The Influence of the Exposome in the Cutaneous Squamous Cell Carcinoma, a Multicenter Case–Control Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Participants and Methods
2.1. Study Design
2.2. Statistical Analysis
2.3. Ethical Concerns
3. Results
3.1. Demographic and Clinical Characteristics of the Sample/Study Population
3.2. Chronic Medication
3.3. Sun Exposure Habits and Practices
3.4. Diet
3.5. Lifestyle and Stress
3.6. Multivariate Analysis
3.7. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wild, C.P. Complementing the Genome with an “Exposome”: The Outstanding Challenge of Environmental Exposure Measurement in Molecular Epidemiology. Cancer Epidemiol. Biomarkers Prev. 2005, 14, 1847–1850. [Google Scholar] [CrossRef]
- Vineis, P.; Chadeau-Hyam, M.; Gmuender, H.; Gulliver, J.; Herceg, Z.; Kleinjans, J.; Kogevinas, M.; Kyrtopoulos, S.; Nieuwenhuijsen, M.; Phillips, D.; et al. The exposome in practice: Design of the EXPOsOMICS project. Int. J. Hyg. Environ. Heal. 2017, 220 Pt A, 142–151. [Google Scholar] [CrossRef]
- Holterhues, C.; de Vries, E.; Louwman, M.W.; Koljenović, S.; Nijsten, T. Incidence and Trends of Cutaneous Malignancies in the Netherlands, 1989–2005. J. Investig. Dermatol. 2010, 130, 1807–1812. [Google Scholar] [CrossRef] [PubMed]
- Tejera-Vaquerizo, A.; Descalzo-Gallego, M.A.; Otero-Rivas, M.M.; Posada-García, C.; Rodríguez-Pazos, L.; Pastushenko, I.; Marcos-Gragera, R.; García-Doval, I. Skin cancer incidence and mortality in Spain: A systematic review and meta-analysis. Actas Dermo-Sifiliogr. 2016, 107, 318–328. [Google Scholar] [CrossRef]
- IARC. Solar and ultraviolet radiation. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 1992; Volume 55, pp. 1–316. [Google Scholar]
- Slominski, A.T.; Zmijewski, M.A.; Plonka, P.M.; Szaflarski, J.P.; Paus, R. How UV Light Touches the Brain and Endocrine System Through Skin, and Why. Endocrinology 2018, 159, 1992–2007. [Google Scholar] [CrossRef] [PubMed]
- de Troya-Martín, M.; Blázquez-Sánchez, N.; Rivas-Ruiz, F.; Fernández-Canedo, I.; Rupérez-Sandoval, A.; Pons-Palliser, J.; Perea-Milla, E. Validación de un cuestionario en español sobre comportamientos, actitudes y conocimientos relacionados con la exposición solar (Validation of a Spanish questionnaire to evaluate habits, attitudes, and understanding of exposure to sunlight: “the beach questionnaire”). Actas Dermosifiliogr. 2009, 100, 586–595. (In Spanish) [Google Scholar] [PubMed]
- Gilaberte, Y.; Casanova, J.M.; García-Malinis, A.J.; Arias-Santiago, S.; de la Fuente, M.R.G.; Pamiés-Gracia, M.; Ramirez-Palomino, J.; Ruiz-Campos, I.; Gracia-Cazaña, T.; Buendia-Eisman, A. Skin Cancer Prevalence in Outdoor Workers of Ski Resorts. J. Ski. Cancer 2020, 2020, 8128717. [Google Scholar] [CrossRef]
- Ruiz-Canela, M.; Zazpe, I.; Shivappa, N.; Hébert, J.R.; Sánchez-Tainta, A.; Corella, D.; Salas-Salvadó, J.; Fitó, M.; Lamuela-Raventós, R.M.; Rekondo, J.; et al. Dietary inflammatory index and anthropometric measures of obesity in a population sample at high cardiovascular risk from the PREDIMED (PREvención con DIeta MEDiterránea) trial. Br. J. Nutr. 2015, 113, 984–995. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A Global Measure of Perceived Stress. J. Heal. Soc. Behav. 1983, 24, 385–396. [Google Scholar] [CrossRef]
- Remor, E. Psychometric Properties of a European Spanish Version of the Perceived Stress Scale (PSS). Span. J. Psychol. 2006, 9, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Waldman, A.; Schmults, C. Cutaneous Squamous Cell Carcinoma. Hematol. Oncol. Clin. North Am. 2019, 33, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, B.K.; Kricker, A. The epidemiology of UV induced skin cancer. J. Photochem. Photobiol. B Biol. 2001, 63, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Tokez, S.; Wakkee, M.; Louwman, M.; Noels, E.; Nijsten, T.; Hollestein, L. Assessment of Cutaneous Squamous Cell Carcinoma (cSCC) In situ Incidence and the Risk of Developing Invasive cSCC in Patients with Prior cSCC In situ vs. the General Population in the Netherlands, 1989–2017. JAMA Dermatol. 2020, 156, 973–981. [Google Scholar] [CrossRef]
- van der Leest, R.; Liu, L.; Coebergh, J.; Neumann, H.; Mooi, W.; Nijsten, T.; de Vries, E. Risk of second primary in situ and invasive melanoma in a Dutch population-based cohort: 1989–2008. Br. J. Dermatol. 2012, 167, 1321–1330. [Google Scholar] [CrossRef]
- Augustin, J.; Kis, A.; Sorbe, C.; Schäfer, I.; Augustin, M. Epidemiology of skin cancer in the German population: Impact of socioeconomic and geographic factors. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 1906–1913. [Google Scholar] [CrossRef]
- Ofenloch, R.; Schuttelaar, M.; Svensson, Å.; Bruze, M.; Naldi, L.; Cazzaniga, S.; Elsner, P.; Gonçalo, M.; Diepgen, T. Socioeconomic Status and the Prevalence of Skin and Atopic Diseases in Five European Countries. Acta Derm.-Venereol. 2019, 99, 309–314. [Google Scholar] [CrossRef]
- Zink, A.; Tizek, L.; Schielein, M.; Böhner, A.; Biedermann, T.; Wildner, M. Different outdoor professions have different risks—A cross-sectional study comparing non-melanoma skin cancer risk among farmers, gardeners and mountain guides. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 1695–1701. [Google Scholar] [CrossRef]
- Moan, J.; Grigalavicius, M.; Baturaite, Z.; Dahlback, A.; Juzeniene, A. The relationship between UV exposure and incidence of skin cancer. Photodermatol. Photoimmunol. Photomed. 2015, 31, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Yoshinaga, S.; Hauptmann, M.; Sigurdson, A.J.; Doody, M.M.; Freedman, D.M.; Alexander, B.H.; Linet, M.S.; Ron, E.; Mabuchi, K. Nonmelanoma skin cancer in relation to ionizing radiation exposure among U.S. radiologic technologists. Int. J. Cancer 2005, 115, 828–834. [Google Scholar] [CrossRef]
- Kelfkens, G.; de Gruijl, F.R.; van der Leun, J.C. Tumorigenesis by short-wave ultraviolet A: Papillomas versus squamous cell carcinomas. Carcinogenesis 1991, 12, 1377–1382. [Google Scholar] [CrossRef]
- Shyong, E.Q.; Lu, Y.; Goldstein, A.; Lebwohl, M.; Wei, H. Synergistic enhancement of H2O2 production in human epidermoid carcinoma cells by Benzo[a]pyrene and ultraviolet A radiation. Toxicol. Appl. Pharmacol. 2003, 188, 104–109. [Google Scholar] [CrossRef]
- Blakely, K.M.; Drucker, A.M.; Rosen, C.F. Drug-Induced Photosensitivity—An Update: Culprit Drugs, Prevention and Management. Drug Saf. 2019, 42, 827–847. [Google Scholar] [CrossRef] [PubMed]
- Pandeya, N.; Olsen, C.; Thompson, B.; Dusingize, J.; Neale, R.; Green, A.; Whiteman, D.; the QSkin Study. Aspirin and nonsteroidal anti-inflammatory drug use and keratinocyte cancers: A large population-based cohort study of skin cancer in Australia. Br. J. Dermatol. 2019, 181, 749–760. [Google Scholar] [CrossRef] [PubMed]
- Elmets, C.A.; Ledet, J.J.; Athar, M. Cyclooxygenases: Mediators of UV-Induced Skin Cancer and Potential Targets for Prevention. J. Investig. Dermatol. 2014, 134, 2497–2502. [Google Scholar] [CrossRef] [PubMed]
- Dou, Y.-L.; Lin, J.-P.; Liu, F.-E.; Wang, L.-Y.; Shu, H.-H.; Jiang, N.; Xie, Y.; Duan, Q. Midazolam inhibits the proliferation of human head and neck squamous carcinoma cells by downregulating p300 expression. Tumor Biol. 2014, 35, 7499–7504. [Google Scholar] [CrossRef] [PubMed]
- Kinjo, T.; Kowalczyk, P.; Kowalczyk, M.; Walaszek, Z.; Slaga, T.J.; Hanausek, M. Effects of desipramine on the cell cycle and apoptosis in Ca3/7 mouse skin squamous carcinoma cells. Int. J. Mol. Med. 2010, 25, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zhang, H.; Zhou, J.; Liu, Q.; Lu, Q.; Zhang, Y.; Yu, X.; Wang, S.; Liu, R.; Pu, Y.; et al. Metabolomic transition trajectory and potential mechanisms of N-nitrosomethylbenzylamine induced esophageal squamous cell carcinoma in rats. Ecotoxicol. Environ. Saf. 2022, 244, 114071. [Google Scholar] [CrossRef]
- Shibuya, C.M.; Tjioe, K.C.; Oliveira, S.H.P.; Bernabé, D.G. Propranolol inhibits cell viability and expression of the pro-tumorigenic proteins Akt, NF-ĸB, and VEGF in oral squamous cell carcinoma. Arch. Oral Biol. 2022, 136, 105383. [Google Scholar] [CrossRef]
- Ali, S.; Xie, T.; Amit, M.; Batalla-Covello, J. β-Adrenergic signaling in skin cancer. FASEB BioAdv. 2022, 4, 225–234. [Google Scholar] [CrossRef]
- Yang, K.; Marley, A.; Tang, H.; Song, Y.; Tang, J.Y.; Han, J. Statin use and non-melanoma skin cancer risk: A meta-analysis of randomized controlled trials and observational studies. Oncotarget 2017, 8, 75411–75417. [Google Scholar] [CrossRef]
- Kubatka, P.; Kruzliak, P.; Rotrekl, V.; Jelinkova, S.; Mladosievicova, B. Statins in oncological research: From experimental studies to clinical practice. Crit. Rev. Oncol. Hematol. 2014, 92, 296–311. [Google Scholar] [CrossRef] [PubMed]
- Alrashidi, A.; Rhodes, L.E.; Sharif, J.C.H.; Kreeshan, F.C.; Farrar, M.D.; Ahad, T. Systemic drug photosensitivity—Culprits, impact and investigation in 122 patients. Photodermatol. Photoimmunol. Photomed. 2020, 36, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, M.R.; Mascitelli, L.; Pezzetta, F. The double-edged sword of statin immunomodulation. Int. J. Cardiol. 2009, 135, 128–130. [Google Scholar] [CrossRef]
- Götzinger, F.; Reichrath, J.; Millenaar, D.; Lauder, L.; Meyer, M.R.; Böhm, M.; Mahfoud, F. Photoinduced skin reactions of cardiovascular drugs—A systematic review. Eur. Hear. J. Cardiovasc. Pharmacother. 2022, 8, 420–430. [Google Scholar] [CrossRef] [PubMed]
- Mehlan, J.; Ueberschaar, J.; Hagenström, K.; Garbe, C.; Spitzer, M.S.; Druchkiv, V.; Schuettauf, F. The use of HCT and/or ACE inhibitors significantly increases the risk of non-melanotic skin cancer in the periocular region. Graefe’s Arch. Clin. Exp. Ophthalmol. 2022, 260, 2745–2751. [Google Scholar] [CrossRef]
- Garrido, P.M.; Borges-Costa, J. Hydrochlorothiazide treatment and risk of non-melanoma skin cancer: Review of the literature. Rev. Port. Cardiol. 2020, 39, 163–170. [Google Scholar] [CrossRef]
- Haisma, M.S.; Greven, N.; Logendran, M.; Bos, J.; Vegt, B.V.; Horváth, B.; De Vos, S.; De Bock, G.H.; Hak, E.; Rácz, E. Chronic Use of Hydrochlorothiazide and Risk of Skin Cancer in Caucasian Adults: A PharmLines Initiative Inception Cohort Study. Acta Derm.-Venereol. 2023, 103, adv3933. [Google Scholar] [CrossRef]
- Crist, M.; Yaniv, B.; Palackdharry, S.; Lehn, M.A.; Medvedovic, M.; Stone, T.; Gulati, S.; Karivedu, V.; Borchers, M.; Fuhrman, B.; et al. Metformin increases natural killer cell functions in head and neck squamous cell carcinoma through CXCL1 inhibition. J. Immunother. Cancer 2022, 10, e005632. [Google Scholar] [CrossRef]
- Chang, M.S.; Hartman, R.I.; Xue, J.; Giovannucci, E.L.; Nan, H.; Yang, K. Risk of Skin Cancer Associated with Metformin Use: A Meta-Analysis of Randomized Controlled Trials and Observational Studies. Cancer Prev. Res. 2021, 14, 77–84. [Google Scholar] [CrossRef]
- Qasem, A.; Kasabri, V.; AbuRish, E.; Bustanji, Y.; Al-Hiari, Y.; Al-Abbasi, R.; Abu-Irmaileh, B.; Alalawi, S. The Evaluation of Potential Cytotoxic Effect of Different Proton Pump Inhibitors on Different Human Cancer Cell Lines. Anti-Cancer Agents Med. Chem. 2020, 20, 245–253. [Google Scholar] [CrossRef]
- Backes, C.; Religi, A.; Moccozet, L.; Vuilleumier, L.; Vernez, D.; Bulliard, J. Facial exposure to ultraviolet radiation: Predicted sun protection effectiveness of various hat styles. Photodermatol. Photoimmunol. Photomed. 2018, 34, 330–337. [Google Scholar] [CrossRef]
- Black, H.S.; Rhodes, L.E. Potential Benefits of Omega-3 Fatty Acids in Non-Melanoma Skin Cancer. J. Clin. Med. 2016, 5, 23. [Google Scholar] [CrossRef]
- Black, H.S.; Rhodes, L.E. The potential of omega-3 fatty acids in the prevention of non-melanoma skin cancer. Cancer Detect. Prev. 2006, 30, 224–232. [Google Scholar] [CrossRef]
- Noel, S.E.; Stoneham, A.C.; Olsen, C.M.; Rhodes, L.E.; Green, A.C. Consumption of omega-3 fatty acids and the risk of skin cancers: A systematic review and meta-analysis. Int. J. Cancer 2013, 135, 149–156. [Google Scholar] [CrossRef]
- Oh, C.C.; Jin, A.; Yuan, J.-M.; Koh, W.-P. Coffee, tea, caffeine, and risk of nonmelanoma skin cancer in a Chinese population: The Singapore Chinese Health Study. J. Am. Acad. Dermatol. 2019, 81, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.S. Inhibition of NLRP3 inflammasome activation by caffeine might be a potential mechanism to reduce the risk of squamous cell carcinoma of the oral cavity and oropharynx with coffee drinking. Front. Oral Health 2022, 3, 1017543. [Google Scholar] [CrossRef] [PubMed]
- Rigel, D.S. Cutaneous ultraviolet exposure and its relationship to the development of skin cancer. J. Am. Acad. Dermatol. 2008, 58 (Suppl. S2), S129–S132. [Google Scholar] [CrossRef] [PubMed]
- Dozier, S.; Wagner, R.F.; Black, S.A.; Terracina, J. Beachfront Screening for Skin Cancer in Texas Gulf Coast Surfers. South Med. J. 1997, 90, 55–58. [Google Scholar] [CrossRef]
- Moehrle, M. Outdoor sports and skin cancer. Clin. Dermatol. 2008, 26, 12–15. [Google Scholar] [CrossRef]
- Yu, M.; King, B.; Ewert, E.; Su, X.; Mardiyati, N.; Zhao, Z.; Wang, W. Exercise Activates p53 and Negatively Regulates IGF-1 Pathway in Epidermis within a Skin Cancer Model. PLoS ONE 2016, 11, e0160939. [Google Scholar] [CrossRef]
- Dhabhar, F.S. Psychological stress and immunoprotection versus immunopathology in the skin. Clin. Dermatol. 2013, 31, 18–30. [Google Scholar] [CrossRef]
- Pavlou, P.; Rallis, M.; Deliconstantinos, G.; Papaioannou, G.; Grando, S. In-vivo data on the influence of tobacco smoke and UV light on murine skin. Toxicol. Ind. Heal. 2009, 25, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Leonardi-Bee, J.; Ellison, T.; Bath-Hextall, F. Smoking and the Risk of Nonmelanoma Skin Cancer: Systematic review and meta-analysis. Arch. Dermatol. 2012, 148, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Sauvaigo, S.; Bonnet-Duquennoy, M.; Odin, F.; Hazane-Puch, F.; Lachmann, N.; Bonté, F.; Kurfürst, R.; Favier, A. DNA repair capacities of cutaneous fibroblasts: Effect of sun exposure, age and smoking on response to an acute oxidative stress. Br. J. Dermatol. 2007, 157, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Curtin, G.M.; Hanausek, M.; Walaszek, Z.; Mosberg, A.T.; Slaga, T.J. Short-Term In Vitro and In Vivo Analyses for Assessing the Tumor-Promoting Potentials of Cigarette Smoke Condensates. Toxicol. Sci. 2004, 81, 14–25. [Google Scholar] [CrossRef]
Variable | SCC | Control | p-Value | |
---|---|---|---|---|
Sex, N (%) | Male | 39 (62.9%) | 42 (33.3%) | <0.001 |
Female | 23 (37.1%) | 84 (66.7%) | ||
Age, Mean (SD) [P25;P75] | 76.46 (10.11) [71.0; 84.0] | 55.77 (15.00) [45.5; 67.0] | <0.001 | |
Height (cm), Mean (SD) [P25;P75] | 166.03 (8.14) [160.0; 150.0] | 165.73 (8.86) [160.0; 172.0] | 0.826 | |
Weight (kg), Mean (SD) [P25;P75] | 74.07 (14.90) [68.0; 80.0] | 70.51 (15.13) [59.0; 81.0] | 0.137 | |
BMI (kg/m2), Mean (SD) [P25;P75] | 26.78 (4.36) [24.2; 27.9] | 25.56 (4.57) [22.2; 28.2] | 0.087 | |
Hair Color, N (%) | Red | 3 (5.1%) | - | 0.003 |
Blond | 16 (27.1%) | 13 (10.7%) | ||
Light brown | 14 (23.7%) | 42 (34.4%) | ||
Dark brown | 20 (33.9%) | 49 (40.2%) | ||
Black | 6 (10.2%) | 18 (14.8%) | ||
Eye Color, N (%) | Blue | 12 (20.3%) | 13 (10.9%) | 0.064 |
Green | 7 (11.9%) | 15 (12.6%) | ||
Dark green/brown | 8 (13.6%) | 13 (10.9%) | ||
Light brown | 19 (32.2%) | 27 (22.7%) | ||
Dark brown | 13 (22.0%) | 51 (42.9%) | ||
Phototype, N (%) | I | 8 (13.6%) | 3 (2.4%) | 0.028 |
II | 19 (32.2%) | 33 (26.6%) | ||
III | 21 (35.6%) | 52 (41.9%) | ||
IV | 6 (10.2%) | 21 (16.9%) | ||
V | 5 (8.5%) | 15 (12.1%) | ||
Tumor location, N (%) | Head and neck | 45 (72.6%) | - | - |
Trunk | 9 (14.5%) | - | - | |
Upper extremities | 5 (8.1%) | - | - | |
Lower extremities | 7 (11.3%) | - | - | |
Personal history of skin cancer, N (%) | Yes | 28 (45.1%) | - | - |
Type of skin cancer, N (%) | Basal cell carcinoma | 16 (57.14%) | - | - |
SCC | 12 (42.85%) | - | - | |
Melanoma | 1 (3.57%) | - | - | |
Family history of skin cancer, N (%) | Yes | 9 (14.8%) | 27 (22.7%) | 0.420 |
No | 41 (67.2%) | 70 (58.8%) | ||
Unknown | 11 (18.0%) | 22 (18.5%) | ||
Marital status, N (%) | Single | 7 (11.7%) | 26 (20.8%) | <0.001 |
Married | 33 (55.0%) | 87 (69.6%) | ||
Divorced | 2 (3.3%) | 7 (5.6%) | ||
Widower | 18 (30.0%) | 5 (4.0%) | ||
Annual income, N (%) | <EUR 15,000/year | 20 (42.6%) | 21 (20.8%) | 0.011 |
EUR 15,000–25,000/year | 19 (40.4%) | 39 (38.6%) | ||
EUR 25,000–50,000/year | 6 (12.8%) | 34 (33.7%) | ||
>EUR 50,000/year | 2 (4.3%) | 7 (6.9%) | ||
Residential environment, N (%) | Urban | 49 (80.3%) | 101 (80.8%) | 0.939 |
Rural | 12 (19.7%) | 24 (19.2%) | ||
Current workplace, N (%) | Indoors | 28 (71.8%) | 110 (94.8%) | <0.001 |
Outdoors | 11 (28.2%) | 6 (5.2%) | ||
Previously worked outdoors, N (%) | Yes | 24 (75.0%) | 11 (22.4%) | <0.001 |
No | 8 (25.0%) | 38 (77.6%) | ||
Daily hours of occupational exposure, Mean (SD) [P25;P75] | 7.2 (2.81) [5.0; 9.0] | 4.36 (2.66) [2.0; 7.0] | 0.036 | |
Years of exposure, Mean (SD) [P25;P75] | 29.96 (17.52) [20.0; 40.0] | 15.45 (10.82) [5.0; 20.0] | 0.016 | |
Exposure to chemicals, N (%) | Yes | 6 (10.7%) | 13 (10.4%) | 0.918 |
No | 46 (82.1%) | 105 (84.0%) | ||
Exposure to ionizing radiation, N (%) | Yes | - | 8 (6.5%) | 0.119 |
No | 54 (93.1%) | 105 (84.7%) |
Variable | SCC | Control | p-Value |
---|---|---|---|
Acetylsalicylic acid | 3 (4.9%) | 1 (0.9%) | 0.086 |
NSAIDs | 4 (6.6%) | 10 (8.7%) | 0.617 |
Anxiolytics | 16 (26.2%) | 15 (13.0%) | 0.028 |
Antidepressants or hypnotics | 13 (21.3%) | 8 (7.0%) | 0.005 |
Contraceptives | - | 5 (4.3%) | 0.098 |
Antioxidants | - | 2 (1.7%) | 0.300 |
Antipsychotics | - | - | - |
Beta-blockers | 9 (14.8%) | 6 (5.2%) | 0.031 |
Statins | 25 (41.0%) | 17 (14.8%) | <0.001 |
Hydrochlorothiazide | 9 (14.8%) | 2 (1.7%) | <0.001 |
Hydroxyurea | 1 (1.6%) | - | 0.168 |
ACE inhibitors (captopril, enalapril, and ramipril) | 15 (24.6%) | 7 (6.1%) | <0.001 |
Metformin | 11 (18.0%) | 6 (5.2%) | 0.006 |
Omeprazole | 24 (39.3%) | 19 (16.5%) | <0.001 |
Vitamin D | 8 (13.1%) | 15 (13.0%) | 0.989 |
Variable | SCC | Control | p-Value | |
---|---|---|---|---|
Outdoor sunbathing, days/year, N (%) | Never | 29 (49.2%) | 29 (23.0%) | 0.057 |
1–5 days | 7 (11.9%) | 19 (15.1%) | ||
6–30 days | 13 (22.0%) | 53 (42.1%) | ||
31–90 days | 7 (11.9%) | 21 (16.7%) | ||
>90 days | 3 (5.1%) | 4 (3.2%) | ||
Days/year practicing outdoor sports, N (%) | Never | 29 (50.9%) | 31 (24.6%) | 0.004 |
1–5 days | 5 (8.8%) | 21 (16.7%) | ||
6–30 days | 6 (10.5%) | 35 (27.8%) | ||
31–90 days | 6 (10.5%) | 16 (12.7%) | ||
>90 days | 11 (19.3%) | 23 (18.3%) | ||
Outdoor sunbathing, hours/day, N (%) | 1–2 h | 32 (78.0%) | 76 (71.7%) | 0.484 |
3–4 h | 6 (14.6%) | 25 (23.6%) | ||
5–6 h | 3 (7.3%) | 4 (3.8%) | ||
>6 h | - | 1 (0.9%) | ||
Hours/day practicing outdoor sport, N (%) | 1–2 h | 34 (81.0%) | 92 (86.8%) | 0.129 |
3–4 h | 6 (14.3%) | 13 (12.3%) | ||
5–6 h | 2 (4.8%) | - | ||
>6 h | - | 1 (0.9%) | ||
Use of shade, N (%) | Never/Rarely | 17 (29.8%) | 28 (22.6%) | 0.463 |
Sometimes | 9 (15.8%) | 27 (21.8%) | ||
Habitually/Always | 31 (54.4%) | 69 (55.6%) | ||
Use of sunglasses, N (%) | Never/Rarely | 25 (42.4%) | 36 (28.8%) | 0.183 |
Sometimes | 8 (13.6%) | 23 (18.4%) | ||
Habitually/Always | 26 (44.1%) | 66 (52.8%) | ||
Use of hat or cap, N (%) | Never/Rarely | 20 (33.9%) | 67 (53.6%) | 0.037 |
Sometimes | 13 (22.0%) | 32 (25.6%) | ||
Habitually/Always | 26 (44.1%) | 26 (20.8%) | ||
Use of clothes, N (%) | Never/Rarely | 21 (35.6%) | 49 (39.8%) | 0.849 |
Sometimes | 21 (35.6%) | 42 (34.1%) | ||
Habitually/Always | 17 (28.8%) | 32 (26.0%) | ||
Sun exposure from 12:00 to 16:00, N (%) | Never/Rarely | 10 (17.2%) | 23 (18.7%) | 0.817 |
Sometimes | 9 (15.5%) | 23 (18.7%) | ||
Habitually/Always | 39 (67.2%) | 77 (62.6%) | ||
Use of sunscreen, N (%) | Never/Rarely | 18 (30.5%) | 20 (16.3%) | 0.052 |
Sometimes | 13 (22.0%) | 24 (19.5%) | ||
Habitually/Always | 28 (47.5%) | 79 (64.2%) | ||
15 years ago, you were more exposed to sunlight, N (%) | Yes | 46 (79.3%) | 78 (62.9%) | 0.026 |
No | 12 (20.7%) | 46 (37.1%) | ||
SPF used 15 years ago, N (%) | I do not know | 31 (59.6%) | 22 (18.2%) | <0.001 |
2–10 | 5 (9.6%) | 11 (9.1%) | ||
11–20 | 2 (3.8%) | 17 (14.0%) | ||
21–50 | 9 (17.3%) | 37 (30.6%) | ||
>50 | 5 (9.6%) | 34 (28.1%) | ||
SPF used now, N (%) | I do not know | 11 (20.4%) | 10 (8.3%) | 0.242 |
2–10 | 2 (3.7%) | 3 (2.5%) | ||
11–20 | 2 (3.7%) | 6 (5.0%) | ||
21–50 | 12 (22.2%) | 30 (25.0%) | ||
>50 | 27 (50.0%) | 71 (59.2%) |
Variable | SCC | Control | p-Value | |
---|---|---|---|---|
Relaxation activities, N (%) | Yes | 4 (6.7%) | 29 (23.2%) | 0.006 |
No | 56 (93.3%) | 96 (76.8%) | ||
Sport, N (%) | Yes | 27 (45.8%) | 80 (65.0%) | 0.013 |
No | 32 (54.2%) | 43 (35.0%) | ||
Years practicing sport, Mean (SD) [P25;P75] | 29.04 (21.40) [10.0; 40.0] | 20.84 (16.14) [10.0; 30.0] | 0.056 | |
Location of sport, N (%) | Indoor | 3 (11.1%) | 21 (26.6%) | 0.229 |
Outdoor | 20 (74.1%) | 46 (58.2%) | ||
Indoor/outdoor | 4 (14.8%) | 12 (15.2%) | ||
Hours/week Mean (SD) [P25;P75] | 6.21 (3.73) [3.0; 8.0] | 5.58 (3.00) [3.0; 7.0] | 0.398 | |
Hours/day screentime, N (%) | <1 h | 40 (72.7%) | 27 (22.1%) | <0.001 |
1–2 h | 8 (14.5%) | 34 (27.9%) | ||
>3 h | 7 (12.7%) | 61 (50.0%) | ||
Smoker, N (%) | Yes | 6 (10.2%) | 25 (21.9%) | 0.002 |
No | 27 (45.8%) | 66 (57.9%) | ||
Former smoker | 27 (44.1%) | 23 (20.2%) | ||
Cigarettes/day, Mean (SD) [P25;P75] | 4 (-) [4.0; 4.0] | 8.86 (4.29) [6.0; 10.0] | 0.294 | |
Hours/day of sleep in the last 5 years, N (%) | <6 h | 3 (5.1%) | 13 (10,4%) | <0.001 |
6 h | 9 (15.3%) | 24 (19.2%) | ||
7 h | 12 (20.3%) | 54 (43.2%) | ||
8 h | 23 (39.0%) | 33 (26.4%) | ||
>10 h | 12 (20.3%) | 1 (0.8%) | ||
Perceived stress, * Mean (SD) [P25;P75] | 17.37 (9.69) [10.0; 24.0] | 19.69 (8.99) [14.0; 26.0] | 0.139 | |
Sunburns in the last year, N (%) | 0 | 30 (63.8%) | 78 (78.8%) | <0.001 |
1 | 3 (6.4%) | 14 (14.1%) | ||
2 | 7 (14.9%) | 7 (7.1%) | ||
≥3 | 7 (14.9%) | - |
Variable | Coefficient | p-Value |
---|---|---|
Age | 0.01651 | <0.001 |
Hair color | 0.10408 | 0.0047 |
Phototype | 0.05189 | 0.0441 |
Current work place (indoors) | −0.47321 | <0.001 |
Outside work previously | 0.51092 | <0.001 |
Daily exposure hours | 0.07420 | 0.0513 |
Years of exposure | 0.01041 | 0.0310 |
Use of hat or cap | 0.09340 | <0.001 |
15 years ago, were more exposed to ultraviolet radiation | 0.17656 | 0.0229 |
Relaxation activities | −0.26786 | 0.0038 |
Hours/day with screens | −0.25152 | <0.001 |
Smoker | 0.17742 | <0.001 |
Anxiolytics | 0.20578 | 0.0289 |
Antidepressants | 0.30937 | 0.0050 |
Beta-blockers | 0.27702 | 0.0311 |
Statins | 0.32658 | <0.001 |
Hydrochlorothiazide | 0.50303 | <0.001 |
ACE inhibitors (captopril, enalapril, and ramipril) | 0.38312 | <0.001 |
Metformin | 0.33259 | 0.0060 |
Omeprazole | 0.27994 | <0.001 |
Linolenic acid | 0.04800 | 0.0419 |
Coffee | −0.03609 | 0.0133 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro-Bielsa, A.; Gracia-Cazaña, T.; Almagro, M.; De la Fuente-Meira, S.; Flórez, Á.; Yélamos, O.; Montero-Vilchez, T.; González-Cruz, C.; Diago, A.; Abadías-Granado, I.; et al. The Influence of the Exposome in the Cutaneous Squamous Cell Carcinoma, a Multicenter Case–Control Study. Cancers 2023, 15, 5376. https://doi.org/10.3390/cancers15225376
Navarro-Bielsa A, Gracia-Cazaña T, Almagro M, De la Fuente-Meira S, Flórez Á, Yélamos O, Montero-Vilchez T, González-Cruz C, Diago A, Abadías-Granado I, et al. The Influence of the Exposome in the Cutaneous Squamous Cell Carcinoma, a Multicenter Case–Control Study. Cancers. 2023; 15(22):5376. https://doi.org/10.3390/cancers15225376
Chicago/Turabian StyleNavarro-Bielsa, Alba, Tamara Gracia-Cazaña, Manuel Almagro, Sonia De la Fuente-Meira, Ángeles Flórez, Oriol Yélamos, Trinidad Montero-Vilchez, Carlos González-Cruz, Adrián Diago, Isabel Abadías-Granado, and et al. 2023. "The Influence of the Exposome in the Cutaneous Squamous Cell Carcinoma, a Multicenter Case–Control Study" Cancers 15, no. 22: 5376. https://doi.org/10.3390/cancers15225376
APA StyleNavarro-Bielsa, A., Gracia-Cazaña, T., Almagro, M., De la Fuente-Meira, S., Flórez, Á., Yélamos, O., Montero-Vilchez, T., González-Cruz, C., Diago, A., Abadías-Granado, I., Fuentelsaz, V., Colmenero, M., Bañuls, J., Arias-Santiago, S., Buendía-Eisman, A., Almenara-Blasco, M., Gil-Pallares, P., & Gilaberte, Y. (2023). The Influence of the Exposome in the Cutaneous Squamous Cell Carcinoma, a Multicenter Case–Control Study. Cancers, 15(22), 5376. https://doi.org/10.3390/cancers15225376