Potential Associations between Vascular Biology and Hodgkin’s Lymphoma: An Overview
Abstract
:Simple Summary
Abstract
1. Introduction
2. Brief History of HL
3. General Characteristics of HL
3.1. Molecular Networks in HL
3.2. Vascular Biology of HL and Survival Rates
Study | Proteins | Tumor Activity | Vascular Biology |
---|---|---|---|
[55,100,101] | TNF receptor superfamily member 8 (CD30), 13B (CD267), 17 and 11A | Induces paracrine activation of NF-κB, thereby supporting HRS cell survival. | CD30 and CD30L were involved in pulmonary vascular remodeling and inflammatory response in COPD. |
[55,102,103] | IL-13, IL-13 receptor subunit α1 | Autocrine and paracrine activation of JAK–STAT pathways support enhanced cell growth. | Chemokine modulation in vascular smooth muscle cells; selectively induces vascular cell adhesion molecule-1 expression. |
[55] | IL-21, IL-21 receptor | Autocrine and paracrine activation of JAK–STAT pathways support enhanced cell growth. | |
[14] | Fator tecidual–TF/TNF/IL-1/E-selectina | Coagulation disorders. | Endothelial modulation, permeability, and chemotaxis. |
[94,104] | Effector cell protease receptor-1 | Activation marker for Reed–Sternberg cells. | Leukocyte cell surface receptor for the coagulation protease Factor Xa. |
[105] | lymphotoxin-α | HRS cells secrete lymphotoxin-α which acts on endothelial cells to upregulate the expression of adhesion molecules that are important for T-cell recruitment. | Regulates lymphocyte growth and function. |
[106] | CXCL10, CXCL12, CCL21 | Were expressed on the malignant cells and/or vascular endothelium. | (CXCL10) Inducing intracellular calcium influx, DNA synthesis, cell proliferation, and chemotaxis; (CXCL12) cell migration and its binding to the CXCR4 receptor is involved in the process of tumor growth, angiogenesis, and metastasis; (CCL21) chemoattractant to guide naïve CCR7 expressing T cells to the T-cell zone. |
[14] | ELAM-1/VCAM-1 | Pronounced in cases of nodular sclerosis and was associated with a significantly higher content of perivascular neutrophils. | ELAM-1 plays an important role in recruiting leukocytes to the site of injury. (VCAM-1) Mediates adhesion of lymphocytes, monocytes, eosinophils, and basophils to vascular endothelium. It also acts on leukocyte-endothelial cell signal transduction. |
[13] | Neutrophil release extracellular traps (NETs); PAR-2 | NETs associated with the inflammatory process. | (NETs) Innate immunity pathogen containment mechanism; (PAR2) fibroblast proliferation, regulation of cytokines and vasodilation. |
[55,107] | Programmed cell death 1, ligand 1 and 2 | Genomic amplification and rearrangements. | Suppression of the immune response. |
[108,109] | Latent membrane protein 1 | Activation of the NF-κB pathway, thereby supporting survival of HRS cells in EBV-positive c’L. | It is not a human protein, it is a viral protein found in the Epstein–Barr virus. |
[55] | BDNF/NT-3 growth factor receptor | Involved in cell adhesion, proliferation, and extracellular matrix remodeling. | |
[110,111] | Platelet-derived growth factor receptor-α | Involved in cell adhesion, proliferation, and extracellular matrix remodeling. | Cell growth, proliferation, differentiation, and migration. Maintenance of various tissues in the body, including the nervous system, kidneys, and blood vessels. |
[101,112,113] | MHC class II transactivator | Loss of effective antigen presentation. | Transcriptional coactivator that plays a critical role in the adaptive immune system by regulating the expression of MHC class II molecules. |
3.3. Preclinical Models of HL
3.4. Emerging Therapies and Clinical Perspectives for HL
Study | Phase | Drug/Intervention | Country | Objective | Conclusions |
---|---|---|---|---|---|
[153] | II | Pembrolizumab added to chemotherapy with ifosfamide, carboplatin, and etoposide | USA | Assessment of complete response rate using 18F-fluorodeoxyglucose positron emission tomography with computed tomography after salvage therapy for patients with relapsed or refractory classic HL. | The addition of pembrolizumab to chemotherapy with ifosfamide, carboplatin, and etoposide was well tolerated and highly effective compared to previous reports of chemotherapy only regimens, supporting further investigation in patients with relapsed or refractory classical Hodgkin’s lymphoma eligible for an autologous cell–cell transplant. stem. |
[154] | II | Brentuximab vedotin | China | To evaluate the efficacy, safety, and pharmacokinetics of single-agent brentuximab vedotin in Chinese patients with relapsed/refractory classical HL or systemic anaplastic large cell lymphoma. | Brentuximab vedotin had a positive benefit–risk profile for Chinese patients, confirming it as a potential treatment option. |
[155] | I/II | Nanoparticle albumin-bound (nab) paclitaxel | USA | To determine the safety and efficacy of nab-paclitaxel in patients with relapsed/refractory lymphoma, HL, and N-HL. | The study was terminated prematurely because the overall response rate was 10% with two partial responses. The maximum dose tested was well tolerated and grade 3/4 hematologic adverse events, including neutropenia 25%, thrombocytopenia 20%, and anemia 15%, were modest. |
[156] | II | Combination of hyperbaric oxygen pretreatment with autologous peripheral blood stem cell transplantation | USA | To determine the safety of hyperbaric oxygen intervention and its effectiveness in reducing neutrophil and platelet-engraftment time compared to matched historical controls in patients with multiple myeloma, non-Hodgkin’s lymphoma, and Hodgkin’s disease eligible for auto hematopoietic cell transplantation. | Hyperbaric oxygen injection appears to be well tolerated in the context of high-dose therapy and auto hematopoietic cell transplantation. The authors also indicated that prospective studies are necessary to confirm the potential benefits of hyperbaric oxygen therapy in relation to earlier recovery of blood counts, reduction in mucositis and use of growth factors, and a cost–benefit analysis would be necessary. |
[145] | II | Liposomal doxorubicin supercharge | Italy | To evaluate the impact of liposomal doxorubicin supercharge-containing therapy on interim fluorodeoxyglucose positron emission tomography responses in high-risk diffuse large B-cell lymphoma or classical HL. | Presents convincing evidence that up-front treatments with R-COMP and MBVD schedules, including increasing dosages of liposomal doxorubicin, are a “proof of concept” for testing them in large multicenter phase III clinical trials. |
Responsible/expected completion date | Phase | Drug/intervention | Country | Objectives | Registry |
González-Ramella, 2024 [157] | IV | Pentoxifylline | Mexico | To evaluate the potentiating effect of pentoxifylline on tumor apoptosis in combination with chemotherapy in pediatric patients and adolescents and young adults with HL. | NCT05490953 |
Sass et al., 2022 [158] | II | GHSG-AFM13 | Germany | Demonstrate the efficacy of AFM13 with an optimized treatment schedule. | NCT02321592 |
Castellino et al./NCI (Nacional cancer institute), 2029 [159] | III | Brentuximabe vedotina | USA/Canada | To evaluate the use of brentuximab vedotin in chemotherapy combination for the treatment of HL in children. | NCT02166463 |
Zinzani et al./Merck Sharp & Dohme LLC, 2025 [160] | III | Pembrolizumbe (MK-3475) | USA | To evaluate pembrolizumab (MK-3475) in the treatment of participants with relapsed or refractory classical HL. | NCT02684292 |
Gillessen et al., 2022 [161] | II | Ruxolitinib | Germany | To evaluate the safety and efficacy of ruxolitinib in patients with recurrent classical HL. | NCT02164500 |
Herrera et al./City of Hope Medical Center, 2023 [162] | II | Nivolumab and brentuximab vedotin | USA | Evaluate the efficacy of nivolumab plus brentuximab vedotin consolidation after autologous stem cell transplantation in participants with relapsed/refractory HL. | NCT03057795 |
Ansell et al., 2026 [163] | III | Brentuximab vedotin/doxorubicin/ bleomycin/vinblastine/dacarbazine | USA | To evaluate two intervention protocols in the treatment of HL as first-choice therapy. | NCT01712490 |
Hochberg et al. New York Medical College, 2022 [164] | II | Brentuximab vedotin/ doxorubicin/vincristine/rituximab | USA | To evaluate the addition of brentuximab vedotin to combination chemotherapy in children, adolescents, and young adults with all stages of newly diagnosed HL. | NCT02398240 |
Prof. Dr. Andreas Garcia-Marquez et al. University of Cologne, 2023 [165] | II | anti-PDI-1 nivolumab | Germany | To demonstrate the efficacy of the two experimental treatment strategies and improve first-line treatment for early unfavorable cHL through the introduction of the anti-PD-1 antibody nivolumab. | NCT03004833 |
Cai, Q.; Sun, Yat-sen, 2026 [166] | II | Penpulimab and AVD/ sequential penpulimab and AVD | China | To evaluate the safety and effectiveness of penpulimab combined with AVD in patients with newly diagnosed advanced classical HL. | NCT05949931 |
Weidong, H., Chinese PLA General Hospital, 2026 [167] | I/II | SHR2554 + SHR1701/SHR-1701 | China | Phase I dose escalation, evaluate the safety and feasibility of SHR1701 in patients with relapsed or refractory classical HL. Phase II, evaluate the antitumor effect of SHR1701 alone or in combination with SHR2554. | NCT05896046 |
Gloria, G. Biosciences Co., Ltd., 2025 [168] | III | GLS-010 | China | To evaluate the efficacy of GLS-010 in participants with relapsed or refractory classical HL. | NCT05518318 |
Akeso, 2026 [169] | III | Penpulimab | China | To evaluate the efficacy of penpulimab compared to standard chemotherapy. | NCT05244642 |
Sharp, M., LLC, D, 2031 [170] | III | Favezelimabe/pembrolizumabe | USA | Compare the efficacy of this co-formulated favezelimab/pembrolizumab (MK-4280A) with chemotherapy. | NCT05508867 |
Linfomi, F.I (ETS), 2028 [171] | I/II | Atezolizumab | Italy | To evaluate the safety of atezolizumab combined with the BEGEV regimen. | NCT05300282 |
GmbH, A, 2027 [172] | II | AFM13 em combinação com AB-101 | Germany | To evaluate the safety and efficacy of AFM13 in combination with AB-101 in subjects with classic HL. | NCT05883449 |
Institute, N.C (NCI), 2026 [173] | II | Mosunetuzumab | USA | To compare mosunetuzumab to usual care (rituximab) to improve survival in patients with nodular Hodgkin lymphoma. | NCT05886036 |
4. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaseb, H.; Babiker, H.M. Hodgkin Lymphoma; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. C.A. Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Huang, J.; Pang, W.S.; Lok, V.; Zhang, L.; Lucero-Prisno, D.E.; Xu, W.; Zheng, Z.J.; Elcarte, E.; Withers, M.; Wong, M.C.S.; et al. Incidence, Mortality, Risk Factors, and Trends for Hodgkin Lymphoma: A Global Data Analysis. J. Hematol. Oncol. 2022, 15, 57. [Google Scholar] [CrossRef] [PubMed]
- Aldinucci, D.; Celegato, M.; Casagrande, N. Microenvironmental Interactions in Classical Hodgkin Lymphoma and Their Role in Promoting Tumor Growth, Immune Escape and Drug Resistance. Cancer Lett. 2016, 380, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Bispo, J.A.B.; Pinheiro, P.S.; Kobetz, E.K. Epidemiology and Etiology of Leukemia and Lymphoma. Cold Spring Harb. Perspect. Med. 2020, 10, a034819. [Google Scholar] [CrossRef] [PubMed]
- Jona, A.; Szodoray, P.; Illés, A. Immunologic Pathomechanism of Hodgkin’s Lymphoma. Exp. Hematol. 2013, 41, 995–1004. [Google Scholar] [CrossRef]
- Liu, Y.; Abdul Razak, F.R.; Terpstra, M.; Chan, F.C.; Saber, A.; Nijland, M.; van Imhoff, G.; Visser, L.; Gascoyne, R.; Steidl, C.; et al. The Mutational Landscape of Hodgkin Lymphoma Cell Lines Determined by Whole-Exome Sequencing. Leukemia 2014, 28, 2248–2251. [Google Scholar] [CrossRef]
- Kushekhar, K.; van den Berg, A.; Nolte, I.; Hepkema, B.; Visser, L.; Diepstra, A. Genetic Associations in Classical Hodgkin Lymphoma: A Systematic Review and Insights into Susceptibility Mechanisms. Cancer Epidemiol. Biomark. Prev. 2014, 23, 2737–2747. [Google Scholar] [CrossRef]
- Murray, P.G.; Young, L.S. An Etiological Role for the Epstein-Barr Virus in the Pathogenesis of Classical Hodgkin Lymphoma. Blood 2019, 134, 591–596. [Google Scholar] [CrossRef]
- Nohtani, M.; Vrzalikova, K.; Ibrahim, M.; Powell, J.E.; Fennell, É.; Morgan, S.; Grundy, R.; McCarthy, K.; Dewberry, S.; Bouchal, J.; et al. Impact of Tumor Epstein-Barr Virus Status on Clinical Outcome in Patients with Classical Hodgkin Lymphoma (cHL): A Review of the Literature and Analysis of a Clinical Trial Cohort of Children with cHL. Cancers 2022, 14, 4297. [Google Scholar] [CrossRef]
- Khan, M.; Hagemeister, F.; Wang, M.; Ahmed, S. A Review of Pathobiology and Therapies for Classic Hodgkin Lymphoma. Blood Rev. 2022, 55, 100949. [Google Scholar] [CrossRef]
- Yaacoub, K.; Pedeux, R.; Tarte, K.; Guillaudeux, T. Role of the Tumor Microenvironment in Regulating Apoptosis and Cancer Progression. Cancer Lett. 2016, 378, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Francischetti, I.M.B.; Alejo, J.C.; Sivanandham, R.; Davies-Hill, T.; Fetsch, P.; Pandrea, I.; Jaffe, E.S.; Pittaluga, S. Neutrophil and Eosinophil Extracellular Traps in Hodgkin Lymphoma. Hemasphere 2021, 5, e633. [Google Scholar] [CrossRef] [PubMed]
- Ruco, L.P.; Pittiglio, M.; Dejana, E.; Baroni, C.D. Vascular Activation in the Histopathogenesis of Hodgkin’s Disease: Potential Role of Endothelial Tissue Factor in Intravascular Thrombosis and Necrosis. J. Pathol. 1993, 171, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Giles, F.J. The Vascular Endothelial Growth Factor (VEGF) Signaling Pathway: A Therapeutic Target in Patients with Hematologic Malignancies. Oncologist 2001, 6 (Suppl. S5), 32–39. [Google Scholar] [CrossRef] [PubMed]
- Lv, K.; Li, X.; Yu, H.; Chen, X.; Zhang, M.; Wu, X. Selection of New Immunotherapy Targets for NK/T Cell Lymphoma. Am. J. Transl. Res. 2020, 12, 7034–7047. [Google Scholar]
- Filipiak, J.; Boinska, J.; Ziołkowska, K.; Zduńska, M.; Zarychta, E.; Rość, D. Assessment of Endothelial Progenitor Cells, VEGF-A and SDF-1α in Hodgkin’s Lymphoma. Blood Coagul. Fibrinolysis 2021, 32, 266–272. [Google Scholar] [CrossRef]
- Yamaguchi, J.; Chinen, Y.; Takimoto-Shimomura, T.; Nagata, H.; Muramatsu, A.; Kuriyama, K.; Ohshiro, M.; Hirakawa, Y.; Iwai, T.; Uchiyama, H.; et al. Prediction of Delayed Platelet Engraftment After Autologous Stem Cell Transplantation for B-Cell Non-Hodgkin Lymphoma. Leuk. Lymphoma 2019, 60, 3434–3441. [Google Scholar] [CrossRef]
- Rosmarin, A. Leukemia, Lymphoma, and Myeloma. In Cancer: Prevention, Early Detection, Treatment and Recovery; Stein, G.S., Luebbers, K.P., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 299–316. [Google Scholar]
- Holmes, F.A.; Walters, R.S.; Theriault, R.L.; Forman, A.D.; Newton, L.K.; Raber, M.N.; Buzdar, A.U.; Frye, D.K.; Hortobagyi, G.N. Phase II Trial of Taxol, an Active Drug in the Treatment of Metastatic Breast Cancer. J. Natl. Cancer Inst. 1991, 83, 1797–1805. [Google Scholar] [CrossRef]
- Kaplan, H.S. Hodgkin’s Disease, 2nd ed.; Harvard University Press: Cambridge, MA, USA, 1980. [Google Scholar]
- Yung, L.; Linch, D. Hodgkin’s Lymphoma. Lancet 2003, 361, 943–951. [Google Scholar] [CrossRef]
- Watanabe, M.; Dewan, M.Z.; Taira, M.; Shoda, M.; Honda, M.; Sata, T.; Higashihara, M.; Kadin, M.E.; Watanabe, T.; Yamamoto, N.; et al. IκBα Independent Induction of NF-κB and Its Inhibition by DHMEQ in Hodgkin/Reed-Sternberg Cells. Lab. Investig. 2007, 87, 372–382. [Google Scholar] [CrossRef]
- O’Leary, M.; Krailo, M.; Anderson, J.R.; Reaman, G.H.; Children’s Oncology Group. Progress in Childhood Cancer: 50 Years of Research Collaboration, a Report from the Children’s Oncology Group. Semin. Oncol. 2008, 35, 484–493. [Google Scholar] [CrossRef] [PubMed]
- Strebhardt, K.; Ullrich, A. Paul Ehrlich’s Magic Bullet Concept: 100 Years of Progress. Nat. Rev. Cancer 2008, 8, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Reichel, J.; Chadburn, A.; Rubinstein, P.G.; Giulino-Roth, L.; Tam, W.; Liu, Y.; Gaiolla, R.; Eng, K.; Brody, J.; Inghirami, G.; et al. Flow Sorting and Exome Sequencing Reveal the Oncogenome of Primary Hodgkin and Reed-Sternberg Cells. Blood 2015, 125, 1061–1072. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.A.; Seibel, N.L.; Altekruse, S.F.; Ries, L.A.; Melbert, D.L.; O’Leary, M.; Smith, F.O.; Reaman, G.H. Outcomes for Children and Adolescents with Cancer: Challenges for the Twenty-First Century. J. Clin. Oncol. 2010, 28, 2625–2634. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.W.; Gascoyne, R.D. The Tumor Microenvironment in B Cell Lymphomas. Nat. Rev. Cancer 2014, 14, 517–534. [Google Scholar] [CrossRef]
- Katz, J.; Janik, J.E.; Younes, A. Brentuximab Vedotin (SGN-35). Clin. Cancer Res. 2011, 17, 6428–6436. [Google Scholar] [CrossRef]
- Kirilovsky, A.; Marliot, F.; El Sissy, C.; Haicheur, N.; Galon, J.; Pagès, F. Rational Bases for the Use of the Immunoscore in Routine Clinical Settings as a Prognostic and Predictive Biomarker in Cancer Patients. Int. Immunol. 2016, 28, 373–382. [Google Scholar] [CrossRef]
- Makuku, R.; Khalili, N.; Razi, S.; Keshavarz-Fathi, M.; Rezaei, N. Current and Future Perspectives of PD-1/PDL-1 Blockade in Cancer Immunotherapy. J. Immunol. Res. 2021, 2021, 6661406. [Google Scholar] [CrossRef]
- Al-Tashi, Q.; Saad, M.B.; Muneer, A.; Qureshi, R.; Mirjalili, S.; Sheshadri, A.; Le, X.; Vokes, N.I.; Zhang, J.; Wu, J. Machine Learning Models for the Identification of Prognostic and Predictive Cancer Biomarkers: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 7781. [Google Scholar] [CrossRef]
- Martin, B.R. Foresight in Science and Technology. Technol. Anal. Strateg. Manag. 1995, 7, 139–168. [Google Scholar] [CrossRef]
- Grover, R.B. The Relationship Between Science and Technology and Evolution in Methods of Knowledge Production. Indian J. Hist. Sci. 2019, 54, 50–68. [Google Scholar] [CrossRef]
- Aggarwal, P.; Limaiem, F. Reed Sternberg Cells. In StatPearls [Internet]; STatPearls Publishing: St. Petersburg, FL, USA, 2023. [Google Scholar]
- Küppers, R.; Hansmann, M.L. The Hodgkin and Reed/Sternberg Cell. Int. J. Biochem. Cell Biol. 2005, 37, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Quintanilla-Martinez, L.; Fend, F.; Moguel, L.R.; Spilove, L.; Beaty, M.W.; Kingma, D.W.; Raffeld, M.; Jaffe, E.S. Peripheral T-Cell Lymphoma with Reed-Sternberg-Like Cells of B-Cell Phenotype and Genotype Associated with Epstein-Barr Virus Infection. Am. J. Surg. Pathol. 1999, 23, 1233–1240. [Google Scholar] [CrossRef]
- Küppers, R.; Rajewsky, K. The Origin of Hodgkin and Reed/Sternberg Cells in Hodgkin’s Disease. Annu. Rev. Immunol. 1998, 16, 471–493. [Google Scholar] [CrossRef] [PubMed]
- Schmid, C.; Pan, L.; Diss, T.; Isaacson, P.G. Expression of B-Cell Antigens by Hodgkin’s and Reed-Sternberg Cells. Am. J. Pathol. 1991, 139, 701–707. [Google Scholar]
- Liu, J.; Lau, S.K.; Varma, V.A.; Kairdolf, B.A.; Nie, S. Multiplexed Detection and Characterization of Rare Tumor Cells in Hodgkin’s Lymphoma with Multicolor Quantum Dots. Anal. Chem. 2010, 82, 6237–6243. [Google Scholar] [CrossRef]
- Steidl, C.; Telenius, A.; Shah, S.P.; Farinha, P.; Barclay, L.; Boyle, M.; Connors, J.M.; Horsman, D.E.; Gascoyne, R.D. Genome-Wide Copy Number Analysis of Hodgkin Reed-Sternberg Cells Identifies Recurrent Imbalances with Correlations to Treatment Outcome. Blood 2010, 116, 418–427. [Google Scholar] [CrossRef]
- Dumitru, A.V.; Țăpoi, D.A.; Halcu, G.; Munteanu, O.; Dumitrascu, D.I.; Ceaușu, M.C.; Gheorghișan-Gălățeanu, A.A. The Polyvalent Role of CD30 for Cancer Diagnosis and Treatment. Cells 2023, 12, 1783. [Google Scholar] [CrossRef]
- Bertuzzi, C.; Sabattini, E.; Agostinelli, C. Immune Microenvironment Features and Dynamics in Hodgkin Lymphoma. Cancers 2021, 13, 3634. [Google Scholar] [CrossRef]
- Kumar, D.; Xu, M.L. Microenvironment Cell Contribution to Lymphoma Immunity. Front. Oncol. 2018, 8, 288. [Google Scholar] [CrossRef]
- Pileri, S.A.; Ascani, S.; Leoncini, L.; Sabattini, E.; Zinzani, P.L.; Piccaluga, P.P.; Pileri, A.; Giunti, M.; Falini, B.; Bolis, G.B.; et al. Hodgkin’s Lymphoma: The Pathologist’s Viewpoint. J. Clin. Pathol. 2002, 55, 162–176. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Balhara, K.; Rana, D.; Kumar, R.; Dhankar, N.; Singh, S.; Bellichukki, P.; Paul, S.; Chartian, S.M. Lymph Node Cytology: Morphology and Beyond. In Advances in Fine Needle Aspiration Cytopathology; IntechOpen: Rijeka, Croatia, 2023. [Google Scholar]
- Sharma, S.K. Basics of Hematopoietic Stem Cell Transplant; Springer Nature Publishing: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Aldinucci, D.; Gloghini, A.; Pinto, A.; De Filippi, R.; Carbone, A. The Classical Hodgkin’s Lymphoma Microenvironment and Its Role in Promoting Tumour Growth and Immune Escape. J. Pathol. 2010, 221, 248–263. [Google Scholar] [CrossRef] [PubMed]
- Küppers, R. The Biology of Hodgkin’s Lymphoma. Nat. Rev. Cancer 2009, 9, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Tamma, R.; Ingravallo, G.; Gaudio, F.; d’Amati, A.; Masciopinto, P.; Bellitti, E.; Lorusso, L.; Annese, T.; Benagiano, V.; Musto, P.; et al. The Tumor Microenvironment in Classic Hodgkin’s Lymphoma in Responder and No-Responder Patients to First Line ABVD Therapy. Cancers 2023, 15, 2803. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Ye, L.; Yu, X.; Jin, K.; Wu, W. Focus on Mast Cells in the Tumor Microenvironment: Current Knowledge and Future Directions. Biochim. Biophys. Acta Rev. Cancer 2023, 1878, 188845. [Google Scholar] [CrossRef]
- Weniger, M.A.; Küppers, R. Molecular Biology of Hodgkin Lymphoma. Leukemia 2021, 35, 968–981. [Google Scholar] [CrossRef]
- Menéndez, V.; Solórzano, J.L.; Fernández, S.; Montalbán, C.; García, J.F. The Hodgkin Lymphoma Immune Microenvironment: Turning Bad News into Good. Cancers 2022, 14, 1360. [Google Scholar] [CrossRef]
- Calabretta, E.; d’Amore, F.; Carlo-Stella, C. Immune and Inflammatory Cells of the Tumor Microenvironment Represent Novel Therapeutic Targets in Classical Hodgkin Lymphoma. Int. J. Mol. Sci. 2019, 20, 5503. [Google Scholar] [CrossRef]
- Connors, J.M.; Cozen, W.; Steidl, C.; Carbone, A.; Hoppe, R.T.; Flechtner, H.H.; Bartlett, N.L. Author Correction: Hodgkin Lymphoma. Nat. Rev. Dis. Primers 2021, 7, 79. [Google Scholar] [CrossRef]
- Das, K.; Mukherjee, T.; Shankar, P. The Role of Extracellular Vesicles in the Pathogenesis of Hematological Malignancies: Interaction with Tumor Microenvironment; a Potential Biomarker and Targeted Therapy. Biomolecules 2023, 13, 897. [Google Scholar] [CrossRef]
- Gusak, A.; Fedorova, L.; Lepik, K.; Volkov, N.; Popova, M.; Moiseev, I.; Mikhailova, N.; Baykov, V.; Kulagin, A. Immunosuppressive Microenvironment and Efficacy of PD-1 Inhibitors in Relapsed/Refractory Classic Hodgkin Lymphoma: Checkpoint Molecules Landscape and Macrophage Populations. Cancers 2021, 13, 5676. [Google Scholar] [CrossRef] [PubMed]
- Cellini, A.; Scarmozzino, F.; Angotzi, F.; Ruggeri, E.; Dei Tos, A.P.; Trentin, L.; Pizzi, M.; Visentin, A. Tackling the Dysregulated Immune-Checkpoints in Classical Hodgkin Lymphoma: Bidirectional Regulations Between the Microenvironment and Hodgkin/Reed-Sternberg Cells. Front. Oncol. 2023, 13, 1203470. [Google Scholar] [CrossRef]
- Veldman, J.; Visser, L.; Berg, A.V.D.; Diepstra, A. Primary and Acquired Resistance Mechanisms to Immune Checkpoint Inhibition in Hodgkin Lymphoma. Cancer Treat. Rev. 2020, 82, 101931. [Google Scholar] [CrossRef] [PubMed]
- Nagpal, P.; Descalzi-Montoya, D.B.; Lodhi, N. The Circuitry of the Tumor Microenvironment in Adult and Pediatric Hodgkin Lymphoma: Cellular Composition, Cytokine Profile, EBV, and Exosomes. Cancer Rep. 2021, 4, e1311. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Xu, J. Immune Modulation by Mesenchymal Stem Cells. Cell Prolif. 2020, 53, e12712. [Google Scholar] [CrossRef]
- Liu, Y.; Sattarzadeh, A.; Diepstra, A.; Visser, L.; van den Berg, A. The Microenvironment in Classical Hodgkin Lymphoma: An Actively Shaped and Essential Tumor Component. Semin. Cancer Biol. 2014, 24, 15–22. [Google Scholar] [CrossRef]
- Petty, A.J.; Yang, Y. Tumor-Associated Macrophages in Hematologic Malignancies: New Insights and Targeted Therapies. Cells 2019, 8, 1526. [Google Scholar] [CrossRef]
- Skinnider, B.F.; Mak, T.W. The Role of Cytokines in Classical Hodgkin Lymphoma. Blood 2002, 99, 4283–4297. [Google Scholar] [CrossRef]
- Zijtregtop, E.A.M.; van der Strate, I.; Beishuizen, A.; Zwaan, C.M.; Scheijde-Vermeulen, M.A.; Brandsma, A.M.; Meyer-Wentrup, F. Biology and Clinical Applicability of Plasma Thymus and Activation-Regulated Chemokine (Tarc) in Classical Hodgkin Lymphoma. Cancers 2021, 13, 884. [Google Scholar] [CrossRef]
- Menzel, L.; Höpken, U.E.; Rehm, A. Angiogenesis in Lymph Nodes Is a Critical Regulator of Immune Response and Lymphoma Growth. Front. Immunol. 2020, 11, 591741. [Google Scholar] [CrossRef]
- Lasky, J.L.; Ponzio, N.M.; Thorbecke, G.J. Characterization and Growth Factor Requirements of SJL Lymphomas. I. Development of a B Cell Growth Factor-Dependent In Vitro Cell Line, cRCS-X. J. Immunol. 1988, 140, 679–687. [Google Scholar] [CrossRef]
- Ribatti, D.; Tamma, R.; Annese, T.; d’Amati, A.; Ingravallo, G.; Specchia, G. Vascular Growth in Lymphomas: Angiogenesis and Alternative Ways. Cancers 2023, 15, 3262. [Google Scholar] [CrossRef] [PubMed]
- Zerangian, N.; Erabi, G.; Poudineh, M.; Monajjem, K.; Diyanati, M.; Khanlari, M.; Khalaji, A.; Allafi, D.; Faridzadeh, A.; Amali, A.; et al. Venous Thromboembolism in Viral Diseases: A Comprehensive Literature Review. Health Sci. Rep. 2023, 6, e1085. [Google Scholar] [CrossRef] [PubMed]
- Jing, H.; Wu, X.; Xiang, M.; Wang, C.; Novakovic, V.A.; Shi, J. Microparticle Phosphatidylserine Mediates Coagulation: Involvement in Tumor Progression and Metastasis. Cancers 2023, 15, 1957. [Google Scholar] [CrossRef]
- Küppers, R.; Engert, A.; Hansmann, M.L. Hodgkin Lymphoma. J. Clin. Investig. 2012, 122, 3439–3447. [Google Scholar] [CrossRef]
- Zalpoor, H.; Aziziyan, F.; Liaghat, M.; Bakhtiyari, M.; Akbari, A.; Nabi-Afjadi, M.; Forghaniesfidvajani, R.; Rezaei, N. The Roles of Metabolic Profiles and Intracellular Signaling Pathways of Tumor Microenvironment Cells in Angiogenesis of Solid Tumors. Cell Commun. Signal. 2022, 20, 186. [Google Scholar] [CrossRef]
- Schmitz, R.; Stanelle, J.; Hansmann, M.L.; Küppers, R. Pathogenesis of Classical and Lymphocyte-Predominant Hodgkin Lymphoma. Annu. Rev. Pathol. 2009, 4, 151–174. [Google Scholar] [CrossRef] [PubMed]
- Kaloni, D.; Diepstraten, S.T.; Strasser, A.; Kelly, G.L. BCL-2 Protein Family: Attractive Targets for Cancer Therapy. Apoptosis 2023, 28, 20–38. [Google Scholar] [CrossRef]
- Dermani, F.K.; Samadi, P.; Rahmani, G.; Kohlan, A.K.; Najafi, R. PD-1/PD-L1 Immune Checkpoint: Potential Target for Cancer Therapy. J. Cell. Physiol. 2019, 234, 1313–1325. [Google Scholar] [CrossRef]
- Kierans, S.J.; Taylor, C.T. Regulation of Glycolysis by the Hypoxia-Inducible Factor (HIF): Implications for Cellular Physiology. J. Physiol. 2021, 599, 23–37. [Google Scholar] [CrossRef]
- Aldinucci, D.; Borghese, C.; Casagrande, N. Formation of the Immunosuppressive Microenvironment of Classic Hodgkin Lymphoma and Therapeutic Approaches to Counter It. Int. J. Mol. Sci. 2019, 20, 2416. [Google Scholar] [CrossRef]
- Herraez, I.; Bento, L.; Del Campo, R.; Sas, A.; Ramos, R.; Ibarra, J.; Mestre, F.; Alemany, R.; Bargay, J.; Sampol, A.; et al. Prognostic Role of the Red Blood Cell Distribution Width (RDW) in Hodgkin Lymphoma. Cancers 2020, 12, 3262. [Google Scholar] [CrossRef] [PubMed]
- Mulrooney, D.A.; Ness, K.K.; Solovey, A.; Hebbel, R.P.; Neaton, J.D.; Peterson, B.A.; Lee, C.K.; Kelly, A.S.; Neglia, J.P. Pilot Study of Vascular Health in Survivors of Hodgkin Lymphoma. Pediatr. Blood Cancer 2012, 59, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Amer, M.H. Gene Therapy for Cancer: Present Status and Future Perspective. Mol. Cell. Ther. 2014, 2, 27. [Google Scholar] [CrossRef] [PubMed]
- Kinlay, S.; Michel, T.; Leopold, J.A. The Future of Vascular Biology and Medicine. Circulation 2016, 133, 2603–2609. [Google Scholar] [CrossRef]
- Cassetta, L.; Pollard, J.W. Targeting Macrophages: Therapeutic Approaches in Cancer. Nat. Rev. Drug Discov. 2018, 17, 887–904. [Google Scholar] [CrossRef]
- Roullet, M.R.; Bagg, A. Recent Insights into the Biology of Hodgkin Lymphoma: Unraveling the Mysteries of the Reed-Sternberg Cell. Expert Rev. Mol. Diagn. 2007, 7, 805–820. [Google Scholar] [CrossRef]
- Croft, M.; Duan, W.; Choi, H.; Eun, S.Y.; Madireddi, S.; Mehta, A. TNF Superfamily in Inflammatory Disease: Translating Basic Insights. Trends Immunol. 2012, 33, 144–152. [Google Scholar] [CrossRef]
- Salmaninejad, A.; Valilou, S.F.; Soltani, A.; Ahmadi, S.; Abarghan, Y.J.; Rosengren, R.J.; Sahebkar, A. Tumor-Associated Macrophages: Role in Cancer Development and Therapeutic Implications. Cell. Oncol. 2019, 42, 591–608. [Google Scholar] [CrossRef]
- Akdis, M.; Aab, A.; Altunbulakli, C.; Azkur, K.; Costa, R.A.; Crameri, R.; Duan, S.; Eiwegger, T.; Eljaszewicz, A.; Ferstl, R.; et al. Interleukins (from IL-1 to IL-38), Interferons, Transforming Growth Factor β, and TNF-α: Receptors, Functions, and Roles in Diseases. J. Allergy Clin. Immunol. 2016, 138, 984–1010. [Google Scholar] [CrossRef]
- Søndergaard, H.; Skak, K. IL-21: Roles in Immunopathology and Cancer Therapy. Tissue Antigens 2009, 74, 467–479. [Google Scholar] [CrossRef] [PubMed]
- Spolski, R.; Leonard, W.J. Interleukin-21: A Double-Edged Sword with Therapeutic Potential. Nat. Rev. Drug Discov. 2014, 13, 379–395. [Google Scholar] [CrossRef] [PubMed]
- Shimokawa, T.; Yamamoto, K.; Kojima, T.; Saito, H. Down-Regulation of Murine Tissue Factor Pathway Inhibitor mRNA by Endotoxin and Tumor Necrosis Factor-α In Vitro and In Vivo. Thromb. Res. 2000, 100, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, G.; Tschöp, M.; Fischer, R.; Bidlingmaier, C.; Riepl, R.; Tschöp, K.; Hautmann, H.; Endres, S.; Toepfer, M. High Altitude Increases Circulating Interleukin-6, Interleukin-1 Receptor Antagonist and C-Reactive Protein. Cytokine 2000, 12, 246–252. [Google Scholar] [CrossRef]
- Wautier, J.L.; Wautier, M.P. Vascular Permeability in Diseases. Int. J. Mol. Sci. 2022, 23, 3645. [Google Scholar] [CrossRef]
- Yu, R.; Hou, C.; Peng, Y.; Zhu, X.; Shi, C.; Huang, D.; Miao, Y.; Li, Q. The Mechanism Underlying ICAM-1 and E-selectin-Mediated Hypertriglyceridemic Pancreatitis-Associated Lung Injury. Mol. Immunol. 2022, 152, 55–66. [Google Scholar] [CrossRef]
- Bilotta, M.T.; Antignani, A.; Fitzgerald, D.J. Managing the TME to Improve the Efficacy of Cancer Therapy. Front. Immunol. 2022, 13, 954992. [Google Scholar] [CrossRef]
- Adida, C.; Ambrosini, G.; Plescia, J.; Crotty, P.L.; Costa, J.; Altieri, D.C. Protease Receptors in Hodgkin’s Disease: Expression of the Factor Xa Receptor, Effector Cell Protease Receptor-1, in Reed-Sternberg Cells. Blood 1996, 88, 1457–1464. [Google Scholar] [CrossRef]
- Alobaidi, A.H.; Alsamarai, A.M.; Alsamarai, M.A. Inflammation in Asthma Pathogenesis: Role of T Cells, Macrophages, Epithelial Cells and Type 2 Inflammation. Antiinflamm. Antiallergy. Agents Med. Chem. 2021, 20, 317–332. [Google Scholar] [CrossRef]
- Skibola, C.F.; Bracci, P.M.; Nieters, A.; Brooks-Wilson, A.; de Sanjosé, S.; Hughes, A.M.; Cerhan, J.R.; Skibola, D.R.; Purdue, M.; Kane, E.; et al. Tumor Necrosis Factor (TNF) and Lymphotoxin-α (LTA) Polymorphisms and Risk of Non-Hodgkin Lymphoma in the InterLymph Consortium. Am. J. Epidemiol. 2010, 171, 267–276. [Google Scholar] [CrossRef]
- de la Cruz-Merino, L.; Lejeune, M.; Nogales Fernández, E.; Henao Carrasco, F.; Grueso López, A.; Illescas Vacas, A.; Pulla, M.P.; Callau, C.; Álvaro, T. Role of Immune Escape Mechanisms in Hodgkin’s Lymphoma Development and Progression: A Whole New World with Therapeutic Implications. Clin. Dev. Immunol. 2012, 2012, 756353. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T. Approaches of the Innate Immune System to Ameliorate Adaptive Immunotherapy for B-Cell Non-Hodgkin Lymphoma in Their Microenvironment. Cancers 2021, 14, 141. [Google Scholar] [CrossRef] [PubMed]
- Peña-Romero, A.C.; Orenes-Piñero, E. Dual Effect of Immune Cells within Tumor Microenvironment: Pro- and Anti-tumor Effects and Their Triggers. Cancers 2022, 14, 1681. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Liu, Y.; Chen, D.; Chen, F.; Lan, H.B.; Xie, C. CD30 Is Highly Expressed in Chronic Obstructive Pulmonary Disease and Induces the Pulmonary Vascular Remodeling. BioMed Res. Int. 2018, 2018, 3261436. [Google Scholar] [CrossRef]
- Steidl, C.; Shah, S.P.; Woolcock, B.W.; Rui, L.; Kawahara, M.; Farinha, P.; Johnson, N.A.; Zhao, Y.; Telenius, A.; Neriah, S.B.; et al. MHC Class II Transactivator CIITA Is a Recurrent Gene Fusion Partner in Lymphoid Cancers. Nature 2011, 471, 377–381. [Google Scholar] [CrossRef]
- Jordan, N.J.; Watson, M.L.; Williams, R.J.; Roach, A.G.; Yoshimura, T.; Westwick, J. Chemokine Production by Human Vascular Smooth Muscle Cells: Modulation by IL-13. Br. J. Pharmacol. 1997, 122, 749–757. [Google Scholar] [CrossRef]
- Bochner, B.S.; Klunk, D.A.; Sterbinsky, S.A.; Coffman, R.L.; Schleimer, R.P. IL-13 Selectively Induces Vascular Cell Adhesion Molecule-1 Expression in Human Endothelial Cells. J. Immunol. 1995, 154, 799–803. [Google Scholar] [CrossRef]
- Altieri, D.C. Molecular Cloning of Effector Cell Protease receptor-1, a Novel Cell Surface Receptor for the Protease Factor Xa. J. Biol. Chem. 1994, 269, 3139–3142. [Google Scholar] [CrossRef]
- Fhu, C.W.; Graham, A.M.; Yap, C.T.; Al-Salam, S.; Castella, A.; Chong, S.M.; Lim, Y.C. Reed-Sternberg Cell–Derived Lymphotoxin-α Activates Endothelial Cells to Enhance T-Cell Recruitment in Classical Hodgkin Lymphoma. Blood 2014, 124, 2973–2982. [Google Scholar] [CrossRef]
- Machado, L.; Jarrett, R.; Morgan, S.; Murray, P.; Hunter, B.; Hamilton, E.; Crocker, J.; Thomas, W.; Steven, N.; Ismail, T.; et al. Expression and Function of T Cell Homing Molecules in Hodgkin’s Lymphoma. Cancer Immunol. Immunother. 2009, 58, 85–94. [Google Scholar] [CrossRef]
- Sharpe, A.H.; Wherry, E.J.; Ahmed, R.; Freeman, G.J. The Function of Programmed Cell Death 1 and Its Ligands in Regulating Autoimmunity and Infection. Nat. Immunol. 2007, 8, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Vockerodt, M.; Yap, L.F.; Shannon-Lowe, C.; Curley, H.; Wei, W.; Vrzalikova, K.; Murray, P.G. The Epstein-Barr Virus and the Pathogenesis of Lymphoma. J. Pathol. 2015, 235, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Larroche, C.; Mouthon, L. Pathogenesis of Hemophagocytic Syndrome (HPS). Autoimmun. Rev. 2004, 3, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Andrae, J.; Gallini, R.; Betsholtz, C. Role of Platelet-Derived Growth Factors in Physiology and Medicine. Genes Dev. 2008, 22, 1276–1312. [Google Scholar] [CrossRef]
- Baj-Krzyworzeka, M.; Majka, M.; Pratico, D.; Ratajczak, J.; Vilaire, G.; Kijowski, J.; Reca, R.; Janowska-Wieczorek, A.; Ratajczak, M.Z. Platelet-Derived Microparticles Stimulate Proliferation, Survival, Adhesion, and Chemotaxis of Hematopoietic Cells. Exp. Hematol. 2002, 30, 450–459. [Google Scholar] [CrossRef]
- Muhlethaler-Mottet, A.; Otten, L.A.; Steimle, V.; Mach, B. Expression of MHC Class II Molecules in Different Cellular and Functional Compartments Is Controlled by Differential Usage of Multiple Promoters of the Transactivator CIITA. EMBO J. 1997, 16, 2851–2860. [Google Scholar] [CrossRef]
- Roemer, M.G.M.; Redd, R.A.; Cader, F.Z.; Pak, C.J.; Abdelrahman, S.; Ouyang, J.; Sasse, S.; Younes, A.; Fanale, M.; Santoro, A.; et al. Major Histocompatibility Complex Class II and Programmed Death Ligand 1 Expression Predict Outcome After Programmed Death 1 Blockade in Classic Hodgkin Lymphoma. J. Clin. Oncol. 2018, 36, 942–950. [Google Scholar] [CrossRef]
- Jin, K.T.; Du, W.L.; Lan, H.R.; Liu, Y.Y.; Mao, C.S.; Du, J.L.; Mou, X.Z. Development of Humanized Mouse with Patient-Derived Xenografts for Cancer Immunotherapy Studies: A Comprehensive Review. Cancer Sci. 2021, 112, 2592–2606. [Google Scholar] [CrossRef]
- Kametani, Y.; Ohno, Y.; Ohshima, S.; Tsuda, B.; Yasuda, A.; Seki, T.; Ito, R.; Tokuda, Y. Humanized Mice as an Effective Evaluation System for Peptide Vaccines and Immune Checkpoint Inhibitors. Int. J. Mol. Sci. 2019, 20, 6337. [Google Scholar] [CrossRef]
- Kumari, R.; Ouyang, X.; Wang, J.; Xu, X.; Zheng, M.; An, X.; Li, Q.X. Preclinical Pharmacology Modeling of Chimeric Antigen Receptor T Therapies. Curr. Opin. Pharmacol. 2021, 61, 49–61. [Google Scholar] [CrossRef]
- Shnyder, S.D.; Chatterji, S.K.; El-Khamisy, S. Animal Models in Monoclonal Immunoglobulin-Related Diseases. In Paraproteinemia and Related Disorders; Springer: Berlin/Heidelberg, Germany, 2022; pp. 57–77. [Google Scholar]
- Casagrande, N.; Borghese, C.; Visser, L.; Mongiat, M.; Colombatti, A.; Aldinucci, D. CCR5 Antagonism by Maraviroc Inhibits Hodgkin Lymphoma Microenvironment Interactions and Xenograft Growth. Haematologica 2019, 104, 564–575. [Google Scholar] [CrossRef] [PubMed]
- Casagrande, N.; Borghese, C.; Favero, A.; Vicenzetto, C.; Aldinucci, D. Trabectedin Overcomes Doxorubicin-Resistance, Counteracts Tumor-Immunosuppressive Reprogramming of Monocytes and Decreases Xenograft Growth in Hodgkin Lymphoma. Cancer Lett. 2021, 500, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Giefing, M.; Gearhart, M.D.; Schneider, M.; Overbeck, B.; Klapper, W.; Hartmann, S.; Ustaszewski, A.; Weniger, M.A.; Wiehle, L.; Hansmann, M.L.; et al. Loss of Function Mutations of BCOR in Classical Hodgkin Lymphoma. Leuk. Lymphoma 2022, 63, 1080–1090. [Google Scholar] [CrossRef] [PubMed]
- Sakai, Y.; Rezano, A.; Okada, S.; Ohtsuki, T.; Kawashima, Y.; Tsukamoto, T.; Suzuki, M.; Kohara, M.; Takeya, M.; Sakaguchi, N.; et al. A Novel Cytological Model of B-Cell/Macrophage Biphenotypic Cell Hodgkin Lymphoma in ganp-Transgenic Mice. Cancers 2020, 12, 204. [Google Scholar] [CrossRef]
- Abbott, M.; Ustoyev, Y. Cancer and the Immune System: The History and Background of Immunotherapy. Semin. Oncol. Nurs. 2019, 35, 150923. [Google Scholar] [CrossRef]
- Schimmoeller, C.J.; Bastian, C.; Fleming, J.; Morales, J. A Review of Hodgkin Lymphoma in the Era of Checkpoint Inhibitors. Cureus 2023, 15, e41660. [Google Scholar] [CrossRef]
- Nakhoda, S.; Rizwan, F.; Vistarop, A.; Nejati, R. Updates in the Role of Checkpoint Inhibitor Immunotherapy in Classical Hodgkin’s Lymphoma. Cancers 2022, 14, 2936. [Google Scholar] [CrossRef]
- Si, Y.; Melkonian, A.L.; Curry, K.C.; Xu, Y.; Tidwell, M.; Liu, M.; Zaky, A.F.; Liu, X.M. Monoclonal Antibody-Based Cancer Therapies. Chin. J. Chem. Eng. 2021, 30, 301–307. [Google Scholar] [CrossRef]
- Meier, J.A.; Savoldo, B.; Grover, N.S. The Emerging Role of CAR T Cell Therapy in Relapsed/Refractory Hodgkin Lymphoma. J. Pers. Med. 2022, 12, 197. [Google Scholar] [CrossRef]
- Wang, C.M.; Wu, Z.Q.; Wang, Y.; Guo, Y.L.; Dai, H.R.; Wang, X.H.; Li, X.; Zhang, Y.J.; Zhang, W.Y.; Chen, M.X.; et al. Autologous T Cells Expressing CD30 Chimeric Antigen Receptors for Relapsed or Refractory Hodgkin Lymphoma: An Open-Label Phase I Trial. Clin. Cancer Res. 2017, 23, 1156–1166. [Google Scholar] [CrossRef]
- Ramos, C.A.; Ballard, B.; Zhang, H.; Dakhova, O.; Gee, A.P.; Mei, Z.; Bilgi, M.; Wu, M.F.; Liu, H.; Grilley, B.; et al. Clinical and Immunological Responses After CD30-Specific Chimeric Antigen Receptor-Redirected Lymphocytes. J. Clin. Investig. 2017, 127, 3462–3471. [Google Scholar] [CrossRef] [PubMed]
- Ramos, C.A.; Grover, N.S.; Beaven, A.W.; Lulla, P.D.; Wu, M.F.; Ivanova, A.; Wang, T.; Shea, T.C.; Rooney, C.M.; Dittus, C.; et al. Anti-CD30 CAR-T Cell Therapy in Relapsed and Refractory Hodgkin Lymphoma. J. Clin. Oncol. 2020, 38, 3794–3804. [Google Scholar] [CrossRef]
- Li, C.; Mei, H.; Hu, Y. Applications and Explorations of CRISPR/Cas9 in CAR T-Cell Therapy. Brief. Funct. Genom. 2020, 19, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Voorhees, T.J.; Zhao, B.; Oldan, J.; Hucks, G.; Kim, A.; Dittus, C.; Smith, J.; Morrison, J.K.; Cheng, C.J.; Ivanova, A.; et al. Pretherapy metabolic tumor volume is associated with response to CD30 CAR T cells in Hodgkin lymphoma. Blood Adv. 2022, 6, 1255–1263. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Li, Y.; Zhu, X.; He, Y.; Wu, Y.; Ying, T.; Xie, Z. Artificial Intelligence in Cancer Immunotherapy: Applications in Neoantigen Recognition, Antibody Design and Immunotherapy Response Prediction. In Seminars in Cancer Biology; Academic Press: Cambridge, MA, USA, 2023; Volume 91, pp. 50–69. [Google Scholar]
- Aggarwal, D.; Yang, J.; Salam, M.A.; Sengupta, S.; Al-Amin, M.Y.; Mustafa, S.; Khan, M.A.; Huang, X.; Pawar, J.S. Antibody-Drug Conjugates: The Paradigm Shifts in the Targeted Cancer Therapy. Front. Immunol. 2023, 14, 1203073. [Google Scholar] [CrossRef] [PubMed]
- Karihtala, K.; Leivonen, S.K.; Brück, O.; Karjalainen-Lindsberg, M.L.; Mustjoki, S.; Pellinen, T.; Leppä, S. Prognostic Impact of Tumor-Associated Macrophages on Survival Is Checkpoint Dependent in Classical Hodgkin Lymphoma. Cancers 2020, 12, 877. [Google Scholar] [CrossRef] [PubMed]
- Cencini, E.; Fabbri, A.; Sicuranza, A.; Gozzetti, A.; Bocchia, M. The Role of Tumor-Associated Macrophages in Hematologic Malignancies. Cancers 2021, 13, 3597. [Google Scholar] [CrossRef]
- Wang, J.; Mi, S.; Ding, M.; Li, X.; Yuan, S. Metabolism and polarization regulation of macrophages in the tumor microenvironment. Cancer Lett. 2022, 543, 215766. [Google Scholar] [CrossRef]
- Li, M.; Jiang, P.; Wei, S.; Wang, J.; Li, C. The role of macrophages-mediated communications among cell compositions of tumor microenvironment in cancer progression. Front. Immunol. 2023, 14, 1113312. [Google Scholar] [CrossRef]
- Song, J.; Xiao, T.; Li, M.; Jia, Q. Tumor-associated macrophages: Potential therapeutic targets and diagnostic markers in cancer. Pathol. Res. Pract. 2023, 249, 154739. [Google Scholar] [CrossRef]
- Werner, L.; Dreyer, J.H.; Hartmann, D.; Barros, M.H.M.; Büttner-Herold, M.; Grittner, U.; Niedobitek, G. Tumor-associated macrophages in classical Hodgkin lymphoma: Hormetic relationship to outcome. Sci. Rep. 2020, 10, 9410. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Xie, X.; Wang, Z.; Zhang, Y.; Wang, L. Tumor-associated macrophages in lymphoma: From mechanisms to therapy. Int. Immunopharmacol. 2022, 112, 109235. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, C.S.; Alves, É.A.R.; de Melo, C.P.; Corrêa-Oliveira, R.; Calzavara-Silva, C.E. Immunotherapy for cancer: Effects of iron oxide nanoparticles on polarization of tumor-associated macrophages. Nanomedicine 2021, 16, 2633–2650. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Cai, N.; Zhu, J.; Yang, X.; Liang, H.; Zhang, W. Tumor-associated macrophages in liver cancer: From mechanisms to therapy. Cancer Commun. 2022, 42, 1112–1140. [Google Scholar] [CrossRef]
- Benner, B.; Good, L.; Quiroga, D.; Schultz, T.E.; Kassem, M.; Carson, W.E.; Cherian, M.A.; Sardesai, S.; Wesolowski, R. Pexidartinib, a Novel Small Molecule CSF-1R Inhibitor in Use for Tenosynovial Giant Cell Tumor: A Systematic Review of Pre-Clinical and Clinical Development. Drug. Des. Devel. Ther. 2020, 14, 1693–1704. [Google Scholar] [CrossRef]
- Siddiqui, B.A.; Chapin, B.F.; Jindal, S.; Duan, F.; Basu, S.; Yadav, S.S.; Gu, A.D.; Espejo, A.B.; Kinder, M.; Pettaway, C.A.; et al. Immune and pathologic responses in patients with localized prostate cancer who received daratumumab (anti-CD38) or edicotinib (CSF-1R inhibitor). J. Immunother. Cancer 2023, 11, e006262. [Google Scholar] [CrossRef]
- Picardi, M.; Giordano, C.; Pugliese, N.; Esposito, M.; Fatigati, M.; Muriano, F.; Rascato, M.G.; Della Pepa, R.; D’Ambrosio, A.; Vigliar, E.; et al. Liposomal doxorubicin supercharge-containing front-line treatment in patients with advanced-stage diffuse large B-cell lymphoma or classical Hodgkin lymphoma: Preliminary results of a single-center phase II study. Br. J. Haematol. 2022, 198, 847–860. [Google Scholar] [CrossRef]
- Yang, S.; Shim, M.K.; Kim, W.J.; Choi, J.; Nam, G.H.; Kim, J.; Kim, J.; Moon, Y.; Kim, H.Y.; Park, J.; et al. Cancer-activated doxorubicin prodrug nanoparticles induce preferential immune response with minimal doxorubicin-related toxicity. Biomaterials 2021, 272, 120791. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, M.; Qin, Y.; Gao, W.; Tao, L.; Su, W.; Zhong, J. Neoantigen: A New Breakthrough in Tumor Immunotherapy. Front. Immunol. 2021, 12, 672356. [Google Scholar] [CrossRef]
- Yarchoan, M.; Johnson, B.A.; Lutz, E.R.; Laheru, D.A.; Jaffee, E.M. Targeting Neoantigens to Augment Antitumour Immunity. Nat. Rev. Cancer 2017, 17, 209–222. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, H.; Luo, J.; Liao, Y.; Dan, X.; Hu, G.; Gu, W. A Phase I Dose-Escalation Study of Neoantigen-Activated Haploidentical T Cell Therapy for the Treatment of Relapsed or Refractory Peripheral T-Cell Lymphoma. Front. Oncol. 2022, 12, 944511. [Google Scholar] [CrossRef] [PubMed]
- Caponnetto, A.; Battaglia, R.; Ragusa, M.; Barbagallo, D.; Lunelio, F.; Borzì, P.; Scollo, P.; Purrello, M.; Vento, M.E.; Di Pietro, C. Molecular Profiling of Follicular Fluid microRNAs in Young Women Affected by Hodgkin Lymphoma. Reprod. Biomed. Online 2021, 43, 1045–1056. [Google Scholar] [CrossRef] [PubMed]
- Balmayor, E.R. Synthetic mRNA–Emerging New Class of Drug for Tissue Regeneration. Curr. Opin. Biotechnol. 2022, 74, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Vavilis, T.; Stamoula, E.; Ainatzoglou, A.; Sachinidis, A.; Lamprinou, M.; Dardalas, I.; Vizirianakis, I.S. mRNA in the Context of Protein Replacement Therapy. Pharmaceutics 2023, 15, 166. [Google Scholar] [CrossRef] [PubMed]
- Bryan, L.J.; Casulo, C.; Allen, P.B.; Smith, S.E.; Savas, H.; Dillehay, G.L.; Karmali, R.; Pro, B.; Kane, K.L.; Bazzi, L.A.; et al. Pembrolizumab added to ifosfamide, carboplatin, and etoposide chemotherapy for relapsed or refractory classical Hodgkin lymphoma: A multi-institutional phase 2 Investigator-Initiated Nonrandomized Clinical Trial. JAMA Oncol. 2023, 9, 683–691. [Google Scholar] [CrossRef]
- Song, Y.; Guo, Y.; Huang, H.; Li, W.; Ke, X.; Feng, J.; Xu, W.; Miao, H.; Kinley, J.; Song, G.; et al. Phase II single-arm study of brentuximab vedotin in Chinese patients with relapsed/refractory Classical Hodgkin Lymphoma or systemic anaplastic large cell lymphoma. Expert Rev. Hematol. 2021, 14, 867–875. [Google Scholar] [CrossRef]
- Goyal, S.; Oak, E.; Luo, J.; Cashen, A.F.; Carson, K.; Fehniger, T.; DiPersio, J.; Bartlett, N.L.; Wagner-Johnston, N.D. Minimal Activity of Nanoparticle Albumin-Bound (Nab) Paclitaxel in Relapsed or Refractory Lymphomas: Results of a Phase-I Study. Leuk. Lymphoma 2018, 59, 357–362. [Google Scholar] [CrossRef]
- Abdelhakim, H.; Shune, L.; Bhatti, S.; Cantilena, A.R.; Baran, A.; Lin, T.L.; Ganguly, S.; Singh, A.K.; Abhyankar, S.; Divine, C.; et al. Results of the first clinical study in humans that combined Hyperbaric Oxygen pretreatment with autologous peripheral blood stem cell transplantation. Biol. Blood Marrow Transplant. 2019, 25, 1713–1719. [Google Scholar] [CrossRef]
- González-Ramella, R.Ó. Enhancing Effect on Tumor Apoptosis with the Use of Pentoxifylline in Patients with Hodgkin Lymphoma. Available online: https://clinicaltrials.gov/study/NCT05490953 (accessed on 23 October 2023).
- Sasse, S.; Bröckelmann, P.J.; Momotow, J.; Plütschow, A.; Hüttmann, A.; Basara, N.; Koenecke, C.; Martin, S.; Bentz, M.; Grosse-Thie, C.; et al. AFM13 in patients with relapsed or refractory classical Hodgkin lymphoma: Final results of an open-label, randomized, multicenter phase II trial. Leuk. Lymphoma 2022, 63, 1871–1878. [Google Scholar] [CrossRef]
- Castellino, S.M.; Pei, Q.; Parsons, S.K.; Hodgson, D.; McCarten, K.; Horton, T.; Cho, S.; Wu, Y.; Punnett, A.; Dave, H.; et al. Brentuximab vedotin with chemotherapy in pediatric high-risk Hodgkin’s Lymphoma. N. Engl. J. Med. 2022, 387, 1649–1660. [Google Scholar] [CrossRef]
- Zinzani, P.L.; Ramchandren, R.; Santoro, A.; Paszkiewicz-Kozik, E.; Gasiorowski, R.; Johnson, N.A.; de Oliveira, J.S.R.; Buccheri, V.; Perini, G.F.; Dickinson, M.; et al. Quality-of-life analysis of pembrolizumab vs brentuximab vedotin for relapsed/refractory classical Hodgkin lymphoma. Blood Adv. 2022, 6, 590–599. [Google Scholar] [CrossRef] [PubMed]
- Gillessen, S.; Pluetschow, A.; Vucinic, V.; Ostermann, H.; Kobe, C.; Bröckelmann, P.J.; Böll, B.; Eichenauer, D.A.; Heger, J.M.; Borchmann, S.; et al. JAK inhibition with ruxolitinib in relapsed or refractory classical Hodgkin lymphoma: Final results of a phase II, open-label, multicenter clinical trial (JeRiCHO). Eur. J. Haematol. 2022, 109, 728–735. [Google Scholar] [CrossRef] [PubMed]
- Herrera, A.F.; Chen, L.; Nieto, Y.; Holmberg, L.; Johnston, P.; Mei, M.; Popplewell, L.; Armenian, S.; Cao, T.; Farol, L.; et al. Brentuximab vedotin plus nivolumab after autologous haematopoietic stem-cell transplantation for adult patients with high-risk classic Hodgkin lymphoma: A multicentre, phase 2 trial. Lancet Haematol. 2023, 10, e14–e23. [Google Scholar] [CrossRef] [PubMed]
- Ansell, S.M.; Radford, J.; Connors, J.M.; Długosz-Danecka, M.; Kim, W.S.; Gallamini, A.; Ramchandren, R.; Friedberg, J.W.; Advani, R.; Hutchings, M.; et al. ECHELON-1 Study Group. Overall Survival with brentuximab vedotin for stage III or IV Hodgkin’s Lymphoma. N. Engl. J. Med. 2022, 387, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Hochberg, J.; Basso, J.; Shi, Q.; Klejmont, L.; Flower, A.; Bortfeld, K.; Harrison, L.; van de Vem, C.; Moorthy, C.; Islam, H.; et al. Risk-adapted chemoimmunotherapy using brentuximab vedotin and rituximab in children, adolescents, and young adults with newly diagnosed Hodgkin’s lymphoma: A phase II, non-randomized controlled trial. J. Immunother. Cancer 2022, 10, e004445. [Google Scholar] [CrossRef]
- Garcia-Marquez, M.A.; Thelen, M.; Reinke, S.; Keller, D.; Wennhold, K.; Lehmann, J.; Veldman, J.; Borchmann, S.; Rosenwald, A.; Sasse, S.; et al. Reverted exhaustion phenotype of circulating lymphocytes as immune correlate of anti-PD1 first-line treatment in Hodgkin lymphoma. Leukemia 2022, 36, 760–771. [Google Scholar] [CrossRef]
- Cai, Q.; Sun, Y. Pianzumab Combined with AVD Regimen in the Treatment of Newly-diagnosed Advanced Classic Hodgkin Lymphoma. Available online: https://clinicaltrials.gov/study/NCT05949931 (accessed on 23 October 2023).
- Weidong, H. SHR1701 Alone or in Combination with SHR2554 in Relapsed or Refractory Classical Hodgkin Lymphoma. Available online: https://clinicaltrials.gov/study/NCT05896046 (accessed on 23 October 2023).
- Gloria, G. GLS-010 Monotherapy versus Chemotherapy in Patients with Relapsed or Refractory Classical Hodgkin’s Lymphoma (R/R cHL). Available online: https://clinicaltrials.gov/study/NCT05518318 (accessed on 23 October 2023).
- Akeso. A Phase III Study to Evaluate the Efficacy and Safety of Penpulimab in the Relapsed and Refractory Classical Hodgkin’s Lymphoma. Available online: https://clinicaltrials.gov/study/NCT05244642 (accessed on 23 October 2023).
- Sharp, M.; LLC, D. A Study of Coformulated Favezelimab/Pembrolizumab (MK-4280A) versus Physician’s Choice Chemotherapy in PD-(L)1-refractory, Relapsed or Refractory Classical Hodgkin Lymphoma (MK-4280A-008). Available online: https://clinicaltrials.gov/study/NCT05508867 (accessed on 23 October 2023).
- Fondazione Italiana Linfomi (ETS). Study of Atezolizumab Plus BEGEV Regimen in Relapsed or Refractory Hodgkin’s Lymphoma Patients (FIL_A-BEGEV). Available online: https://classic.clinicaltrials.gov/ct2/show/NCT05300282 (accessed on 23 October 2023).
- GmbH, A. Phase 2 Study of AFM13 in Combination with AB-101 in Subjects with R/R HL and CD30+ PTCL (LuminICE-203). Available online: https://clinicaltrials.gov/study/NCT05883449 (accessed on 23 October 2023).
- Institute, N.C. Comparing the Effectiveness of the Immunotherapy Agents Rituximab or Mosunetuzumab in Patients with Nodular Lymphocyte-Predominant Hodgkin Lymphoma. Available online: https://www.clinicaltrials.gov/study/NCT05886036 (accessed on 23 October 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, W.F.; Miguel, C.B.; Abreu, M.C.M.d.; Neto, J.M.; Oliveira, C.J.F. Potential Associations between Vascular Biology and Hodgkin’s Lymphoma: An Overview. Cancers 2023, 15, 5299. https://doi.org/10.3390/cancers15215299
Rodrigues WF, Miguel CB, Abreu MCMd, Neto JM, Oliveira CJF. Potential Associations between Vascular Biology and Hodgkin’s Lymphoma: An Overview. Cancers. 2023; 15(21):5299. https://doi.org/10.3390/cancers15215299
Chicago/Turabian StyleRodrigues, Wellington Francisco, Camila Botelho Miguel, Melissa Carvalho Martins de Abreu, Jamil Miguel Neto, and Carlo José Freire Oliveira. 2023. "Potential Associations between Vascular Biology and Hodgkin’s Lymphoma: An Overview" Cancers 15, no. 21: 5299. https://doi.org/10.3390/cancers15215299
APA StyleRodrigues, W. F., Miguel, C. B., Abreu, M. C. M. d., Neto, J. M., & Oliveira, C. J. F. (2023). Potential Associations between Vascular Biology and Hodgkin’s Lymphoma: An Overview. Cancers, 15(21), 5299. https://doi.org/10.3390/cancers15215299