Thrombospondin-2 as a Predictive Biomarker for Hepatocellular Carcinoma after Hepatitis C Virus Elimination by Direct-Acting Antiviral
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Regimens of DAA Treatment
2.3. Patient Follow-Up
2.4. Enzyme-Linked Immunosorbent Assay (ELISA) of Serum TSP-2
2.5. Statistical Analysis
3. Results
3.1. Serum TSP-2 Levels Are Capable of Identifying CHC Patients Who Have a High Risk of HCC Development after HCV Elimination by DAA Treatment
3.2. Serum TSP-2 Levels Reflect Liver Fibrosis and Inflammation in CHC Patients after HCV Elimination by DAA Treatment
3.3. The AFT Score Composed of AFP, TSP-2 and the FIB-4 Index Stratifies Patients According to the HCC Risk after DAA Treatment
3.4. The TSP-2 and AFT Scores Stratified Patients According to HCC Risk in the Validation Cohort
3.5. Serum TSP-2 Level Identifies Patients with a High Risk of HCC Occurrence among Patients with FIB-4 Index < 3.25
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kanwal, F.; Kramer, J.R.; Asch, S.M.; Cao, Y.M.; El-Serag, H.B. Longer Term Risk of Hepatocellular Cancer in HCV Patients Treated with Direct Acting Antiviral Agents. Hepatology 2018, 68, 521A. [Google Scholar]
- Ioannou, G.N.; Green, P.K.; Berry, K. HCV eradication induced by direct-acting antiviral agents reduces the risk of hepatocellular carcinoma. J. Hepatol. 2018, 68, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Janjua, N.Z.; Chong, M.; Kuo, M.; Woods, R.; Wong, J.; Yoshida, E.M.; Sherman, M.; Butt, Z.A.; Samji, H.; Cook, D.; et al. Long-term effect of sustained virological response on hepatocellular carcinoma in patients with hepatitis C in Canada. J. Hepatol. 2017, 66, 504–513. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, G.N. HCC surveillance after SVR in patients with F3/F4 fibrosis. J. Hepatol. 2021, 74, 458–465. [Google Scholar] [CrossRef] [PubMed]
- D’Ambrosio, R.; Degasperi, E.; Lampertico, P. Predicting Hepatocellular Carcinoma Risk in Patients with Chronic HCV Infection and a Sustained Virological Response to Direct-Acting Antivirals. J. Hepatocell. Carcinoma 2021, 8, 713–739. [Google Scholar] [CrossRef]
- Marrero, J.A.; Kulik, L.M.; Sirlin, C.B.; Zhu, A.X.; Finn, R.S.; Abecassis, M.M.; Roberts, L.R.; Heimbach, J.K. Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 2018, 68, 723–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ioannou, G.N.; Beste, L.A.; Green, P.K.; Singal, A.G.; Tapper, E.B.; Waljee, A.K.; Sterling, R.K.; Feld, J.J.; Kaplan, D.E.; Taddei, T.H.; et al. Increased Risk for Hepatocellular Carcinoma Persists Up to 10 Years After HCV Eradication in Patients With Baseline Cirrhosis or High FIB-4 Scores. Gastroenterology 2019, 157, 1264. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, T.; Tokumoto, Y.; Joko, K.; Michitaka, K.; Horiike, N.; Tanaka, Y.; Tada, F.; Kisaka, Y.; Nakanishi, S.; Yamauchi, K.; et al. Sex difference in the development of hepatocellular carcinoma after direct-acting antiviral therapy in patients with HCV infection. J. Med. Virol. 2020, 92, 3507–3515. [Google Scholar] [CrossRef]
- Guidance, A.-I.H.C. Hepatitis C Guidance 2019 Update: American Association for the Study of Liver Diseases-Infectious Diseases Society of America Recommendations for Testing, Managing, and Treating Hepatitis C Virus Infection. Hepatology 2020, 71, 686–721. [Google Scholar] [CrossRef] [Green Version]
- European Association for the Study of the Liver. EASL Recommendations on Treatment of Hepatitis C 2018. J. Hepatol. 2018, 69, 461–511. [Google Scholar] [CrossRef] [Green Version]
- Kozumi, K.; Kodama, T.; Murai, H.; Sakane, S.; Govaere, O.; Cockell, S.; Motooka, D.; Kakita, N.; Yamada, Y.; Kondo, Y.; et al. Transcriptomics Identify Thrombospondin-2 as a Biomarker for NASH and Advanced Liver Fibrosis. Hepatology 2021, 74, 2452–2466. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.C.; Lawler, J. The thrombospondins. Cold Spring Harb. Perspect. Biol. 2011, 3, a009712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.H.; Seto, W.K.; Lui, D.T.; Fong, C.H.; Wan, H.Y.; Cheung, C.Y.; Chow, W.S.; Woo, Y.C.; Yuen, M.F.; Xu, A.; et al. Circulating Thrombospondin-2 as a Novel Fibrosis Biomarker of Nonalcoholic Fatty Liver Disease in Type 2 Diabetes. Diabetes Care 2021, 44, 2089–2097. [Google Scholar] [CrossRef] [PubMed]
- Kimura, T.; Tanaka, N.; Fujimori, N.; Yamazaki, T.; Katsuyama, T.; Iwashita, Y.; Pham, J.; Joshita, S.; Pydi, S.P.; Umemura, T. Serum thrombospondin 2 is a novel predictor for the severity in the patients with NAFLD. Liver Int. 2021, 41, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, L.; Nevola, R.; Franci, G.; Perrella, A.; Corvino, G.; Marrone, A.; Berretta, M.; Morone, M.V.; Galdiero, M.; Giordano, M.; et al. Risk of Hepatocellular Carcinoma after HCV Clearance by Direct-Acting Antivirals Treatment Predictive Factors and Role of Epigenetics. Cancers 2020, 12, 1351. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, G.N.; Green, P.; Lowy, E.; Mun, E.J.; Berry, K. Differences in hepatocellular carcinoma risk, predictors and trends over time according to etiology of cirrhosis. PLoS ONE 2018, 13, e0204412. [Google Scholar] [CrossRef] [Green Version]
- Zou, H.; Yang, X.; Li, Q.L.; Zhou, Q.X.; Xiong, L.; Wen, Y. A Comparative Study of Albumin-Bilirubin Score with Child-Pugh Score, Model for End-Stage Liver Disease Score and Indocyanine Green R15 in Predicting Posthepatectomy Liver Failure for Hepatocellular Carcinoma Patients. Dig. Dis. 2018, 36, 236–243. [Google Scholar] [CrossRef]
- Vergniol, J.; Foucher, J.; Terrebonne, E.; Bernard, P.H.; Le Bail, B.; Merrouche, W.; Couzigou, P.; de Ledinghen, V. Noninvasive tests for fibrosis and liver stiffness predict 5-year outcomes of patients with chronic hepatitis C. Gastroenterology 2011, 140, 1970–1979. [Google Scholar] [CrossRef]
- Kanwal, F.; Kramer, J.R.; Mapakshi, S.; Natarajan, Y.; Chayanupatkul, M.; Richardson, P.A.; Li, L.; Desiderio, R.; Thrift, A.P.; Asch, S.M.; et al. Risk of Hepatocellular Cancer in Patients with Non-Alcoholic Fatty Liver Disease. Gastroenterology 2018, 155, 1828–1837.e2. [Google Scholar] [CrossRef] [Green Version]
- Tahata, Y.; Sakamori, R.; Yamada, R.; Kodama, T.; Hikita, H.; Hagiwara, H.; Imai, Y.; Hiramatsu, N.; Tamura, S.; Yamamoto, K.; et al. Prediction model for hepatocellular carcinoma occurrence in patients with hepatitis C in the era of direct-acting anti-virals. Aliment. Pharmacol. Ther. 2021, 54, 1340–1349. [Google Scholar] [CrossRef]
- Tamaki, N.; Kurosaki, M.; Yasui, Y.; Mori, N.; Tsuji, K.; Hasebe, C.; Joko, K.; Akahane, T.; Furuta, K.; Kobashi, H.; et al. Hepatocellular Carcinoma Risk Assessment for Patients With Advanced Fibrosis After Eradication of Hepatitis C Virus. Hepatol. Commun. 2022, 6, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Kanwal, F.; Kramer, J.; Asch, S.M.; Chayanupatkul, M.; Cao, Y.; El-Serag, H.B. Risk of Hepatocellular Cancer in HCV Patients Treated with Direct-Acting Antiviral Agents. Gastroenterology 2017, 153, 996–1005.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farhang Zangneh, H.; Wong, W.W.L.; Sander, B.; Bell, C.M.; Mumtaz, K.; Kowgier, M.; van der Meer, A.J.; Cleary, S.P.; Janssen, H.L.A.; Chan, K.K.W.; et al. Cost Effectiveness of Hepatocellular Carcinoma Surveillance After a Sustained Virologic Response to Therapy in Patients with Hepatitis C Virus Infection and Advanced Fibrosis. Clin. Gastroenterol. Hepatol. 2019, 17, 1840–1849.e16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semmler, G.; Meyer, E.L.; Kozbial, K.; Schwabl, P.; Hametner-Schreil, S.; Zanetto, A.; Bauer, D.; Chromy, D.; Simbrunner, B.; Scheiner, B.; et al. HCC risk stratification after cure of hepatitis C in patients with compensated advanced chronic liver disease. J. Hepatol. 2022, 76, 812–821. [Google Scholar] [CrossRef]
- Cabral, L.K.D.; Grisetti, L.; Pratama, M.Y.; Tiribelli, C.; Pascut, D. Biomarkers for the Detection and Management of Hepatocellular Carcinoma in Patients Treated with Direct-Acting Antivirals. Cancers 2022, 14, 2700. [Google Scholar] [CrossRef]
- Nagata, H.; Nakagawa, M.; Asahina, Y.; Sato, A.; Asano, Y.; Tsunoda, T.; Miyoshi, M.; Kaneko, S.; Otani, S.; Kawai-Kitahata, F.; et al. Effect of interferon-based and -free therapy on early occurrence and recurrence of hepatocellular carcinoma in chronic hepatitis C. J. Hepatol. 2017, 67, 933–939. [Google Scholar] [CrossRef]
- Bekki, Y.; Yoshizumi, T.; Shimoda, S.; Itoh, S.; Harimoto, N.; Ikegami, T.; Kuno, A.; Narimatsu, H.; Shirabe, K.; Maehara, Y. Hepatic stellate cells secreting WFA(+) -M2BP: Its role in biological interactions with Kupffer cells. J. Gastroenterol. Hepatol. 2017, 32, 1387–1393. [Google Scholar] [CrossRef]
- Debes, J.D.; van Tilborg, M.; Groothuismink, Z.M.A.; Hansen, B.E.; Schulze Zur Wiesch, J.; von Felden, J.; de Knegt, R.J.; Boonstra, A. Levels of Cytokines in Serum Associate With Development of Hepatocellular Carcinoma in Patients With HCV Infection Treated with Direct-Acting Antivirals. Gastroenterology 2018, 154, 515–517.e3. [Google Scholar] [CrossRef]
- Myojin, Y.; Hikita, H.; Tahata, Y.; Doi, A.; Kato, S.; Sasaki, Y.; Shirai, K.; Sakane, S.; Yamada, R.; Kodama, T.; et al. Serum growth differentiation factor 15 predicts hepatocellular carcinoma occurrence after hepatitis C virus elimination. Aliment. Pharmacol. Ther. 2022, 55, 422–433. [Google Scholar] [CrossRef]
Factor | Unit | All (N = 524) | Missing (N) | Non HCC (N = 500) | HCC (N = 24) | p Value |
---|---|---|---|---|---|---|
Age | Years Old | 70 (62–77) | 0 | 70 (61–76) | 71 (65–79) | 0.171 |
Sex | Male/Female | 204/320 | 0 | 192/308 | 12/12 | 0.255 |
HCV Group | 1/2/Other | 406/117/1 | 0 | 386/113/1 | 20/4/0 | 0.771 |
HCV-RNA(Pre) | Log IU/mL | 6.2 (5.6–6.5) | 2 | 6.2 (5.6–6.5) | 6.2 (5.4–6.6) | 0.976 |
BMI(Pre) | kg/m2 | 22.4 (20.4–24.3) | 29 | 22.4 (20.4–24.3) | 22.9 (20.6–26.0) | 0.322 |
WBC | /μL | 4700 (3890–5680) | 48 | 4700 (3900–5690) | 4290 (3530–5650) | 0.409 |
Hb | g/dL | 13.1 (12.0–14.2) | 48 | 13.1 (12.0–14.2) | 12.2 (10.7–13.7) | 0.071 |
Plt | ×104/μL | 16.8 (13.4–20.9) | 1 | 16.9 (13.5–21.0) | 13.8 (10.4–20.0) | 0.046 |
AST | U/L | 23 (19–28) | 1 | 23 (19–28) | 27 (24–34) | 0.083 |
ALT | U/L | 17 (12–24) | 1 | 17 (12–24) | 20 (15–27) | 0.367 |
T-bil | mg/dL | 0.7 (0.6–1.0) | 1 | 0.7 (0.6–1.0) | 0.8 (0.6–1.0) | 0.030 |
eGFR | mL/min/1.73 m2 | 68.9 (60–80) | 48 | 69 (60–80) | 66.3 (60.9–80.4) | 0.742 |
CRP | mg/dL | 0.1 (0.02–0.1) | 113 | 0.1 (0.02–0.1) | 0.1 (0.05–0.1) | 0.149 |
HbA1c | % | 5.5 (5.2–5.9) | 75 | 5.5 (5.2–5.9) | 5.3 (5.0–5.8) | 0.725 |
Alb | g/dL | 4.1 (3.9–4.3) | 8 | 4.1 (3.9–4.3) | 4.0 (3.7–4.2) | 0.011 |
Hyaluronic Acid | ng/mL | 84 (39–163) | 184 | 81 (38–156) | 149 (103–339) | 0.031 |
AFP | ng/mL | 4.0 (2.7–5.9) | 16 | 4.0 (2.6–5.5) | 6.0 (3.3–10) | <0.0001 |
DCP | mAU/mL | 18 (14–21) | 160 | 18 (14–21) | 16 (11–20) | 0.386 |
FIB-4 index | 2.3 (1.7–3.2) | 1 | 2.3 (1.6–3.2) | 3.5 (2.4–4.3) | 0.0007 | |
TSP-2 | ng/μL | 44.9 (29.0–72.4) | 0 | 44.2 (28.3–71.2) | 78.2 (44.1–111) | <0.0001 |
Factor | Unit | Univariate Analysis p Value | Multivariate Analysis p Value |
---|---|---|---|
Age | Years Old | 0.175 | |
Sex | 0.244 | ||
HCV Group | 0.700 | ||
HCV-RNA(Pre) | Log IU/mL | 0.981 | |
BMI(Pre) | kg/m2 | 0.369 | |
WBC | /μL | 0.412 | |
Hb | g/dL | 0.078 | |
Plt | ×104/μL | 0.056 | |
AST | U/L | 0.106 | |
ALT | U/L | 0.343 | |
T-bil | mg/dL | 0.042 | |
eGFR | mL/min/1.73 m2 | 0.723 | |
CRP | mg/dL | 0.228 | |
HbA1c | % | 0.740 | |
Alb | g/dL | 0.011 | |
Hyaluronic Acid | ng/mL | 0.109 | |
AFP | ng/mL | <0.0001 | <0.0001 |
DCP | mAU/mL | 0.399 | |
FIB-4 index | 0.006 | 0.015 | |
TSP-2 | ng/μL | 0.0002 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsumae, T.; Kodama, T.; Tahata, Y.; Myojin, Y.; Doi, A.; Nishio, A.; Yamada, R.; Nozaki, Y.; Oshita, M.; Hiramatsu, N.; et al. Thrombospondin-2 as a Predictive Biomarker for Hepatocellular Carcinoma after Hepatitis C Virus Elimination by Direct-Acting Antiviral. Cancers 2023, 15, 463. https://doi.org/10.3390/cancers15020463
Matsumae T, Kodama T, Tahata Y, Myojin Y, Doi A, Nishio A, Yamada R, Nozaki Y, Oshita M, Hiramatsu N, et al. Thrombospondin-2 as a Predictive Biomarker for Hepatocellular Carcinoma after Hepatitis C Virus Elimination by Direct-Acting Antiviral. Cancers. 2023; 15(2):463. https://doi.org/10.3390/cancers15020463
Chicago/Turabian StyleMatsumae, Takayuki, Takahiro Kodama, Yuki Tahata, Yuta Myojin, Akira Doi, Akira Nishio, Ryoko Yamada, Yasutoshi Nozaki, Masahide Oshita, Naoki Hiramatsu, and et al. 2023. "Thrombospondin-2 as a Predictive Biomarker for Hepatocellular Carcinoma after Hepatitis C Virus Elimination by Direct-Acting Antiviral" Cancers 15, no. 2: 463. https://doi.org/10.3390/cancers15020463
APA StyleMatsumae, T., Kodama, T., Tahata, Y., Myojin, Y., Doi, A., Nishio, A., Yamada, R., Nozaki, Y., Oshita, M., Hiramatsu, N., Morishita, N., Ohkawa, K., Hijioka, T., Sakakibara, M., Doi, Y., Kakita, N., Yakushijin, T., Sakamori, R., Hikita, H., ... Takehara, T. (2023). Thrombospondin-2 as a Predictive Biomarker for Hepatocellular Carcinoma after Hepatitis C Virus Elimination by Direct-Acting Antiviral. Cancers, 15(2), 463. https://doi.org/10.3390/cancers15020463