou, Y.; Ye, L.; Yang, X.; Zhu, Z. Regulatory T Cells: An Emerging Player in Radiation-Induced Lung Injury. Front. Immunol. 2020, 11, 1769. [Google Scholar] [CrossRef] [PubMed]
- Veldwijk, M.R.; Seibold, P.; Botma, A.; Helmbold, I.; Sperk, E.; Giordano, F.A.; Gürth, N.; Kirchner, A.-K.; Behrens, S.; Wenz, F.; et al. Association of CD4+ Radiation-Induced Lymphocyte Apoptosis with Fibrosis and Telangiectasia after Radiotherapy in 272 Breast Cancer Patients with >10-Year Follow-up. Clin. Cancer Res. 2018, 25, 562–572. [Google Scholar] [CrossRef] [Green Version]
- Fuentes-Raspall, M.J.; Caragol, I.; Alonso, C.; Cajal, T.R.Y.; Fisas, D.; Seoane, A.; Carvajal, N.; Bonache, S.; Díez, O.; Gutiérrez-Enríquez, S. Apoptosis for prediction of radiotherapy late toxicity: Lymphocyte subset sensitivity and potential effect of TP53 Arg72Pro polymorphism. Apoptosis 2014, 20, 371–382. [Google Scholar] [CrossRef]
- Bordon, E.; Henríquez-Hernández, L.A.; Lara, P.C.; Pinar, B.; Rodríguez-Gallego, C.; Lloret, M. Role of CD4 and CD8 T-lymphocytes, B-lymphocytes and Natural Killer cells in the prediction of radiation-induced late toxicity in cervical cancer patients. Int. J. Radiat. Biol. 2010, 87, 424–431. [Google Scholar] [CrossRef]
- Andreassen, C.N.; Rosenstein, B.S.; Kerns, S.L.; Ostrer, H.; De Ruysscher, D.; Cesaretti, J.A.; Barnett, G.C.; Dunning, A.M.; Dorling, L.; West, C.M.L.; et al. Individual patient data meta-analysis shows a significant association between the ATM rs1801516 SNP and toxicity after radiotherapy in 5456 breast and prostate cancer patients. Radiother. Oncol. 2016, 121, 431–439. [Google Scholar] [CrossRef] [Green Version]
- Simon, R.M.; Paik, S.; Hayes, D.F. Use of Archived Specimens in Evaluation of Prognostic and Predictive Biomarkers. JNCI J. Natl. Cancer Inst. 2009, 101, 1446–1452. [Google Scholar] [CrossRef] [Green Version]
- Vandevoorde, C.; Depuydt, J.; Veldeman, L.; De Neve, W.; Sebastià, N.; Wieme, G.; Baert, A.; De Langhe, S.; Philippé, J.; Thierens, H.; et al. In vitro cellular radiosensitivity in relationship to late normal tissue reactions in breast cancer patients: A multi-endpoint case-control study. Int. J. Radiat. Biol. 2016, 92, 823–836. [Google Scholar] [CrossRef]
- Winkler, S.; Hoppe, P.; Haderlein, M.; Hecht, M.; Fietkau, R.; Distel, L.V. Ex Vivo Apoptosis in CD8+ Lymphocytes Predicts Rectal Cancer Patient Outcome. Gastroenterol. Res. Pract. 2016, 2016, e5076542. [Google Scholar] [CrossRef]
- Talbot, C.J.; Tanteles, G.; Barnett, G.C.; Burnet, N.G.; Chang-Claude, J.; Coles, C.E.; Davidson, S.; Dunning, A.M.; Mills, J.; Murray, R.J.S.; et al. A replicated association between polymorphisms near TNFα and risk for adverse reactions to radiotherapy. Br. J. Cancer 2012, 107, 748–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edvardsen, H.; Landmark-Høyvik, H.; Reinertsen, K.V.; Zhao, X.; Grenaker-Alnæs, G.I.; Nebdal, D.; Syvänen, A.-C.; Rødningen, O.; Alsner, J.; Overgaard, J.; et al. SNP in TXNRD2 Associated With Radiation-Induced Fibrosis: A Study of Genetic Variation in Reactive Oxygen Species Metabolism and Signaling. Int. J. Radiat. Oncol. 2013, 86, 791–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerra, J.L.L.; Gomez, D.; Wei, Q.; Liu, Z.; Wang, L.-E.; Yuan, X.; Zhuang, Y.; Komaki, R.; Liao, Z. Association between single nucleotide polymorphisms of the transforming growth factor β1 gene and the risk of severe radiation esophagitis in patients with lung cancer. Radiother. Oncol. 2012, 105, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Pang, Q.; Wei, Q.; Xu, T.; Yuan, X.; Lopez Guerra, J.L.; Levy, L.B.; Liu, Z.; Gomez, D.R.; Zhuang, Y.; Wang, L.-E.; et al. Functional Promoter Variant rs2868371 of HSPB1 Is Associated With Risk of Radiation Pneumonitis After Chemoradiation for Non-Small Cell Lung Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 1332–1339. [Google Scholar] [CrossRef]
- Geara, F.B.; Peters, L.J.; Ang, K.K.; Wike, J.L.; Brock, W.A. Prospective comparison of in vitro normal cell radiosensitivity and normal tissue reactions in radiotherapy patients. Int. J. Radiat. Oncol. 1993, 27, 1173–1179. [Google Scholar] [CrossRef]
- Peacock, J.; Ashton, A.; Bliss, J.; Bush, C.; Eady, J.; Jackson, C.; Owen, R.; Regan, J.; Yarnold, J. Cellular radiosensitivity and complication risk after curative radiotherapy. Radiother. Oncol. 2000, 55, 173–178. [Google Scholar] [CrossRef]
- Granzotto, A.; Benadjaoud, M.A.; Vogin, G.; Devic, C.; Ferlazzo, M.L.; Bodgi, L.; Pereira, S.; Sonzogni, L.; Forcheron, F.; Viau, M.; et al. Influence of Nucleoshuttling of the ATM Protein in the Healthy Tissues Response to Radiation Therapy: Toward a Molecular Classification of Human Radiosensitivity. Int. J. Radiat. Oncol. Biol. Phys. 2016, 94, 450–460. [Google Scholar] [CrossRef]
- Scott, D. Increased chromosomal radiosensitivity in breast cancer patients: A comparison of two assays. Int. J. Radiat. Biol. 1999, 75, 1–10. [Google Scholar] [CrossRef]
- Barber, J.B.; Burrill, W.; Spreadborough, A.R.; Levine, E.; Warren, C.; Kiltie, A.; Roberts, S.A.; Scott, D. Relationship between in vitro chromosomal radiosensitivity of peripheral blood lymphocytes and the expression of normal tissue damage following radiotherapy for breast cancer. Radiother. Oncol. 2000, 55, 179–186. [Google Scholar] [CrossRef]
- Padjas, A.; Kedzierawski, P.; Florek, A.; Kukolowicz, P.; Kuszewski, T.; Gozdz, S.; Lankoff, A.; Wojcik, A.; Lisowska, H. Clinical Investigations Comparative analysis of three functional predictive assays in lymphocytes of patients with breast and gynaecological cancer treated by radiotherapy. J. Contemp. Brachytherapy 2012, 4, 219–226. [Google Scholar] [CrossRef]
- Terzoudi, G.I.; Hatzi, V.I.; Barszczewska, K.; Manola, K.N.; Stavropoulou, C.; Angelakis, P.; Pantelias, G.E. G2-checkpoint abrogation in irradiated lymphocytes: A new cytogenetic approach to assess individual radiosensitivity and predisposition to cancer. Int. J. Oncol. 2009, 35, 1223–1230. [Google Scholar] [PubMed] [Green Version]
- Finnon, P.; Kabacik, S.; MacKay, A.; Raffy, C.; A’Hern, R.; Owen, R.; Badie, C.; Yarnold, J.; Bouffler, S. Correlation of in vitro lymphocyte radiosensitivity and gene expression with late normal tissue reactions following curative radiotherapy for breast cancer. Radiother. Oncol. 2012, 105, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Olive, P.L.; Banáth, J.P.; Keyes, M. Residual γH2AX after irradiation of human lymphocytes and monocytes in vitro and its relation to late effects after prostate brachytherapy. Radiother. Oncol. 2008, 86, 336–346. [Google Scholar] [CrossRef] [PubMed]
- Werbrouck, J.; De Ruyck, K.; Beels, L.; Vral, A.; Van Eijkeren, M.; De Neve, W.; Thierens, H. Prediction of late normal tissue complications in RT treated gynaecological cancer patients: Potential of the gamma-H2AX foci assay and association with chromosomal radiosensitivity. Oncol. Rep. 2010, 23, 571–578. [Google Scholar] [CrossRef]
- Chua, M.L.K.; Somaiah, N.; A’Hern, R.; Davies, S.; Gothard, L.; Yarnold, J.; Rothkamm, K. Residual DNA and chromosomal damage in ex vivo irradiated blood lymphocytes correlated with late normal tissue response to breast radiotherapy. Radiother. Oncol. 2011, 99, 362–366. [Google Scholar] [CrossRef]
- Brzozowska, K.; Pinkawa, M.; Eble, M.J.; Müller, W.-U.; Wojcik, A.; Kriehuber, R.; Schmitz, S. In vivo versus in vitro individual radiosensitivity analysed in healthy donors and in prostate cancer patients with and without severe side effects after radiotherapy. Int. J. Radiat. Biol. 2012, 88, 405–413. [Google Scholar] [CrossRef]
- Greve, B.; Bölling, T.; Amler, S.; Rössler, U.; Gomolka, M.; Mayer, C.; Popanda, O.; Dreffke, K.; Rickinger, A.; Fritz, E.; et al. Evaluation of Different Biomarkers to Predict Individual Radiosensitivity in an Inter-Laboratory Comparison–Lessons for Future Studies. PLoS ONE 2012, 7, e47185. [Google Scholar] [CrossRef]
- Van Oorschot, B.; Hovingh, S.E.; Moerland, P.D.; Medema, J.P.; Stalpers, L.J.; Vrieling, H.; Franken, N.A. Reduced activity of double-strand break repair genes in prostate cancer patients with late normal tissue radiation toxicity. Int. J. Radiat. Oncol. Biol. Phys. 2014, 88, 664–670. [Google Scholar] [CrossRef]
- Pinar, B.; Henríquez-Hernández, L.A.; Lara, P.C.; Bordon, E.; Rodriguez-Gallego, C.; Lloret, M.; Nuñez, M.I.; De Almodovar, M.R. Radiation induced apoptosis and initial DNA damage are inversely related in locally advanced breast cancer patients. Radiat. Oncol. 2010, 5, 85. [Google Scholar] [CrossRef] [Green Version]
- Henríquez-Hernández, L.A.; Carmona-Vigo, R.; Pinar, B.; Bordón, E.; Lloret, M.; Núñez, M.I.; Rodríguez-Gallego, C.; Lara, P.C. Combined low initial DNA damage and high radiation-induced apoptosis confers clinical resistance to long-term toxicity in breast cancer patients treated with high-dose radiotherapy. Radiat. Oncol. 2011, 6, 60. [Google Scholar] [CrossRef] [Green Version]
- Kerns, S.L.; Kundu, S.; Oh, J.H.; Singhal, S.K.; Janelsins, M.; Travis, L.B.; Deasy, J.O.; Janssens, A.C.J.; Ostrer, H.; Parliament, M.; et al. The Prediction of Radiotherapy Toxicity Using Single Nucleotide Polymorphism−Based Models: A Step Toward Prevention. Semin. Radiat. Oncol. 2015, 25, 281–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seibold, P.; Behrens, S.; Schmezer, P.; Helmbold, I.; Barnett, G.; Coles, C.; Yarnold, J.; Talbot, C.; Imai, T.; Azria, D.; et al. XRCC1 Polymorphism Associated With Late Toxicity After Radiation Therapy in Breast Cancer Patients. Int. J. Radiat. Oncol. 2015, 92, 1084–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azria, D.; Ozsahin, M.; Kramar, A.; Peters, S.; Atencio, D.P.; Crompton, N.E.; Mornex, F.; Pèlegrin, A.; Dubois, J.-B.; Mirimanoff, R.-O.; et al. Single Nucleotide Polymorphisms, Apoptosis, and the Development of Severe Late Adverse Effects After Radiotherapy. Clin. Cancer Res. 2008, 14, 6284–6288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Tumor Type | Data Type | Patient Number | Results | References |
---|---|---|---|---|
Breast | Prospective multicenter | 577 | Correlation with fibrosis (RILA cutoff = 12%) (p = 0.001) | [39,40,41] |
Prostate | Prospective multicenter | 692 | Correlation with GU and GI toxicity (RILA cutoff = 15%) (p = 0.01) | [45,46,47,48] |
Cervix | Prospective | 94 | Correlation with sexual toxicity (p = 0.001) | [43] |
Head and neck | Prospective | 79 | Correlation with xerostomia (p = 0.035) | [44] |
Lung | Prospective multicenter | 561 | Data pending | [50,51] |
Assay. | Tissue Sample | Level of Evidence | References |
---|---|---|---|
rs17599026 and rs7720298 SNPs for prostate cancer | Blood sample | I (meta-analysis) | [68] |
RILA | Blood sample | I (prospective multicenter analysis) | [37,39,43,44,45,46,66,70,71] |
SNPs for breast cancer | Blood sample | II (observational studies) | [72,73] |
SNPs for lung cancer | Blood sample | II (observational studies) | [74,75] |
Fibroblast-based assays | Skin biopsy | IV (retrospective studies) | [18,21,22,76,77,78] |
G0 micronuclei | Blood sample | IV (retrospective studies) | [79,80,81] |
G2 metaphase | Blood sample | IV (retrospective studies) | [79,82,83] |
Residual γ-H2AX foci | Blood sample | IV (no validation studies) | [46,70,84,85,86,87,88,89] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lapierre, A.; Bourillon, L.; Larroque, M.; Gouveia, T.; Bourgier, C.; Ozsahin, M.; Pèlegrin, A.; Azria, D.; Brengues, M. Improving Patients’ Life Quality after Radiotherapy Treatment by Predicting Late Toxicities. Cancers 2022, 14, 2097. https://doi.org/10.3390/cancers14092097
Lapierre A, Bourillon L, Larroque M, Gouveia T, Bourgier C, Ozsahin M, Pèlegrin A, Azria D, Brengues M. Improving Patients’ Life Quality after Radiotherapy Treatment by Predicting Late Toxicities. Cancers. 2022; 14(9):2097. https://doi.org/10.3390/cancers14092097
Chicago/Turabian StyleLapierre, Ariane, Laura Bourillon, Marion Larroque, Tiphany Gouveia, Céline Bourgier, Mahmut Ozsahin, André Pèlegrin, David Azria, and Muriel Brengues. 2022. "Improving Patients’ Life Quality after Radiotherapy Treatment by Predicting Late Toxicities" Cancers 14, no. 9: 2097. https://doi.org/10.3390/cancers14092097
APA StyleLapierre, A., Bourillon, L., Larroque, M., Gouveia, T., Bourgier, C., Ozsahin, M., Pèlegrin, A., Azria, D., & Brengues, M. (2022). Improving Patients’ Life Quality after Radiotherapy Treatment by Predicting Late Toxicities. Cancers, 14(9), 2097. https://doi.org/10.3390/cancers14092097