Real-Time PCR Detection of Candida Species in Biopsy Samples from Non-Smokers with Oral Dysplasia and Oral Squamous Cell Cancer: A Retrospective Archive Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Oral Biopsy and Sample Collection
2.2. Growth of Candida Species and Fungal DNA Extraction
2.3. Total DNA Extraction from Tissue Samples
2.4. Quantitative PCR Analysis
2.5. Detection of Candida Species in Total Tissue DNA Samples
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moorhouse, A.J.; Moreno-Lopez, R.; Gow, N.A.R.; Hijazi, K. Clonal evolution of Candida albicans, Candida glabrata and Candida dubliniensis at oral niche level in health and disease. J. Oral Microbiol. 2021, 13, 1894047. [Google Scholar] [CrossRef]
- Di Cosola, M.; Cazzolla, A.P.; Charitos, I.A.; Ballini, A.; Inchingolo, F.; Santacroce, L. Candida albicans and Oral Carcinogenesis. A Brief Review. J. Fungi 2021, 7, 476. [Google Scholar] [CrossRef]
- Chattopadhyay, I.; Verma, M.; Panda, M. Role of oral microbiome signatures in diagnosis and prognosis of oral cancer. Technol. Cancer Res. Treat. 2019, 18, 1533033819867354. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Yang, X.; Li, C.; Song, Z. The Oral Microbiota: Community Composition, Influencing Factors, Pathogenesis, and Interventions. Front. Microbiol. 2022, 13, 895537. [Google Scholar] [CrossRef]
- Ghannoum, M.A.; Jurevic, R.J.; Mukherjee, P.K.; Cui, F.; Sikaroodi, M.; Naqvi, A.; Gillevet, P.M. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 2010, 6, e1000713. [Google Scholar] [CrossRef]
- Burcher, K.M.; Burcher, J.T.; Inscore, L.; Bloomer, C.H.; Furdui, C.M.; Porosnicu, M. A Review of the Role of Oral Microbiome in the Development, Detection, and Management of Head and Neck Squamous Cell Cancers. Cancers 2022, 14, 4116. [Google Scholar] [CrossRef]
- Chen, J.; Domingue, J.C.; Sears, C.L. Microbiota dysbiosis in select human cancers: Evidence of association and causality. Semin. Immunol. 2017, 32, 25–34. [Google Scholar] [CrossRef]
- Khajuria, N.; Metgud, R. Role of bacteria in oral carcinogenesis. Indian J. Dent. 2015, 6, 37–43. [Google Scholar] [CrossRef]
- Santacroce, L.; Sardaro, N.; Topi, S.; Pettini, F.; Bottalico, L.; Cantore, S.; Cascella, G.; Del Prete, R.; DiPalma, G.; Inchingolo, F. The pivotal role of oral microbiota in health and disease. J. Biol. Regul. Homeost. Agents 2020, 34, 733–737. [Google Scholar]
- Yang, S.F.; Huang, H.D.; Fan, W.L.; Jong, Y.J.; Chen, M.K.; Huang, C.N.; Kuo, Y.L.; Chung, W.H.; Su, S.C. Compositional and functional variations of oral microbiota associated with the mutational changes in oral cancer. Oral Oncol. 2018, 77, 1–8. [Google Scholar] [CrossRef]
- Issrani, R.; Reddy, J.; Dabah, T.H.E.; Prabhu, N. Role of Oral Microbiota in Carcinogenesis: A Short Review. J. Cancer Prev. 2022, 27, 16–21. [Google Scholar] [CrossRef]
- Herreros-Pomares, A.; Hervás, D.; Bagan-Debón, L.; Jantus-Lewintre, E.; Gimeno-Cardona, C.; Bagan, J. On the Oral Microbiome of Oral Potentially Malignant and Malignant Disorders: Dysbiosis, Loss of Diversity, and Pathogens Enrichment. Int. J. Mol. Sci. 2023, 24, 3466. [Google Scholar] [CrossRef]
- Multhoff, G.; Molls, M.; Radons, J. Chronic inflammation in cancer development. Front. Immunol. 2011, 2, 98. [Google Scholar] [CrossRef]
- Kim, E.H.; Nam, S.; Park, C.H.; Kim, Y.; Lee, M.; Ahn, J.B.; Shin, S.J.; Park, Y.R.; Jung, H.I.; Kim, B.I.; et al. Periodontal disease and cancer risk: A nationwide population-based cohort study. Front. Oncol. 2022, 12, 901098. [Google Scholar] [CrossRef]
- Bai, X.; Cui, C.; Yin, J.; Li, H.; Gong, Q.; Wei, B.; Lu, Y. The association between oral hygiene and head and neck cancer: A meta-analysis. Acta Odontol. Scand. 2023, 81, 374–395. [Google Scholar] [CrossRef]
- Takahashi, Y.; Park, J.; Hosomi, K.; Yamada, T.; Kobayashi, A.; Yamaguchi, Y.; Iketani, S.; Kunisawa, J.; Mizuguchi, K.; Maeda, N.; et al. Analysis of oral microbiota in Japanese oral cancer patients using 16S rRNA sequencing. J. Oral. Biosci. 2019, 61, 120–128. [Google Scholar] [CrossRef]
- Perera, M.; Al-Hebshi, N.; Perera, I.; Ipe, D.; Ulett, G.; Speicher, D.; Chen, T.; Johnson, N. Inflammatory Bacteriome and Oral Squamous Cell Carcinoma. J. Dent. Res. 2018, 97, 725–732. [Google Scholar] [CrossRef]
- Orlandi, E.; Iacovelli, N.A.; Tombolini, V.; Rancati, T.; Polimeni, A.; De Cecco, L.; Valdagni, R.; De Felice, F. Potential role of microbiome in oncogenesis, outcome prediction and therapeutic targeting for head and neck cancer. Oral. Oncol. 2019, 99, 104453. [Google Scholar] [CrossRef]
- Chan, J.Y.K.; Ng, C.W.K.; Lan, L.; Fung, S.; Li, J.W.; Cai, L.; Lei, P.; Mou, Q.; Meehan, K.; Lau, E.H.L.; et al. Restoration of the Oral Microbiota after Surgery for Head and Neck Squamous Cell Carcinoma Is Associated with Patient Outcomes. Front. Oncol. 2021, 11, 737843. [Google Scholar] [CrossRef]
- Castañeda-Corzo, G.J.; Infante-Rodríguez, L.F.; Villamil-Poveda, J.C.; Bustillo, J.; Cid-Arregui, A.; García-Robayo, D.A. Association of Prevotella intermedia with oropharyngeal cancer: A patient-control study. Heliyon 2023, 9, e14293. [Google Scholar] [CrossRef]
- He, S.; Chakraborty, R.; Ranganathan, S. Metaproteomic Analysis of an Oral Squamous Cell Carcinoma Dataset Suggests Diagnostic Potential of the Mycobiome. Int. J. Mol. Sci. 2023, 24, 1050. [Google Scholar] [CrossRef]
- Galvin, S.; Moran, G.P.; Healy, C.M. Influence of site and smoking on malignant transformation in the oral cavity: Is the microbiome the missing link? Front. Oral Health 2023, 4, 1166037. [Google Scholar] [CrossRef]
- Hora, S.S.; Patil, S.K. Oral Microflora in the Background of Oral Cancer: A Review. Cureus 2022, 14, e33129. [Google Scholar] [CrossRef]
- Gopinath, D.; Menon, R.K.; Wie, C.C.; Banerjee, M.; Panda, S.; Mandal, D.; Behera, P.K.; Roychoudhury, S.; Kheur, S.; Botelho, M.G.; et al. Differences in the bacteriome of swab, saliva, and tissue biopsies in oral cancer. Sci. Rep. 2021, 11, 1181. [Google Scholar] [CrossRef]
- Cawson, R.A. Leukoplakia and oral cancer. Proc. R. Soc. Med. 1969, 62, 610–615. [Google Scholar] [CrossRef]
- Williamson, D.M. Chronic hyperplastic candidiasis and squamous carcinoma. Br. J. Dermatol. 1969, 81, 125–127. [Google Scholar] [CrossRef]
- Krogh, P.; Hald, B.; Holmstrup, P. Possible mycological etiology of oral mucosal cancer: Catalytic potential of infecting Candida albicans and other yeasts in production of N-nitrosobenzyl- methylamine. Carcinogenesis 1987, 8, 1543–1548. [Google Scholar] [CrossRef]
- Berkovits, C.; Tóth, A.; Szenzenstein, J.; Deák, T.; Urbán, E.; Gácser, A.; Nagy, K. Analysis of oral yeast microflora in patients with oral squamous cell carcinoma. SpringerPlus 2016, 5, 1257. [Google Scholar] [CrossRef]
- Bansal, R.; Pallagatti, S.; Sheikh, S.; Aggarwal, A.; Gupta, D.; Singh, R. Candidal Species Identification in Malignant and Potentially Malignant Oral Lesions with Antifungal Resistance Patterns. Contemp. Clin. Dent. 2018, 9 (Suppl. 2), S309–S313. [Google Scholar] [CrossRef]
- Sitheeque, M.A.M.; Samaranayake, L.P. Chronic hyperplastic candidosis/Candidiasis (Candidal leukoplakia). Crit. Rev. Oral Biol. Med. 2003, 14, 253–267. [Google Scholar] [CrossRef]
- Sankari, S.L.; Mahalakshmi, K.; Kumar, V.N. A comparative study of Candida species diversity among patients with oral squamous cell carcinoma and oral potentially malignant disorders. BMC Res. Notes 2020, 13, 488. [Google Scholar] [CrossRef] [PubMed]
- Mohd Bakri, M.; Mohd Hussaini, H.; Rachel Holmes, A.; David Cannon, R.; Mary Rich, A. Revisiting the association between candidal infection and carcinoma, particularly oral squamous cell carcinoma. J. Oral Microbiol. 2010, 2, 5780. [Google Scholar] [CrossRef] [PubMed]
- Santacroce, L.; Di Cosola, M.; Bottalico, L.; Topi, S.; Charitos, I.; Ballini, A.; Inchingolo, F.; Cazzolla, A.; Dipalma, G. Focus on HPV Infection and the Molecular Mechanisms of Oral Carcinogenesis. Viruses 2021, 13, 559. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.; Nagi, R.; Sandeep, T.; Patil, D.J.; Choudhary, R.; Kaur, A. Identification of Candida albicans and nonalbicans candida resistant species in tobacco users and oral squamous cell carcinoma patients: Comparison of HiCrome agar and automated VITEK 2 system. J. Oral Maxillofac. Pathol. 2021, 25, 551–552. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Luo, Q.; Ding, J.; Yang, M.; Zhang, R.; Chen, F. Zymosan promotes proliferation, Candida albicans adhesion and IL-1beta production of oral squamous cell carcinoma in vitro. Infect. Agents Cancer 2020, 15, 51. [Google Scholar] [CrossRef]
- Vadovics, M.; Ho, J.; Igaz, N.; Alföldi, R.; Rakk, D.; Veres, É.; Szücs, B.; Horváth, M.; Tóth, R.; Szücs, A.; et al. Candida albicans Enhances the Progression of Oral Squamous Cell Carcinoma In Vitro and In Vivo. mBio 2022, 13, e0314421. [Google Scholar] [CrossRef] [PubMed]
- Goertzen, C.; Mahdi, H.; Laliberte, C.; Meirson, T.; Eymael, D.; Gil-Henn, H.; Magalhaes, M. Oral inflammation promotes oral squamous cell carcinoma invasion. Oncotarget 2018, 9, 29047–29063. [Google Scholar] [CrossRef]
- Sanketh, D.S.; Patil, S.; Rao, R.S. Estimating the frequency of Candida in oral squamous cell carcinoma using Calcofluor White fluorescent stain. J. Investig. Clin. Dent. 2015, 7, 304–307. [Google Scholar] [CrossRef]
- Singh, S.K.; Gupta, A.; Rajan, S.Y.; Padmavathi, B.N.; Mamatha, G.P.; Mathur, H.; Bhuvaneshwari, S.; Soundarya, S. Correlation of presence of Candida and epithelial dysplasia in oral mucosal lesions. J. Clin. Diagn. Res. 2014, 8, ZC31–ZC35. [Google Scholar] [CrossRef]
- Jepsen, A.; Winther, J.E. Mycotic infection in oral leukoplakia. Acta Odontol. Scand. 1965, 23, 239–256. [Google Scholar] [CrossRef]
- Daftary, D.K.; Mehta, F.S.; Gupta, P.C.; Pindborg, J.J. The presence of Candida in 723 oral leukoplakias among Indian villagers. Scand. J. Dent. Res. 1972, 80, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Muller, S.; Tilakaratne, W.M. Update from the 5th Edition of the World Health Organization Classification of Head and Neck Tumors: Tumours of the Oral Cavity and Mobile Tongue. Head Neck Pathol. 2022, 16, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Baek, K.; Choi, Y. The microbiology of oral lichen planus: Is microbial infection the cause of oral lichen planus? Mol. Oral Microbiol. 2018, 33, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Hulimane, S.; Maluvadi-Krishnappa, R.; Mulki, S.; Rai, H.; Dayakar, A.; Kabbinahalli, M. Speciation of Candida using CHROMagar in cases with oral epithelial dysplasia and squamous cell carcinoma. J. Clin. Exp. Dent. 2018, 10, e657–e660. [Google Scholar] [CrossRef] [PubMed]
- Nieminen, M.T.; Uittamo, J.; Salaspuro, M.; Rautemaa, R. Acetaldehyde production from ethanol and glucose by non-Candida albicans yeasts in vitro. Oral Oncol. 2009, 45, e245–e248. [Google Scholar] [CrossRef]
- Byadarahally Raju, S.; Rajappa, S. Isolation and identification of Candida from the oral cavity. ISRN Dent. 2011, 2011, 487921. [Google Scholar] [CrossRef]
- Sangoi, A.R.; Rogers, W.M.; Longacre, T.A.; Montoya, J.G.; Baron, E.J.; Banaei, N. Challenges and Pitfalls of Morphologic Identification of Fungal Infections in Histologic and Cytologic Specimens: A Ten-Year Retrospective Review at a Single Institution. Am. J. Clin. Pathol. 2009, 131, 364–375. [Google Scholar] [CrossRef]
- Reichart, P.; Samaranayake, L.; Philipsen, H. Pathology and clinical correlates in oral Candidiasis and its variants: A review. Oral Dis. 2008, 6, 85–91. [Google Scholar] [CrossRef]
- Tati, S.; Davidow, P.; McCall, A.; Hwang-Wong, E.; Rojas, I.G.; Cormack, B.; Edgerton, M. Candida glabrata Binding to Candida albicans Hyphae Enables Its Development in Oropharyngeal Candidiasis. PLoS Pathog. 2016, 12, e1005522. [Google Scholar] [CrossRef]
- Filler, S.G.; Sheppard, D.C. Fungal invasion of normally non-phagocytic host cells. PLoS Pathog. 2006, 2, e129. [Google Scholar] [CrossRef]
- Silva, S.; Negri, M.; Henriques, M.; Oliveira, R.; Williams, D.W.; Azeredo, J. Candida glabrata, Candida parapsilosis and Candida tropicalis: Biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol. Rev. 2012, 36, 288–305. [Google Scholar] [CrossRef]
- Phan, Q.T.; Myers, C.L.; Fu, Y.; Sheppard, D.C.; Yeaman, M.R.; Welch, W.H.; Ibrahim, A.S.; Edwards, J.E., Jr.; Filler, S.G. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol. 2007, 5, e64. [Google Scholar] [CrossRef] [PubMed]
- Dalle, F.; Wächtler, B.; L’Ollivier, C.; Holland, G.; Bannert, N.; Wilson, D.; Labruère, C.; Bonnin, A.; Hube, B. Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell Microbiol. 2010, 12, 248–271. [Google Scholar] [CrossRef] [PubMed]
- Zaura, E.; Pappalardo, V.Y.; Buijs, M.J.; Volgenant, C.M.C.; Brandt, B.W. Optimizing the quality of clinical studies on oral microbiome: A practical guide for planning, performing, and reporting. Periodontol. 2000 2021, 85, 210–236. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Li, Z.; Zhang, L.; Tian, Y.; Dong, D.; Peng, Y. Significance of hyphae formation in virulence of Candida tropicalis and transcriptomic analysis of hyphal cells. Microbiol. Res. 2016, 192, 65–72. [Google Scholar] [CrossRef]
- Zahra, K.F.; Lefter, R.; Ali, A.; Abdellah, E.C.; Trus, C.; Ciobica, A.; Timofte, D. The Involvement of the Oxidative Stress Status in Cancer Pathology: A Double View on the Role of the Antioxidants. Oxid. Med. Cell Longev. 2021, 2021, 9965916. [Google Scholar] [CrossRef]
- Pravin Charles, M.V.; Kali, A.; Joseph, N.M. Performance of chromogenic media for Candida in rapid presumptive identification of Candida species from clinical materials. Pharmacogn. Res. 2015, 7 (Suppl. 1), S69–S73. [Google Scholar]
- Muñoz-Cadavid, C.; Rudd, S.; Zaki, S.R.; Patel, M.; Moser, S.A.; Brandt, M.E.; Gómez, B.L. Improving molecular detection of fungal DNA in formalin-fixed paraffin-embedded tissues: Comparison of five tissue DNA extraction methods using panfungal PCR. J. Clin. Microbiol. 2010, 48, 2147–2153. [Google Scholar] [CrossRef]
- Arya, C.P.; Jaiswal, R.; Tandon, A.; Jain, A. Isolation and identification of oral Candida species in potentially malignant disorder and oral squamous cell carcinoma. Natl. J. Maxillofac. Surg. 2021, 12, 387–391. [Google Scholar] [CrossRef]
- Alnuaimi, A.D.; Ramdzan, A.N.; Wiesenfeld, D.; O’Brien-Simpson, N.M.; Kolev, S.D.; Reynolds, E.C.; McCullough, M.J. Candida virulence and ethanol-derived acetaldehyde production in oral cancer and non-cancer subjects. Oral Dis. 2016, 22, 805–814. [Google Scholar] [CrossRef]
- Roy, S.K.; Astekar, M.; Sapra, G.; Chitlangia, R.K.; Raj, N. Evaluation of candidal species among individuals with oral potentially malignant disorders and oral squamous cell carcinoma. J. Oral Maxillofac. Pathol. 2019, 23, 302. [Google Scholar] [PubMed]
- Birman, E.G.; Kignel, S.; Da Silveira, F.R.; Paula, C.R. Candida albicans: Frequency and characterization in oral cancer (Stage I) from smokers and drinkers. Rev. Iberoam. Micol. 1997, 14, 101–103. [Google Scholar] [PubMed]
- Williams, D.W.; Bartie, K.L.; Potts, A.; Wilson, M.J.; Fardy, M.J.; Lewis, M. Strain persistence of invasive Candida albican in chronic hyperplastic candidosis that underwent malignant change. Gerodontology 2001, 18, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Ayuningtyas, N.F.; Mahdani, F.Y.; Pasaribu, T.A.S.; Chalim, M.; Ayna, V.K.P.; Santosh, A.B.R.; Santacroce, L.; Surboyo, M.D.C. Role of Candida albicans in Oral Carcinogenesis. Pathophysiology 2022, 29, 650–662. [Google Scholar] [CrossRef]
- Prieto-Correa, J.R.; Bologna-Molina, R.; González-González, R.; Molina-Frechero, N.; Soto-Ávila, J.J.; Isiordia-Espinoza, M.; Márquez, M.C.; Verdín, S.L. DNA oxidative damage in oral cancer: 8-hydroxy-2′-deoxyguanosine immunoexpression assessment. Med. Oral Patol. Oral Cir. Bucal 2023, 20, 25924. [Google Scholar] [CrossRef]
- de Barros, P.P.; Rossoni, R.D.; Freire, F.; Ribeiro, F.C.; Lopes, L.A.D.C.; Junqueira, J.C.; Jorge, A.O.C. Candida tropicalis affects the virulence profile of Candida albicans: An in vitro and in vivo study. Pathog. Dis. 2018, 76, fty014. [Google Scholar] [CrossRef]
- Zuza-Alves, D.L.; Silva-Rocha, W.P.; Chaves, G.M. An Update on Candida tropicalis Based on Basic and Clinical Approaches. Front. Microbiol. 2017, 8, 1927. [Google Scholar] [CrossRef]
- de Souza, C.M.; Dos Santos, M.M.; Furlaneto-Maia, L.; Furlaneto, M.C. Adhesion and biofilm formation by the opportunistic pathogen Candida tropicalis: What do we know? Can. J. Microbiol. 2023, 69, 207–218. [Google Scholar] [CrossRef]
- Hosida, T.Y.; Cavazana, T.P.; Henriques, M.; Pessan, J.P.; Delbem, A.C.B.; Monteiro, D.R. Interactions between Candida albicans and Candida glabrata in biofilms: Influence of the strain type, culture medium and glucose supplementation. Mycoses 2018, 61, 270–278. [Google Scholar] [CrossRef]
- Henriques, M.; Hayes, A.; Oliveira, R.; Azeredo, J.; Williams, D.W. Candida glabrata and Candida albicans co-infection of an in vitro oral epithelium. J. Oral Pathol. Med. 2011, 40, 421–427. [Google Scholar]
- Dilhari, A.; Weerasekera, M.M.; Siriwardhana, A.; Maheshika, O.; Gunasekara, C.; Karunathilaka, S.; Nagahawatte, A.; Fernando, N. Candida infection in oral leukoplakia: An unperceived public health problem. Acta Odontol. Scand. 2016, 74, 565–569. [Google Scholar] [CrossRef] [PubMed]
- Slazhneva, E.; Tikhomirova, E.; Tsarev, V.; Orekhova, L.; Loboda, E.; Atrushkevich, V. Candida species detection in patients with chronic periodontitis: A systematic review and meta-analysis. Clin. Exp. Dent. Res. 2022, 8, 1354–1375. [Google Scholar] [CrossRef] [PubMed]
- Suresh Unniachan, A.; Krishnavilasom Jayakumari, N.; Sethuraman, S. Association between Candida species and periodontal disease: A systematic review. Curr. Med. Mycol. 2020, 6, 63–68. [Google Scholar] [CrossRef] [PubMed]
Target Yeast | Oligonucleotide Sequence (5′ → 3′) | Length (bp) | Annealing Temperature (°C) | |
---|---|---|---|---|
C. albicans | Calb F | TTTATCAACTTGTCACACCAGA | 273 | 51 |
Calb R | ATCCCGCCTTACCACTACCG | |||
C. glabrata | Cgact1 F | GACGGCGATTATGAGTTAGGAG | 102 | 53 |
Cgact1 R | GTAGCATCTGTGCAGGTAGTT | |||
C. kruseii | Trfp4 F | AGGCAGCAGACTTGTACCTT | 183 | 54 |
Trfp4 R | TGCCCAGTTTCGAGGTGAGA | |||
C. tropicalis | Trf4 F | TGTTGGTGGTCTTGGTGGGT | 108 | 57 |
Trf4 R | ACCCCCAAATTGTCTAATGCAC | |||
C. parapsilosis | Sadh F | ACCCGTTGTGAGAAGTGCCA | 124 | 57 |
Sadh R | ACCAAGCCTATGTCCGCAACT |
C. Species | Preincubation Stage | Amplification Stage (45 Cycles) | Melting Stage | Cooling Stage |
---|---|---|---|---|
C. albicans | 95 °C for 10 min | 95 °C for 10 s | 95 °C for 10 s | 37 °C for 30 s |
51 °C for 10 s | 65 °C for 60 s | |||
72 °C for 12 s | 97 °C for 1 s | |||
C. kruseii | 95 °C for 10 min | 95 °C for 10 s | 95 °C for 10 s | 37 °C for 30 s |
54 °C for 10 s | 65 °C for 60 s | |||
72 °C for 10 s | 97 °C for 1 s | |||
C. glabrata | 95 °C for 10 min | 95 °C for 10 s | 95 °C for 10 s | 37 °C for 30 s |
53 °C for 10 s | 65 °C for 60 s | |||
72 °C for 6 s | 97 °C for 1 s | |||
C. parapsilosis | 95 °C for 10 min | 95 °C for 10 s | 95 °C for 10 s | 37 °C for 30 s |
57 °C for 10 s | 65 °C for 60 s | |||
72 °C for 6 s | 97 °C for 1 s | |||
C. tropicalis | 95 °C for 10 min | 95 °C for 10 s | 95 °C for 10 s | 37 °C for 30 s |
57 °C for 10 s | 65 °C for 60 s | |||
72 °C for 6 s | 97 °C for 1 s |
Primer | Slope | PCR Efficiency (%) | Linearity (R2) | y-Intercept | |
---|---|---|---|---|---|
C. albicans | Calb F–Calb R | −3.3350 | 99 | 0.98 | 40.05 |
C. glabrata | Cgact1 F–Cgact1 R | −3.3366 | 99 | 0.99 | 35.56 |
C. kruseii | Trfp4 F–Trfp4 R | −3.3300 | 100 | 1.00 | 33.77 |
C. tropicalis | Trf4 F–Trf4 R | −3.3557 | 99 | 1.00 | 33.24 |
C. parapsilosis | Sadh F–Sadh R | −3.3350 | 99 | 1.00 | 36.05 |
Histopathological Diagnosis | Gender (n) | Age (Mean ± SD) | Total (n = 80) | |||
---|---|---|---|---|---|---|
Male | Female | Male | Female | Age (Mean ± SD) | Denture Use | |
Benign (no dysplasia) | 9 | 11 | 47.56 ± 8.33 | 46.5 ± 8.36 | 46.45 ± 8.16 | 1 FPD (n = 6) |
Mild/moderate dysplasia | 11 | 9 | 59.18 ± 7.01 | 58.7 ± 6.9 | 58.7 ± 6.90 | FPD (n = 3), 2 RPD (n = 2) |
Carcinoma in-situ | 14 | 6 | 70.1 ± 5.34 | 68.9 ± 4.8 | 70.1 ± 5.34 | FPD (n = 3), RPD (n = 4), 3 CD (n = 2) |
OSSC | 12 | 8 | 69.1 ± 5.35 | 68.23 ± 4.98 | 69.05 ± 5.02 | FPD (n = 2), RPD (n = 5), CD (n = 4) |
Total | 46 | 34 | 63.34 ± 11.19 | 58 ± 11.45 | 61.07 ± 11.54 | n = 31 (38.7%) |
Histopathological Diagnosis | C. albicans | C. glabrata | C. kruseii | C. tropicalis | C. parapsilosis | |||||
---|---|---|---|---|---|---|---|---|---|---|
Males (n) | Females (n) | Males (n) | Females (n) | Males (n) | Females (n) | Males (n) | Females (n) | Males (n) | Females (n) | |
Benign (no dysplasia) | 6 | 2 | 5 | 6 | 4 | 2 | - | - | 1 | 2 |
Mild/moderate dysplasia | 11 | 7 | 6 | 5 | 4 | 5 | 6 | 1 | 1 | 2 |
Carcinoma in-situ | 9 | 3 | 2 | 4 | 7 | 3 | - | 1 | - | - |
OSSC | 4 | 2 | 3 | 5 | 5 | 3 | 2 | - | - | 1 |
Total | 30 * | 14 | 16 | 20 * | 20 | 13 | 8 | 2 | 2 | 5 |
Numbers of Positive Samples | ||||||
---|---|---|---|---|---|---|
Histopathological Diagnosis | Number of Samples | C. albicans(%) | C. glabrata (%) | C. kruseii (%) | C. tropicalis (%) | C. parapsilosis (%) |
Benign | 20 | 8 (40) | 11 (55) | 6 (30) | ND | 3 (15) |
Mild/moderate dysplasia | 20 | 18 (90) * | 11 (55) | 9 (45) | 7 (35) * | 3 (15) |
Carcinoma in-situ | 20 | 12 (60) | 6 (30) | 10 (50) | 1 (5) | ND |
OSSC | 20 | 6 (30) | 8 (40) | 8 (40) | 2 (10) | 1 (5) |
Total | 80 | 44 (55) | 36 (45) | 33 (41.25) | 10 (12.5) | 7 (8.75) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
İlhan, B.; Vural, C.; Gürhan, C.; Vural, C.; Veral, A.; Wilder-Smith, P.; Özdemir, G.; Güneri, P. Real-Time PCR Detection of Candida Species in Biopsy Samples from Non-Smokers with Oral Dysplasia and Oral Squamous Cell Cancer: A Retrospective Archive Study. Cancers 2023, 15, 5251. https://doi.org/10.3390/cancers15215251
İlhan B, Vural C, Gürhan C, Vural C, Veral A, Wilder-Smith P, Özdemir G, Güneri P. Real-Time PCR Detection of Candida Species in Biopsy Samples from Non-Smokers with Oral Dysplasia and Oral Squamous Cell Cancer: A Retrospective Archive Study. Cancers. 2023; 15(21):5251. https://doi.org/10.3390/cancers15215251
Chicago/Turabian Styleİlhan, Betül, Caner Vural, Ceyda Gürhan, Cansu Vural, Ali Veral, Petra Wilder-Smith, Güven Özdemir, and Pelin Güneri. 2023. "Real-Time PCR Detection of Candida Species in Biopsy Samples from Non-Smokers with Oral Dysplasia and Oral Squamous Cell Cancer: A Retrospective Archive Study" Cancers 15, no. 21: 5251. https://doi.org/10.3390/cancers15215251
APA Styleİlhan, B., Vural, C., Gürhan, C., Vural, C., Veral, A., Wilder-Smith, P., Özdemir, G., & Güneri, P. (2023). Real-Time PCR Detection of Candida Species in Biopsy Samples from Non-Smokers with Oral Dysplasia and Oral Squamous Cell Cancer: A Retrospective Archive Study. Cancers, 15(21), 5251. https://doi.org/10.3390/cancers15215251