The Role of Artificial Intelligence in the Detection and Implementation of Biomarkers for Hepatocellular Carcinoma: Outlook and Opportunities
Abstract
:Simple Summary
Abstract
1. Introduction
2. AI-Assisted Biomarker Detection
3. The Role of AI in Facilitating Biomarker Implementation in Liver Cancers to Predict the Risk of Liver Cancers
4. The Role of AI in Facilitating Biomarkers to Diagnose Liver Cancers
5. The Role of AI in Facilitating Biomarkers to Stage Liver Cancers
6. The Role of AI in Facilitating Biomarkers to Prognosticate Liver Cancers
7. The Role of AI in Facilitating Biomarkers to Predict the Efficacy and Response to Treatment
8. The Role of AI in Facilitating Biomarkers to Predict the Recurrence of Liver Cancers
9. Future Directions
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jepsen, P.; West, J. We need stronger evidence for (or against) hepatocellular carcinoma surveillance. J. Hepatol. 2021, 74, 1234–1239. [Google Scholar] [CrossRef] [PubMed]
- Makuuchi, M. Clinical Practice Guidelines for Hepatocellular Carcinoma—The Japan Society of Hepatology 2009 update. Hepatol. Res. 2010, 40 (Suppl. 1), 2–144. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef]
- Marrero, J.A.; Kulik, L.M.; Sirlin, C.B.; Zhu, A.X.; Finn, R.S.; Abecassis, M.M.; Roberts, L.R.; Heimbach, J.K. Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 2018, 68, 723–750. [Google Scholar] [CrossRef]
- Kanwal, F.; Singal, A.G. Surveillance for Hepatocellular Carcinoma: Current Best Practice and Future Direction. Gastroenterology 2019, 157, 54–64. [Google Scholar] [CrossRef]
- Frenette, C.T.; Isaacson, A.J.; Bargellini, I.; Saab, S.; Singal, A.G. A Practical Guideline for Hepatocellular Carcinoma Screening in Patients at Risk. Mayo Clin. Proc. Innov. Qual. Outcomes 2019, 3, 302–310. [Google Scholar] [CrossRef]
- Johnson, P.; Zhou, Q.; Dao, D.Y.; Lo, Y.M.D. Circulating biomarkers in the diagnosis and management of hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 670–681. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, G.; Zhang, P.; Zhang, J.; Li, X.; Gan, D.; Cao, X.; Han, M.; Du, H.; Ye, Y. The threshold of alpha-fetoprotein (AFP) for the diagnosis of hepatocellular carcinoma: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0228857. [Google Scholar] [CrossRef]
- Nam, D.; Chapiro, J.; Paradis, V.; Seraphin, T.P.; Kather, J.N. Artificial intelligence in liver diseases: Improving diagnostics, prognostics and response prediction. JHEP Rep. 2022, 4, 100443. [Google Scholar] [CrossRef]
- Moldogazieva, N.T.; Mokhosoev, I.M.; Zavadskiy, S.P.; Terentiev, A.A. Proteomic Profiling and Artificial Intelligence for Hepatocellular Carcinoma Translational Medicine. Biomedicines 2021, 9, 159. [Google Scholar] [CrossRef]
- Kim, K.A.; Lee, J.S.; Jung, E.S.; Kim, J.Y.; Bae, W.K.; Kim, N.H.; Moon, Y.S. Usefulness of serum alpha-fetoprotein (AFP) as a marker for hepatocellular carcinoma (HCC) in hepatitis C virus related cirrhosis: Analysis of the factors influencing AFP elevation without HCC development. Korean J. Gastroenterol. 2006, 48, 321–326. [Google Scholar] [PubMed]
- Ioannou, G.N.; Tang, W.; Beste, L.A.; Tincopa, M.A.; Su, G.L.; Van, T.; Tapper, E.B.; Singal, A.G.; Zhu, J.; Waljee, A.K. Assessment of a Deep Learning Model to Predict Hepatocellular Carcinoma in Patients with Hepatitis C Cirrhosis. JAMA Netw. Open 2020, 3, e2015626. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Liu, J.; Zang, L.; Xiao, T.; Zhang, X.; Li, Z.; Zhu, H.; Gao, W.; Yu, X. Integrated Machine Learning and Bioinformatic Analyses Constructed a Novel Stemness-Related Classifier to Predict Prognosis and Immunotherapy Responses for Hepatocellular Carcinoma Patients. Int. J. Biol. Sci. 2022, 18, 360–373. [Google Scholar] [CrossRef] [PubMed]
- Chang, N.W.; Dai, H.J.; Shih, Y.Y.; Wu, C.Y.; Dela Rosa, M.A.C.; Obena, R.P.; Chen, Y.J.; Hsu, W.L.; Oyang, Y.J. Biomarker identification of hepatocellular carcinoma using a methodical literature mining strategy. Database 2017, 2017, bax082. [Google Scholar] [CrossRef]
- Kawka, M.; Dawidziuk, A.; Jiao, L.R.; Gall, T.M.H. Artificial intelligence in the detection, characterisation and prediction of hepatocellular carcinoma: A narrative review. Transl. Gastroenterol. Hepatol. 2022, 7, 41. [Google Scholar] [CrossRef] [PubMed]
- Calderaro, J.; Seraphin, T.P.; Luedde, T.; Simon, T.G. Artificial intelligence for the prevention and clinical management of hepatocellular carcinoma. J. Hepatol. 2022, 76, 1348–1361. [Google Scholar] [CrossRef]
- Bakrania, A.; Joshi, N.; Zhao, X.; Zheng, G.; Bhat, M. Artificial intelligence in liver cancers: Decoding the impact of machine learning models in clinical diagnosis of primary liver cancers and liver cancer metastases. Pharmacol. Res. 2023, 189, 106706. [Google Scholar] [CrossRef]
- Morshid, A.; Elsayes, K.M.; Khalaf, A.M.; Elmohr, M.M.; Yu, J.; Kaseb, A.O.; Hassan, M.; Mahvash, A.; Wang, Z.; Hazle, J.D.; et al. A machine learning model to predict hepatocellular carcinoma response to transcatheter arterial chemoembolization. Radiol. Artif. Intell. 2019, 1, e180021. [Google Scholar] [CrossRef]
- Abajian, A.; Murali, N.; Savic, L.J.; Laage-Gaupp, F.M.; Nezami, N.; Duncan, J.S.; Schlachter, T.; Lin, M.; Geschwind, J.F.; Chapiro, J. Predicting Treatment Response to Intra-arterial Therapies for Hepatocellular Carcinoma with the Use of Supervised Machine Learning-An Artificial Intelligence Concept. J. Vasc. Interv. Radiol. 2018, 29, 850–857.e1. [Google Scholar] [CrossRef]
- Manzoni, C.; Kia, D.A.; Vandrovcova, J.; Hardy, J.; Wood, N.W.; Lewis, P.A.; Ferrari, R. Genome, transcriptome and proteome: The rise of omics data and their integration in biomedical sciences. Brief. Bioinform. 2018, 19, 286–302. [Google Scholar] [CrossRef]
- Chen, B.; Garmire, L.; Calvisi, D.F.; Chua, M.S.; Kelley, R.K.; Chen, X. Harnessing big ‘omics’ data and AI for drug discovery in hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 238–251. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Dhall, A.; Kumar, R.; Raghava, G.P.S. Identification of Platform-Independent Diagnostic Biomarker Panel for Hepatocellular Carcinoma Using Large-Scale Transcriptomics Data. Front. Genet. 2019, 10, 1306. [Google Scholar] [CrossRef] [PubMed]
- Gui, T.; Dong, X.; Li, R.; Li, Y.; Wang, Z. Identification of hepatocellular carcinoma-related genes with a machine learning and network analysis. J. Comput. Biol. 2015, 22, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Kleinjans, J.; Caiment, F. Identifying novel transcript biomarkers for hepatocellular carcinoma (HCC) using RNA-Seq datasets and machine learning. BMC Cancer 2021, 21, 962. [Google Scholar] [CrossRef] [PubMed]
- Gholizadeh, M.; Mazlooman, S.R.; Hadizadeh, M.; Drozdzik, M.; Eslami, S. Detection of key mRNAs in liver tissue of hepatocellular carcinoma patients based on machine learning and bioinformatics analysis. MethodsX 2023, 10, 102021. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Z.P. Robust biomarker discovery for hepatocellular carcinoma from high-throughput data by multiple feature selection methods. BMC Med. Genom. 2021, 14, 112. [Google Scholar] [CrossRef]
- Zhao, X.; Dou, J.; Cao, J.; Wang, Y.; Gao, Q.; Zeng, Q.; Liu, W.; Liu, B.; Cui, Z.; Teng, L.; et al. Uncovering the potential differentially expressed miRNAs as diagnostic biomarkers for hepatocellular carcinoma based on machine learning in The Cancer Genome Atlas database. Oncol. Rep. 2020, 43, 1771–1784. [Google Scholar] [CrossRef]
- Likhitrattanapisal, S.; Tipanee, J.; Janvilisri, T. Meta-analysis of gene expression profiles identifies differential biomarkers for hepatocellular carcinoma and cholangiocarcinoma. Tumour Biol. 2016, 37, 12755–12766. [Google Scholar] [CrossRef]
- Lee, T.; Rawding, P.A.; Bu, J.; Hyun, S.; Rou, W.; Jeon, H.; Kim, S.; Lee, B.; Kubiatowicz, L.J.; Kim, D.; et al. Machine-Learning-Based Clinical Biomarker Using Cell-Free DNA for Hepatocellular Carcinoma (HCC). Cancers 2022, 14, 2061. [Google Scholar] [CrossRef]
- Li, P.; Xu, S.; Han, Y.; He, H.; Liu, Z. Machine learning-empowered cis-diol metabolic fingerprinting enables precise diagnosis of primary liver cancer. Chem. Sci. 2023, 14, 2553–2561. [Google Scholar] [CrossRef]
- Ge, S.; Xu, C.R.; Li, Y.M.; Zhang, Y.L.; Li, N.; Wang, F.T.; Ding, L.; Niu, J. Identification of the Diagnostic Biomarker VIPR1 in Hepatocellular Carcinoma Based on Machine Learning Algorithm. J. Oncol. 2022, 2022, 2469592. [Google Scholar] [CrossRef] [PubMed]
- Poon, T.C.; Chan, A.T.; Zee, B.; Ho, S.K.; Mok, T.S.; Leung, T.W.; Johnson, P.J. Application of classification tree and neural network algorithms to the identification of serological liver marker profiles for the diagnosis of hepatocellular carcinoma. Oncology 2001, 61, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hong, Z.; Tan, G.; Dong, X.; Yang, G.; Zhao, L.; Chen, X.; Zhu, Z.; Lou, Z.; Qian, B.; et al. NMR and LC/MS-based global metabolomics to identify serum biomarkers differentiating hepatocellular carcinoma from liver cirrhosis. Int. J. Cancer 2014, 135, 658–668. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Li, H.; He, C.; Yang, M.; Chen, H.; Yang, X.; Zhuo, J.; Shen, W.; Hu, Z.; Pan, L.; et al. Metabolomic biomarkers for the diagnosis and post-transplant outcomes of AFP negative hepatocellular carcinoma. Front. Oncol. 2023, 13, 1072775. [Google Scholar] [CrossRef]
- Liang, Q.; Liu, H.; Wang, C.; Li, B. Phenotypic Characterization Analysis of Human Hepatocarcinoma by Urine Metabolomics Approach. Sci. Rep. 2016, 6, 19763. [Google Scholar] [CrossRef]
- Liang, C.W.; Yang, H.C.; Islam, M.M.; Nguyen, P.A.A.; Feng, Y.T.; Hou, Z.Y.; Huang, C.W.; Poly, T.N.; Li, Y.J. Predicting Hepatocellular Carcinoma With Minimal Features From Electronic Health Records: Development of a Deep Learning Model. JMIR Cancer 2021, 7, e19812. [Google Scholar] [CrossRef]
- Singal, A.G.; Mukherjee, A.; Elmunzer, B.J.; Higgins, P.D.; Lok, A.S.; Zhu, J.; Marrero, J.A.; Waljee, A.K. Machine learning algorithms outperform conventional regression models in predicting development of hepatocellular carcinoma. Am. J. Gastroenterol. 2013, 108, 1723–1730. [Google Scholar] [CrossRef]
- Konerman, M.A.; Zhang, Y.; Zhu, J.; Higgins, P.D.; Lok, A.S.; Waljee, A.K. Improvement of predictive models of risk of disease progression in chronic hepatitis C by incorporating longitudinal data. Hepatology 2015, 61, 1832–1841. [Google Scholar] [CrossRef]
- Dawuti, W.; Zheng, X.; Liu, H.; Zhao, H.; Dou, J.; Sun, L.; Chu, J.; Lin, R.; Lü, G. Urine surface-enhanced Raman spectroscopy combined with SVM algorithm for rapid diagnosis of liver cirrhosis and hepatocellular carcinoma. Photodiagn. Photodyn. Ther. 2022, 38, 102811. [Google Scholar] [CrossRef]
- Sato, M.; Morimoto, K.; Kajihara, S.; Tateishi, R.; Shiina, S.; Koike, K.; Yatomi, Y. Machine-learning Approach for the Development of a Novel Predictive Model for the Diagnosis of Hepatocellular Carcinoma. Sci. Rep. 2019, 9, 7704. [Google Scholar] [CrossRef]
- Wang, J.X.; Zhang, B.; Yu, J.K.; Liu, J.; Yang, M.Q.; Zheng, S. Application of serum protein fingerprinting coupled with artificial neural network model in diagnosis of hepatocellular carcinoma. Chin. Med. J. 2005, 118, 1278–1284. [Google Scholar] [PubMed]
- Książek, W.; Abdar, M.; Acharya, U.R.; Pławiak, P. A novel machine learning approach for early detection of hepatocellular carcinoma patients. Cogn. Syst. Res. 2019, 54, 116–127. [Google Scholar] [CrossRef]
- Xu, W.; Guo, R.; Xu, G.; Sun, L.; Hu, D.; Xu, H.; Yang, H.; Sang, X.; Lu, X.; Mao, Y. Management of intrahepatic recurrence after resection for hepatocellular carcinoma exceeding the barcelona clinic liver cancer criteria. Oncotarget 2017, 8, 110406–110414. [Google Scholar] [CrossRef] [PubMed]
- Bagante, F.; Spolverato, G.; Ruzzenente, A.; Luchini, C.; Tsilimigras, D.I.; Campagnaro, T.; Conci, S.; Corbo, V.; Scarpa, A.; Guglielmi, A.; et al. Artificial neural networks for multi-omics classifications of hepato-pancreato-biliary cancers: Towards the clinical application of genetic data. Eur. J. Cancer 2021, 148, 348–358. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Rao, Q.; An, Y.; Li, M.; Zhang, Z. Identification of biomarkers for Barcelona Clinic Liver Cancer staging and overall survival of patients with hepatocellular carcinoma. PLoS ONE 2018, 13, e0202763. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Bhalla, S.; Raghava, G.P.S. Classification of early and late stage liver hepatocellular carcinoma patients from their genomics and epigenomics profiles. PLoS ONE 2019, 14, e0221476. [Google Scholar] [CrossRef]
- Lai, Q.; Spoletini, G.; Mennini, G.; Laureiro, Z.L.; Tsilimigras, D.I.; Pawlik, T.M.; Rossi, M. Prognostic role of artificial intelligence among patients with hepatocellular cancer: A systematic review. World J. Gastroenterol. 2020, 26, 6679–6688. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, W.; Yang, J.; Wu, M.; Dai, Q.; Yin, H.; Xiao, Y.; Kong, L. AI inspired discovery of new biomarkers for clinical prognosis of liver cancer. bioRxiv 2022. [Google Scholar] [CrossRef]
- Brar, A.; Zhu, A.; Baciu, C.; Sharma, D.; Xu, W.; Orchanian-Cheff, A.; Wang, B.; Reimand, J.; Grant, R.; Bhat, M. Development of diagnostic and prognostic molecular biomarkers in hepatocellular carcinoma using machine learning: A systematic review. Liver Cancer Int. 2022, 3, 141–161. [Google Scholar] [CrossRef]
- Chaudhary, K.; Poirion, O.B.; Lu, L.; Garmire, L.X. Deep Learning-Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer. Clin. Cancer Res. 2018, 24, 1248–1259. [Google Scholar] [CrossRef]
- Tsilimigras, D.I.; Mehta, R.; Moris, D.; Sahara, K.; Bagante, F.; Paredes, A.Z.; Farooq, A.; Ratti, F.; Marques, H.P.; Silva, S.; et al. Utilizing Machine Learning for Pre- and Postoperative Assessment of Patients Undergoing Resection for BCLC-0, A and B Hepatocellular Carcinoma: Implications for Resection Beyond the BCLC Guidelines. Ann. Surg. Oncol. 2020, 27, 866–874. [Google Scholar] [CrossRef]
- Huang, G.; Wang, C.; Fu, X. Bidirectional deep neural networks to integrate RNA and DNA data for predicting outcome for patients with hepatocellular carcinoma. Future Oncol. 2021, 17, 4481–4495. [Google Scholar] [CrossRef] [PubMed]
- Tohme, S.; Yazdani, H.O.; Rahman, A.; Handu, S.; Khan, S.; Wilson, T.; Geller, D.A.; Simmons, R.L.; Molinari, M.; Kaltenmeier, C. The Use of Machine Learning to Create a Risk Score to Predict Survival in Patients with Hepatocellular Carcinoma: A TCGA Cohort Analysis. Can. J. Gastroenterol. Hepatol. 2021, 2021, 5212953. [Google Scholar] [CrossRef] [PubMed]
- Hsu, P.Y.; Liang, P.C.; Chang, W.T.; Lu, M.Y.; Wang, W.H.; Chuang, S.C.; Wei, Y.J.; Jang, T.Y.; Yeh, M.L.; Huang, C.I.; et al. Artificial intelligence based on serum biomarkers predicts the efficacy of lenvatinib for unresectable hepatocellular carcinoma. Am. J. Cancer Res. 2022, 12, 5576–5588. [Google Scholar] [PubMed]
- Ma, J.; Bo, Z.; Zhao, Z.; Yang, J.; Yang, Y.; Li, H.; Yang, Y.; Wang, J.; Su, Q.; Wang, J.; et al. Machine Learning to Predict the Response to Lenvatinib Combined with Transarterial Chemoembolization for Unresectable Hepatocellular Carcinoma. Cancers 2023, 15, 625. [Google Scholar] [CrossRef]
- Zhong, B.Y.; Ni, C.F.; Ji, J.S.; Yin, G.W.; Chen, L.; Zhu, H.D.; Guo, J.H.; He, S.C.; Deng, G.; Zhang, Q.; et al. Nomogram and Artificial Neural Network for Prognostic Performance on the Albumin-Bilirubin Grade for Hepatocellular Carcinoma Undergoing Transarterial Chemoembolization. J. Vasc. Interv. Radiol. 2019, 30, 330–338. [Google Scholar] [CrossRef]
- Peng, J.; Kang, S.; Ning, Z.; Deng, H.; Shen, J.; Xu, Y.; Zhang, J.; Zhao, W.; Li, X.; Gong, W.; et al. Residual convolutional neural network for predicting response of transarterial chemoembolization in hepatocellular carcinoma from CT imaging. Eur. Radiol. 2020, 30, 413–424. [Google Scholar] [CrossRef]
- Geschwind, J.H.; Hochster, H.S. Tools from the World of Artificial Intelligence in Interventional Oncology: Be Careful What You Wish For. J. Vasc. Interv. Radiol. 2019, 30, 339–341. [Google Scholar] [CrossRef]
- Spieler, B.; Sabottke, C.; Moawad, A.W.; Gabr, A.M.; Bashir, M.R.; Do, R.K.G.; Yaghmai, V.; Rozenberg, R.; Gerena, M.; Yacoub, J.; et al. Artificial intelligence in assessment of hepatocellular carcinoma treatment response. Abdom. Radiol. (NY) 2021, 46, 3660–3671. [Google Scholar] [CrossRef]
- Rodriguez-Luna, H.; Vargas, H.E.; Byrne, T.; Rakela, J. Artificial neural network and tissue genotyping of hepatocellular carcinoma in liver-transplant recipients: Prediction of recurrence. Transplantation 2005, 79, 1737–1740. [Google Scholar] [CrossRef]
- Shen, J.; Qi, L.; Zou, Z.; Du, J.; Kong, W.; Zhao, L.; Wei, J.; Lin, L.; Ren, M.; Liu, B. Identification of a novel gene signature for the prediction of recurrence in HCC patients by machine learning of genome-wide databases. Sci. Rep. 2020, 10, 4435. [Google Scholar] [CrossRef]
- Fu, Y.; Si, A.; Wei, X.; Lin, X.; Ma, Y.; Qiu, H.; Guo, Z.; Pan, Y.; Zhang, Y.; Kong, X.; et al. Combining a machine-learning derived 4-lncRNA signature with AFP and TNM stages in predicting early recurrence of hepatocellular carcinoma. BMC Genom. 2023, 24, 89. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, N.; Lv, J.; Ma, C.; Gu, J.; Du, Y.; Qiu, Y.; Zhang, Z.; Li, M.; Jiang, Y.; et al. A Five-Gene Signature for Recurrence Prediction of Hepatocellular Carcinoma Patients. BioMed Res. Int. 2020, 2020, 4037639. [Google Scholar] [CrossRef]
- Wang, W.; Wang, L.; Xie, X.; Yan, Y.; Li, Y.; Lu, Q. A gene-based risk score model for predicting recurrence-free survival in patients with hepatocellular carcinoma. BMC Cancer 2021, 21, 6. [Google Scholar] [CrossRef]
- Gu, J.X.; Zhang, X.; Miao, R.C.; Xiang, X.H.; Fu, Y.N.; Zhang, J.Y.; Liu, C.; Qu, K. Six-long non-coding RNA signature predicts recurrence-free survival in hepatocellular carcinoma. World J. Gastroenterol. 2019, 25, 220–232. [Google Scholar] [CrossRef]
- Bu, J.; Lee, T.H.; Jeong, W.J.; Poellmann, M.J.; Mudd, K.; Eun, H.S.; Liu, E.W.; Hong, S.; Hyun, S.H. Enhanced detection of cell-free DNA (cfDNA) enables its use as a reliable biomarker for diagnosis and prognosis of gastric cancer. PLoS ONE 2020, 15, e0242145. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zheng, Y.; Wu, L.; Li, J.; Ji, J.; Yu, Q.; Dai, W.; Feng, J.; Wu, J.; Guo, C. Current status of ctDNA in precision oncology for hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 2021, 40, 140. [Google Scholar] [CrossRef] [PubMed]
- Banini, B.A.; Sanyal, A.J. The use of cell free DNA in the diagnosis of HCC. Hepatoma Res. 2019, 5, 34. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.F.; Yang, X.R.; Zhou, J.; Qiu, S.J.; Fan, J.; Xu, Y. Circulating tumor cells: Advances in detection methods, biological issues, and clinical relevance. J. Cancer Res. Clin. Oncol. 2011, 137, 1151–1173. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.F.; Xu, Y.; Yang, X.R.; Guo, W.; Zhang, X.; Qiu, S.J.; Shi, R.Y.; Hu, B.; Zhou, J.; Fan, J. Circulating stem cell-like epithelial cell adhesion molecule-positive tumor cells indicate poor prognosis of hepatocellular carcinoma after curative resection. Hepatology 2013, 57, 1458–1468. [Google Scholar] [CrossRef]
- Bai, D.S.; Dai, Z.; Zhou, J.; Liu, Y.K.; Qiu, S.J.; Tan, C.J.; Shi, Y.H.; Huang, C.; Wang, Z.; He, Y.F.; et al. Capn4 overexpression underlies tumor invasion and metastasis after liver transplantation for hepatocellular carcinoma. Hepatology 2009, 49, 460–470. [Google Scholar] [CrossRef] [PubMed]
- Chaiteerakij, R.; Zhang, X.; Addissie, B.D.; Mohamed, E.A.; Harmsen, W.S.; Theobald, P.J.; Peters, B.E.; Balsanek, J.G.; Ward, M.M.; Giama, N.H.; et al. Combinations of biomarkers and Milan criteria for predicting hepatocellular carcinoma recurrence after liver transplantation. Liver Transpl. 2015, 21, 599–606. [Google Scholar] [CrossRef]
- Iseke, S.; Zeevi, T.; Kucukkaya, A.S.; Raju, R.; Gross, M.; Haider, S.P.; Petukhova-Greenstein, A.; Kuhn, T.N.; Lin, M.; Nowak, M.; et al. Machine Learning Models for Prediction of Posttreatment Recurrence in Early-Stage Hepatocellular Carcinoma Using Pretreatment Clinical and MRI Features: A Proof-of-Concept Study. AJR Am. J. Roentgenol. 2023, 220, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Tateishi, R.; Moriyama, M.; Fukumoto, T.; Yamada, T.; Nakagomi, R.; Kinoshita, M.N.; Nakatsuka, T.; Minami, T.; Uchino, K. Machine Learning–Based Personalized Prediction of Hepatocellular Carcinoma Recurrence After Radiofrequency Ablation. Gastro Hep Adv. 2022, 1, 29–37. [Google Scholar] [CrossRef]
- An, C.; Yang, H.; Yu, X.; Han, Z.Y.; Cheng, Z.; Liu, F.; Dou, J.; Li, B.; Li, Y.; Li, Y.; et al. A Machine Learning Model Based on Health Records for Predicting Recurrence After Microwave Ablation of Hepatocellular Carcinoma. J. Hepatocell. Carcinoma 2022, 9, 671–684. [Google Scholar] [CrossRef]
- Ding, W.; Wang, Z.; Liu, F.Y.; Cheng, Z.G.; Yu, X.; Han, Z.; Zhong, H.; Yu, J.; Liang, P. A Hybrid Machine Learning Model Based on Semantic Information Can Optimize Treatment Decision for Naïve Single 3-5-cm HCC Patients. Liver Cancer 2022, 11, 256–267. [Google Scholar] [CrossRef]
Author | Year | Data | HCC Biomarkers Detected | AI Technique | Findings |
---|---|---|---|---|---|
Kaur et al. [22] | 2019 | Large-scale transcriptomic profiling datasets with 2136 HCC and 1665 nontumorous tissue samples | FCN3, CLEC1B, and PRC1 | ML | Identification of HCC samples in training/validation datasets had accuracies between 93–98% with AUC 0.97–1.0 |
Gui et al. [23] | 2015 | Microarray data from 43 HCC and 52 nontumorous samples | MT1X, BM1, and CAP2, TACSTD2 | ML: maximum-relevance–minimum-redundancy algorithm | Features had high prediction accuracies, up to 0.905 |
Gupta et al. [24] | 2021 | RNA-Seq data from 24 healthy liver samples and 32 HCC samples | PARP2–202, SPON2–203, and CYREN-211 | ML: random forest, K-nearest neighbor, naïve Bayes, support vector machine, and neural networks | High values for random forest and support vector machine (sensitivity of 0.968 and 0.944, respectively; specificity of 1 and 1, respectively). AUC of random forest was 0.99 |
Gholizadeh et al. [25] | 2023 | 493 HCC and 446 nontumorous samples from the Gene Expression Omnibus (GEO) | Diagnostic signature CYP2E1, AKR1C3, AFP as well as the four-gene prognostic signature including SOCS2, MAGEA6, RDH16, and RTN3 | ML | AUC in training set was 0.952 and in validation set was 0.941 |
Zhang and Liu [26] | 2021 | High-throughput omics data from the Cancer Genome Atlas (TCGA) consortium | 6 Optimal gene subsets—with common biomarkers overlapping: SKAP1, EPHB1, STC2, CDHR2, FAM134B, MUC6, PHOSPHO1, and OXT | ML: Adaboost, K-nearest neighbor, naïve Bayes, neural network, random forest, and support vector machine | AUC ranged from 0.993 to 1.00 for the 6 classifiers |
Zhao et al. [27] | 2020 | Clinical data of 377 patients, mRNA data of 371 patients, and miRNA data of 373 patients from the TCGA project | hsa-miR-10b-5p, hsa-miR-10b-3p, hsa-miR-224-5p, hsa-miR-183-5p and hsa-miR-182-5p | ML: random forest algorithm | AUCs for the 5 biomarkers ranged from 0.784 to 0.889 |
Authors | Year Published | Population | Data Used | AI Technique | Findings |
---|---|---|---|---|---|
Liang et al. [36] | 2021 | 47,945 patients from the National Health Insurance Research Database of Taiwan | Electronic health records, imaging, histopathology, molecular biomarkers | Convolutional Neural Network | AUC for predicting 1-year risk of HCC 0.94 (95% CI: 0.937–0.943) |
Singal et al. [37] | 2013 | 442 patients with Child A or B cirrhosis at the University of Michigan | Patient demographics, clinical data, and laboratory values | Random Forest | ML algorithm had a c-statistics of 0.64 (95% CI: 0.60–0.69) |
Konerman et al. [38] | 2015 | Patients from the Hepatitis C Antiviral Long-Term Treatment Against Cirrhosis (HALT-C) Trial | Longitudinal clinical, laboratory, and histologic data | Random Forest and Boosting | AUC for predicting fibrosis progression was 0.79 (95% CI: 0.77–0.81) for random forest and 0.79 (95% CI: 0.77–0.82) for boosting. AUC for liver-related clinical progression was 0.86 (95% CI: 0.85–0.87) for random forest and 0.84 (95% CI: 0.82–0.86) for boosting. Longitudinal ML models had negative predictive values of 94% for the two outcomes |
Dawuti et al. [39] | 2022 | 49 patients with liver cirrhosis, 55 with HCC, and 50 healthy volunteers | Urine for surface-enhanced Raman spectroscopy | Support Vector Machines | Urine SERS identified HCC with sensitivity of 85.5%, specificity of 84.0%, and accuracy of 84.8% |
Ioannou et al. [12] | 2020 | 48,151 patients with hepatitis C virus-related cirrhosis in the national Veterans Health Administration | Longitudinal data from electronic health records | Recurrent Neural Network | Mean AUC of recurrent neural network models was 0.759 (SD = 0.009) with mean Brier score of 0.136 (S = 0.003). In patients who achieved sustained virologic response, mean AUC was 0.806 (SD = 0.025) and mean Brier score was 0.117 (SD = 0.007) |
Hub Gene | Stage 0 | Stage A | Stage B | Stage C | Stage D |
---|---|---|---|---|---|
TIGD5 | 1.17 | 4.30 | 5.09 | 5.73 | 4.57 |
C8ORF33 | 7.46 | 23.03 | 24.84 | 26.60 | 32.74 |
NUDCD1 | 1.79 | 3.84 | 4.08 | 4.40 | 5.08 |
INTS8 | 2.87 | 7.66 | 8.78 | 9.13 | 6.33 |
ZNF623 | 1.17 | 2.57 | 2.62 | 3.51 | 2.20 |
STIP1 | 22.93 | 56.86 | 65.24 | 76.67 | 64.03 |
HSP90AB1 | 196.33 | 505.67 | 592.33 | 684.23 | 759.80 |
DSCC1 | 0.26 | 1.49 | 1.67 | 2.16 | 1.55 |
POP1 | 0.47 | 1.01 | 1.20 | 1.26 | 1.00 |
ARHGAP39 | 0.20 | 0.67 | 0.89 | 0.94 | 0.71 |
PRKDC | 3.13 | 6.74 | 7.83 | 9.09 | 5.10 |
YDJC | 5.59 | 11.14 | 11.46 | 13.79 | 13.03 |
PUSL1 | 4.53 | 9.01 | 11.60 | 11.53 | 11.85 |
Author | Year | Treatment | Biomarker(s) | AI Technique | Findings |
---|---|---|---|---|---|
Hsu et al. [54] | 2022 | Lenvatinib | AFP, albumin–bilirubin (ALBI) grade, and circulating angiogenic factors | ML (RF and decision tree-based survival predictive model) | Reduction in AFP ≥ 40% from baseline within 8 weeks posttreatment was associated with a higher objective response rate (ORR). Patients with high, intermediate, and low ORRs were identified. Baseline AFP was the most important factor in determining OS, followed by ALBI grade and FGF21. |
Ma et al. [55] | 2023 | TACE and Lenvatinib | K, low-density lipoprotein, D-dimer, red blood cell, alanine aminotransferase, albumin, monocyte, tumor size, triglyceride, and age | ML (classification and regression tree, adaptive boosting, extreme gradient boosting, RF, and SVM) and Shapley additive explanation | Their predictive models had AUCs between 0.74 to 0.91. SVM and RF algorithms achieved the highest accuracy rate of 86.5% SHAP model showed that patients with lower serum K, older age, larger BMI, and larger tumor size were more likely to be responsive to the combination therapy. |
Zhong et al. [56] | 2019 | TACE | ALBI grade and CTP score | Nomogram and artificial neural network (ANN) | Their ANN found that ABLI grade had greater significance than CTP score in predicting survival. |
Morshid et al. [18] | 2019 | TACE | CT imaging data and clinical data | ML (RF) | Combined BCLC stage with quantitative image features showed a predication accuracy of 74.2%, while the model with BCLC stage alone had a prediction accuracy of 62.9%. |
Abajian et al. [19] | 2018 | TACE | MR imaging data and clinical data | ML (LR and RF) | Both models could predict treatment response with an overall accuracy rate of 78% The strongest predictors of treatment response included an imaging variable (relative tumor signal intensity >27.0) and a clinical variable (presence of cirrhosis). |
Peng et al. [57] | 2020 | TACE | CT imaging data | DL with a residual CNN (ResNet50) | The DL model demonstrated an accuracy of 84.3% and AUCs of 0.97, 0.96, 0.95, and 0.96 for complete response (CR), partial response (PR), stable disease (SD), and progressive disease (PD). Decision curve analysis (DCA) revealed that the ResNet50 model had a high net benefit in the validation cohorts. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansur, A.; Vrionis, A.; Charles, J.P.; Hancel, K.; Panagides, J.C.; Moloudi, F.; Iqbal, S.; Daye, D. The Role of Artificial Intelligence in the Detection and Implementation of Biomarkers for Hepatocellular Carcinoma: Outlook and Opportunities. Cancers 2023, 15, 2928. https://doi.org/10.3390/cancers15112928
Mansur A, Vrionis A, Charles JP, Hancel K, Panagides JC, Moloudi F, Iqbal S, Daye D. The Role of Artificial Intelligence in the Detection and Implementation of Biomarkers for Hepatocellular Carcinoma: Outlook and Opportunities. Cancers. 2023; 15(11):2928. https://doi.org/10.3390/cancers15112928
Chicago/Turabian StyleMansur, Arian, Andrea Vrionis, Jonathan P. Charles, Kayesha Hancel, John C. Panagides, Farzad Moloudi, Shams Iqbal, and Dania Daye. 2023. "The Role of Artificial Intelligence in the Detection and Implementation of Biomarkers for Hepatocellular Carcinoma: Outlook and Opportunities" Cancers 15, no. 11: 2928. https://doi.org/10.3390/cancers15112928
APA StyleMansur, A., Vrionis, A., Charles, J. P., Hancel, K., Panagides, J. C., Moloudi, F., Iqbal, S., & Daye, D. (2023). The Role of Artificial Intelligence in the Detection and Implementation of Biomarkers for Hepatocellular Carcinoma: Outlook and Opportunities. Cancers, 15(11), 2928. https://doi.org/10.3390/cancers15112928