Area Dose–Response and Radiation Origin of Childhood Thyroid Cancer in Fukushima Based on Thyroid Dose in UNSCEAR 2020/2021: High 131I Exposure Comparable to Chernobyl
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects and Thyroid Ultrasound Examination
2.2. Division of Fukushima Prefecture into Four Areas and Area Dose Estimation
2.3. Thyroid Cancer Incidence Rates
2.4. Statistical Analysis
2.5. Calibration between Thyroid Dose Units in Fukushima and Chernobyl
3. Results and Discussions
3.1. Thyroid Cancer Incidence Rate and Thyroid Dose in Different Areas
3.2. Response of Thyroid Cancer Incidence Rate to UNSCEAR 2020/2021 Thyroid Dose
3.3. Comparison of Dose Dependence of EAR in Fukushima and Chernobyl after Nuclear Accidents
3.4. Overdiagnosis Hypothesis without Evidence versus Possible Aggravation of Advanced-Stage PTC
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
UNSCEAR | United Nations Scientific Committee on the Effects of Atomic Radiation |
TUE | thyroid ultrasound examination |
FHMS | Fukushima Health Management Survey |
FMU | Fukushima Medical University |
FNAC | fine-needle aspiration cytology |
PY | person-years |
EAR | excess absolute risk per 104 PY |
P1 | thyroid cancer prevalence per 104 person in the 1st TUE |
P0 | thyroid cancer prevalence per 104 person just before the accident |
IP1 | incidence proportion per 104 from exposure to the 1st TUE; P1 = P0 + IP1 |
IR1, IR2 | incidence rate per 104 PY in the first and second TUE |
EAR/Gy | excess absolute risk per Gray |
GyUN2021 | thyroid dose unit estimated in UNSCEAR 2020/2021 for 10-year-old children |
BLD | base line dose |
References
- Radiation Medical Science Center for the Fukushima Health Management Survey. Materials and Minutes of Prefectural Oversight Committee Meetings. Available online: https://fhms.jp/en/fhms/outline/materials/ (accessed on 1 August 2023).
- Radiation Medical Science Center for the Fukushima Health Management Survey. Report of the Fukushima Health Management Survey 2019. Available online: https://fukushima-mimamori.jp/outline/uploads/report_r1.pdf (accessed on 1 August 2023).
- Fukushima Prefectural Oversight Committee Meeting for FHMS. Interim Summary of the results of FHMS. 2016. Available online: https://www.pref.fukushima.lg.jp/uploaded/attachment/158522.pdf (accessed on 1 August 2023). (In Japanese).
- Tsugane, S. Estimation of the number of prevalent thyroid cancer patients in Fukushima Prefecture, Thyroid Examination Evaluation Subcommittee. 2014. Available online: https://www.pref.fukushima.lg.jp/uploaded/attachment/91000.pdf (accessed on 1 August 2023). (In Japanese).
- Fukushima Prefectural Oversight Committee Meeting for FHMS. Summary of the Results of Full-Scale Screening (Second Examination). 2019. Available online: https://www.pref.fukushima.lg.jp/uploaded/attachment/336455.pdf (accessed on 1 August 2023). (In Japanese).
- Suzuki, S. Surgical Treatment of Pediatric Thyroid Cancer in Japan. The 2nd International Symposium of the Radiation Medical Science Center for the Fukushima Health Management Survey. 2020. Available online: https://ir.fmu.ac.jp/dspace/bitstream/123456789/1353/2/report_2ndIntlSympo_EN.pdf (accessed on 1 August 2023). (In Japanese).
- United Nations Scientific Committee on the Effects of Atomic Radiation. UNSCEAR 2008 Report to the General Assembly with Scientific Annex C, D and E; United Nations: New York, NY, USA, 2008. [Google Scholar]
- United Nations Scientific Committee on the Effects of Atomic Radiation. Sources, Effects and Risks of Ionizing Radiation UNSCEAR 2020/2021 Report, Scientific Annex B; Attachments A-2, A-9, A-14, A-18; United Nations: New York, NY, USA, 2021. [Google Scholar]
- United Nations Scientific Committee on the Effects of Atomic Radiation. UNSCEAR 2013 Report, Attachments C-14, C-18; United Nations: New York, NY, USA, 2014. [Google Scholar]
- Welch, H.G.; Black, W.C. Overdiagnosis in cancer. J. Natl. Cancer Inst. 2010, 102, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Shimura, H.; Suzuki, S.; Yokoya, S.; Iwadate, M.; Suzuki, S.; Matsuzuka, T.; Setou, N.; Ohira, T.; Yasumura, S.; Suzuki, S.; et al. A Comprehensive Review of the Progress and Evaluation of the Thyroid Ultrasound Examination Program, the Fukushima Health Management Survey. J. Epidemiol. 2022, 32 (Suppl. S12), S12–S35. [Google Scholar] [CrossRef] [PubMed]
- Yasumura, S.; Ohira, T.; Ishikawa, T.; Shimura, H.; Sakai, A.; Maeda, M.; Miura, I.; Fujimori, K.; Ohto, A.; Kamiya, K. Achievements and Current Status of the Fukushima Health Management Survey. J. Epidemiol. 2022, 32 (Suppl. S12), S3–S10. [Google Scholar] [CrossRef]
- World Health Organization. Health Risk Assessment from the Nuclear Accident after the 2011 Great East Japan Earthquake and Tsunami; WHO Press: Geneva, Switzerland, 2013; pp. 35–50. [Google Scholar]
- Nagataki, S. Thyroid consequences of the Fukushima nuclear reactor accident. Eur. Thyroid. J. 2012, 1, 148–158. [Google Scholar] [CrossRef]
- Unno, N.; Minakami, H.; Kubo, T.; Fujimori, K.; Ishiwata, I.; Terada, H.; Saito, S.; Yamaguchi, I.; Kunugita, N.; Nakai, A.; et al. Effect of the Fukushima nuclear power plant accident on radioiodine (131I) content in human breast milk. J. Obstet. Gynaecol. Res. 2012, 38, 772–779. [Google Scholar] [CrossRef]
- National Institute of Radiological Sciences (NIRS). Material 1-2-3. Analysis of Data on Breast Milk Measurement after Fukushima Accident. 2014; pp. 7–13. Available online: http://www.env.go.jp/chemi/rhm/conf/conf01-06/mat01_2.pdf (accessed on 1 August 2023).
- Tsuda, T.; Miyano, Y.; Yamamoto, E. Demonstrating the undermining of science and health policy after the Fukushima nuclear accident by applying the Toolkit for detecting misused epidemiological methods. Environ. Health 2022, 21, 21–77. [Google Scholar] [CrossRef]
- Tsuda, T.; Tokinobu, A.; Yamamoto, E.; Suzuki, E. Thyroid cancer detection by ultrasound among residents ages 18 years and younger in Fukushima, Japan: 2011 to 2014. Epidemiology 2016, 27, 316–322. [Google Scholar] [CrossRef]
- Tsuda, T.; Tokinobu, A.; Yamamoto, E.; Suzuki, E. Re: Associations between childhood thyroid cancer and external radiation dose after the Fukushima Daiichi Nuclear Power Plant accident. Epidemiology 2018, 29, e56–e57. [Google Scholar] [CrossRef]
- Kato, T. Re: Associations between childhood thyroid cancer and external radiation dose after the Fukushima Daiichi Nuclear Power Plant Accident. Epidemiology 2019, 30, e9–e11. [Google Scholar] [CrossRef]
- Yamamoto, H.; Hayashi, K.; Scherb, H. Association between the detection rate of thyroid cancer and the external radiation dose-rate after the nuclear power plant accidents in Fukushima, Japan. Medicine 2019, 98, e17165. [Google Scholar] [CrossRef]
- Toki, H.; Wada, T.; Manabe, Y.; Hirota, S.; Higuchi, T.; Tanihata, I.; Satoh, K.; Bando, M. Relationship between environmental radiation and radioactivity and childhood thyroid cancer found in Fukushima health management survey. Sci. Rep. 2020, 10, 4074. [Google Scholar] [CrossRef]
- Suzuki, S.; Suzuki, S.; Fukushima, T.; Midorikawa, S.; Shimura, H.; Matsuzuka, T.; Ishikawa, T.; Takahashi, H.; Ohtsuru, A.; Sakai, A.; et al. Comprehensive survey results of childhood thyroid ultrasound examinations in Fukushima in the first four years after the Fukushima Daiichi Nuclear Power Plant accident. Thyroid 2016, 26, 843–851. [Google Scholar] [CrossRef] [PubMed]
- Ohira, T.; Takahashi, H.; Yasumura, S.; Ohtsuru, A.; Midorikawa, S.; Suzuki, S.; Fukushima, T.; Shimura, H.; Ishikawa, T.; Sakai, A.; et al. Comparison of childhood thyroid cancer prevalence among 3 areas based on external radiation dose after the Fukushima Daiichi nuclear power plant accident: The Fukushima health management survey. Medicine 2016, 95, e4472. [Google Scholar] [CrossRef] [PubMed]
- Ohira, T.; Takahashi, H.; Yasumura, S.; Ohtsuru, A.; Midorikawa, S.; Suzuki, S.; Matsuzuka, T.; Shimura, H.; Ishikawa, T.; Sakai, A.; et al. Associations between childhood thyroid cancer and external radiation dose after the Fukushima Daiichi Nuclear Power Plant accident. Epidemiology 2018, 29, e32–e34. [Google Scholar] [CrossRef]
- Ohira, T.; Ohtsuru, A.; Midorikawa, S.; Takahashi, H.; Yasumura, S.; Suzuki, S.; Matsuzuka, T.; Shimura, H.; Ishikawa, T.; Akira, S.; et al. External radiation dose, obesity, and risk of childhood thyroid cancer after the Fukushima Daiichi Nuclear Power Plant accident: The Fukushima Health Management Survey. Epidemiology 2019, 30, 853–860. [Google Scholar] [CrossRef]
- Ohira, T.; Shimura, H.; Hayashi, F.; Nagao, M.; Yasumura, S.; Takahashi, H.; Suzuki, S.; Matsuzuka, T.; Suzuki, S.; Iwadate, M.; et al. Absorbed radiation doses in the thyroid as estimated by UNSCEAR and subsequent risk of childhood thyroid cancer following the Great East Japan Earthquake. J. Radiat. Res. 2020, 61, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Radiation Medical Science Center for the Fukushima Health Management Survey. Summary of Results of Thyroid Ultrasound Examination. Example of Adjusting Detection Rates for Inspection Interval. 2017. Available online: https://www.pref.fukushima.lg.jp/uploaded/attachment/244313.pdf (accessed on 1 August 2023). (In Japanese).
- Kato, T.; Yamada, K. Individual dose response and radiation origin of childhood and adolescent thyroid cancer in Fukushima, Japan. Clin. Oncol. Res. 2022. [Google Scholar] [CrossRef]
- Kato, T.; Yamada, K. Individual dose response and radiation origin of childhood and adolescent thyroid cancer in Fukushima II: Possibility of High I-131 Exposure as in Chernobyl. Clin. Oncol. Res. 2022. [Google Scholar] [CrossRef]
- Ministry of Education, Culture, Sports, Science and Technology. Results of Airborne Monitoring Survey by MEXT in the Western Part of Fukushima Prefecture (September 12, 2011). Available online: https://radioactivity.nra.go.jp/en/contents/4000/3168/24/1270_0912_2.pdf (accessed on 1 August 2023).
- Kato, T. Area Dose Response of Prevalent Childhood Thyroid Cancers after the Fukushima Nuclear Power Plant Accident. Clin. Oncol. Res. 2019, 2, 2–7. [Google Scholar] [CrossRef]
- Pacini, F.; Vorontsova, T.; Demidchik, E.P.; Molinaro, E.; Agate, L.; Romei, C.; Shavrova, E.; Cherstvoy, E.D.; Ivashkevitch, Y.; Kuchinskaya, E.; et al. Post-Chernobyl Thyroid Carcinoma in Belarus Children and Adolescents: Comparison with Naturally Occurring Thyroid Carcinoma in Italy and France. J. Clin. Endocrinol. Metab. 1997, 82, 3563–3569. [Google Scholar] [CrossRef]
- Howard, J. Minimum Latency & Types or Categories of Cancer. 9.11 Monitoring and Treatment, 2014. Available online: https://www.cdc.gov/wtc/pdfs/policies/wtchpminlatcancer2014-11-07-508.pdf (accessed on 1 August 2023).
- Cancer Statistics in Japan 2. Incidence 1. National Cancer Registries in Japan (1975–2016), (2016–2018). Available online: https://ganjoho.jp/reg_stat/statistics/data/dl/en.html (accessed on 1 August 2023).
- Rothman, K.J. Epidemiology: An Introduction, 2nd ed.; Oxford University Press: New York, NY, USA, 2012. [Google Scholar]
- Suzuki, S.; Bogdanova, T.I.; Saenko, V.A.; Hashimoto, Y.; Ito, M.; Iwadate, M.; Rogounovitch, T.I.; Tronko, M.D.; Yamashita, S. Histopathological analysis of papillary thyroid carcinoma detected during ultrasound screening examinations in Fukushima. Cancer Sci. 2018, 110, 817–827. [Google Scholar] [CrossRef] [PubMed]
- Jacob, P.; Goulko, G.; Heidenreich, W.F.; Likhtarev, I.; Kairo, I.; Tronko, N.D.; Bogdanova, T.I.; Kenigsberg, J.; Buglova, E.; Drozdrobitch, V.; et al. Thyroid cancer risk to children calculated. Nature 1998, 392, 31–32. [Google Scholar] [CrossRef] [PubMed]
- Jacob, P.; Kenigsberg, Y.; Zvonova, I.; Goulko, G.; Buglova, E.; Heidenreich, W.F.; Golovneva, A.; Bratilova, A.A.; Drozdovitch, V.; Kruk, J.; et al. Childhood exposure due to the Chernobyl accident and thyroid cancer risk in contaminated areas of Belarus and Russia. Br. J. Cancer 1999, 80, 1461–1469. [Google Scholar] [CrossRef]
- Jacob, P.; Bogdanova, T.I.; Buglova, E.; Chepurniy, M.; Demidchik, Y.; Gavrilin, Y.; Kenigsberg, J.; Meckbach, R.; Schotola, C.; Shinkarev, S.; et al. Thyroid cancer risk in areas of Ukraine and Belarus affected by the Chernobyl accident. Radiat. Res. 2006, 165, 1–8. [Google Scholar] [CrossRef]
- Brenner, A.V.; Tronko, M.D.; Hatch, M.; Bogdanova, T.I.; Oliynik, V.A.; Lubin, J.H.; Zablotska, L.B.; Tereschenko, V.P.; McConnell, R.J.; Zamotaeva, G.A.; et al. I-131 Dose Response for Incident Thyroid Cancers in Ukraine Related to the Chornobyl Accident. Environ. Health Perspect. 2011, 119, 933–939. [Google Scholar] [CrossRef]
- Kurokawa, S. The Response Letter from UNSCEAR Chair Ms. Chen to S. Kurokawa. UNSCEAR2020/21 Report-Verification-Network. Available online: https://www.unscear2020report-verification.net/; https://jimdo-storage.global.ssl.fastly.net/file/cc15e1bc-0d8e-4d6c-be9c-2550b7e370b6/ISSUED_Letter%20to%20Prof%20Kurokawa_20220718%E5%85%AC%E9%96%8B%E7%94%A8.pdf (accessed on 1 August 2023).
- OurPlanet-TV. Unpublished Data Show High Concentrations of Iodine-132 in Foods after the Nuclear Accident-Fukushima Prefecture. 2022. Available online: https://www.ourplanet-tv.org/44603/ (accessed on 10 August 2023).
- Katanoda, K.; Kamo, K.; Tsugane, S. Quantification of the increase in thyroid cancer prevalence in Fukushima after the nuclear disaster in 2011-a potential overdiagnosis? Jpn. J. Clin. Oncol. 2016, 46, 284. [Google Scholar] [CrossRef] [PubMed]
- Zablotska, L.B.; Ron, E.; Rozhko, A.V.; Hatch, M.; Polyanskaya, O.N.; Brenner, A.V.; Lubin, J.; Romanov, G.N.; McConnell, R.J.; O’Kane, P.; et al. Thyroid cancer risk in Belarus among children and adolescents exposed to radioiodine after the Chornobyl accident. Br. J. Cancer 2011, 104, 181–187. [Google Scholar] [CrossRef]
- Tronko, M.D.; Howe, R.W.; Bogdanova, T.I.; Bouville, A.C.; Epstein, O.V.; Brill, A.B.; Likhtarev, I.A.; Fink, D.J.; Markov, V.V.; Greenebaum, E.; et al. A cohort study of thyroid cancer and other thyroid diseases after the Chornobyl accident: Thyroid cancer in Ukraine detected during the first screening. J. Natl. Cancer Inst. 2006, 98, 897–903. [Google Scholar] [CrossRef]
- Demidchik, Y.E.; Saenko, V.A.; Yamashita, S. Childhood thyroid cancer in Belarus, Russia, and Ukraine after Chernobyl and at present. Arq. Bras. Endocrinol. Metab. 2007, 51, 748–762. [Google Scholar] [CrossRef]
- Tronko, M.; Bogdanova, T.; Komissarenko, I.; Epstein, O.; Oliynyk, V.; Kovalenko, A.; Likhtarev, I.A.; Kairo, I.; Peters, S.B.; LiVolsi, V.A.; et al. Thyroid Carcinoma in children and adolescents in Ukraine after the Chernobyl nuclear accident. Cancer 1999, 86, 149–156. [Google Scholar] [CrossRef]
- Suzuki, S. Thyroid Cancer Detected by Thyroid Examination in the Fukushima Health Management Survey. 64th Annual Meeting of Japan Thyroid Association in 2021. Available online: http://www.pw-co.jp/64jta2021/program.html (accessed on 10 August 2023).
- Shiraishi, H. “Thyroid cancer due to overdiagnosis” hypothesis was formed without understanding the symptoms. Kagaku 2022, 92, 342–346. (In Japanese) [Google Scholar]
- Fukushima Medical University and Fukushima Prefecture. Merit and Demerit of Thyroid Examination. Available online: https://fukushima-mimamori.jp/thyroid-examination/uploads/merit_demerit_booklet_01.pdf (accessed on 1 August 2023).
- Lim, H.; Devesa, S.S.; Julie, A.; Sosa, J.A.; David Check, D.; Cari, M.; Kitahara, C.M. Trends in Thyroid Cancer Incidence and Mortality in the United States, 1974–2013. JAMA 2017, 317, 1338–1348. [Google Scholar] [CrossRef] [PubMed]
- United Nations Scientific Committee on the Effects of Atomic Radiation. UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes. VOLUME II: EFFECTS; United Nations: New York, NY, USA, 2000; pp. 301–319. [Google Scholar]
- Shibata, Y.; Yamashita, S.; Masyakin, V.B.; Panasyuk, G.D.; Nagataki, S. 15 years after Chernobyl: New evidence of thyroid cancer. Lancet 2001, 358, 1965–1966. [Google Scholar] [CrossRef] [PubMed]
Area | Thyroid Dose | First TUE (FY2011–2013) | Second TUE (FY2014–2015) a | |||||||
---|---|---|---|---|---|---|---|---|---|---|
2021, 10Y | Examinees | Cancer Cases | Prevalence per 104 | INT1 | Incidence Rate per 104 PY | Odds Ratio of IR1 (95% CI) | Incidence Proportion per 104 | Incidence Rate per 104 PY | Odds Ratio of IR2 (95% CI) | |
Gy | P1 | Year | IR1 | OR1 | IP2 | IR2 | OR2 | |||
1. Evacuation zone | 0.0121 | 41,810 | 14 | 3.35 | 0.78 | 4.29 | 3.27 | 5.31 | 2.14 | 2.78 |
(1.5–7.1) | (0.9–8.3) | |||||||||
2. Nakadori | 0.0059 | 169,155 | 65 | 3.84 | 1.50 | 2.56 | 1.95 | 2.77 | 1.34 | 1.74 |
(1.1–3.6) | (0.6–4.9) | |||||||||
3. Iwaki Soma | 0.0047 | 55,788 | 24 | 4.30 | 2.08 | 2.06 | 1.57 | 2.15 | 0.99 | 1.29 |
(0.8–3.1) | (0.4–4.1) | |||||||||
4. Aizu | 0.0018 | 33,720 | 12 | 3.56 | 2.71 | 1.31 | 1 (Ref.) | 1.44 | 0.77 | 1 (Ref.) |
Average /Sum | 0.0061 | 300,473 | 115 | 3.83 | 2.62 |
Country and Area | Average Thyroid Dose (Gy) | Observed Cases /Expected Cases a | EAR/104 PY |
---|---|---|---|
Japan: Age at exposure 1~18, Examination period 2011~2015 | |||
Fukushima prefecture | 0.002–0.015 | 50~60 [3,5] | 0.8~4 |
Chernobyl: Age at exposure 0~15, Examination period 1991~1995 (Table 1 [38]) | |||
Ukraine: 30 km zone evacuees | 0.92 | 30 | 1.20 |
Belarus: Gomel/Mogilev | 0.73 | 56 | 2.34 |
Belarus: Gomel city | 0.40 | 30 | 1.24 |
Other 6 areas in Ukraine, Belarus, and Russia: Bryansk | <0.2 | <10 | <0.32 |
(A) Fukushima Prefecture Area Dose and Individual Dose | BLD/GyUN2021 | EAR (95% CI) /104 PY GyUN2021 | p-Value for EAR/GyUN2021 |
First TUE: 4 areas | 0.0025 | 291 (248, 334) | 0.001 |
Second TUE: 4 areas | 0.003 | 137 (76, 198) | 0.01 |
Second TUE: 3 individual dose groups | 0.0045 | 137 (83, 191) | 0.02 |
Second TUE: 4 areas + 3 individual dose groups | 0.003 | 143 (122, 165) | 0.00001 |
(B) Chernobyl Countries | Age at Exposure/Years | EAR (95% CI) /104 PY Gy | Reference |
Ukraine, Belarus, and Russia 1991–1995 | 0–15 | 2.3 (1.4, 3.8) | Jakob et al., 1998 [38] |
Belarus and Russia 1991–1995 | 0–15 | 2.1 (1.0, 4.5) | Jakob et al., 1999 [39] |
Ukraine and Belarus 1990–2001 | 0–18 | 2.66 (2.19, 3.13) | Jakob et al., 2006 [40] |
Ukraine 2000–2007 | <18 | 2.21 (0.04, 5.78) | Brenner et al., 2011 [41] |
Chernobyl (average value) | 2.32 ± 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kato, T.; Yamada, K.; Hongyo, T. Area Dose–Response and Radiation Origin of Childhood Thyroid Cancer in Fukushima Based on Thyroid Dose in UNSCEAR 2020/2021: High 131I Exposure Comparable to Chernobyl. Cancers 2023, 15, 4583. https://doi.org/10.3390/cancers15184583
Kato T, Yamada K, Hongyo T. Area Dose–Response and Radiation Origin of Childhood Thyroid Cancer in Fukushima Based on Thyroid Dose in UNSCEAR 2020/2021: High 131I Exposure Comparable to Chernobyl. Cancers. 2023; 15(18):4583. https://doi.org/10.3390/cancers15184583
Chicago/Turabian StyleKato, Toshiko, Kosaku Yamada, and Tadashi Hongyo. 2023. "Area Dose–Response and Radiation Origin of Childhood Thyroid Cancer in Fukushima Based on Thyroid Dose in UNSCEAR 2020/2021: High 131I Exposure Comparable to Chernobyl" Cancers 15, no. 18: 4583. https://doi.org/10.3390/cancers15184583
APA StyleKato, T., Yamada, K., & Hongyo, T. (2023). Area Dose–Response and Radiation Origin of Childhood Thyroid Cancer in Fukushima Based on Thyroid Dose in UNSCEAR 2020/2021: High 131I Exposure Comparable to Chernobyl. Cancers, 15(18), 4583. https://doi.org/10.3390/cancers15184583