A Propensity-Matched Retrospective Comparative Study with Historical Control to Determine the Real-World Effectiveness of Durvalumab after Concurrent Chemoradiotherapy in Unresectable Stage III Non-Small Cell Lung Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Study Cohort
2.3. Outcome Measures
2.4. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Survival Outcomes and Post-Progression Treatment
3.3. Safety Outcomes
3.4. Subgroup Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choi, C.M.; Kim, H.C.; Jung, C.Y.; Cho, D.G.; Jeon, J.H.; Lee, J.E.; Ahn, J.S.; Kim, S.J.; Kim, Y.; Choi, Y.D.; et al. Report of the Korean Association of Lung Cancer Registry (KALC-R), 2014. Cancer Res. Treat. 2019, 51, 1400–1410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evison, M.; AstraZeneca, U.K. The current treatment landscape in the UK for stage III NSCLC. Br. J. Cancer 2020, 123, 3–9. [Google Scholar] [CrossRef]
- Casal-Mourino, A.; Ruano-Ravina, A.; Lorenzo-Gonzalez, M.; Rodriguez-Martinez, A.; Giraldo-Osorio, A.; Varela-Lema, L.; Pereiro-Brea, T.; Barros-Dios, J.M.; Valdes-Cuadrado, L.; Perez-Rios, M. Epidemiology of stage III lung cancer: Frequency, diagnostic characteristics, and survival. Transl. Lung Cancer Res. 2021, 10, 506–518. [Google Scholar] [CrossRef]
- Adizie, J.B.; Khakwani, A.; Beckett, P.; Navani, N.; West, D.; Woolhouse, I.; Harden, S.V. Stage III Non-small Cell Lung Cancer Management in England. Clin. Oncol. 2019, 31, 688–696. [Google Scholar] [CrossRef]
- Van Schil, P.E.; Berzenji, L.; Yogeswaran, S.K.; Hendriks, J.M.; Lauwers, P. Surgical Management of Stage IIIA Non-Small Cell Lung Cancer. Front. Oncol. 2017, 7, 249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daly, M.E.; Singh, N.; Ismaila, N.; Antonoff, M.B.; Arenberg, D.A.; Bradley, J.; David, E.; Detterbeck, F.; Früh, M.; Gubens, M.A.; et al. Management of Stage III Non–Small-Cell Lung Cancer: ASCO Guideline. J. Clin. Oncol. 2021, 40, 1356–1384. [Google Scholar] [CrossRef]
- O’Rourke, N.; Macbeth, F. Is concurrent chemoradiation the standard of care for locally advanced non-small cell lung cancer? A review of guidelines and evidence. Clin. Oncol. 2010, 22, 347–355. [Google Scholar] [CrossRef]
- Goldstraw, P.; Chansky, K.; Crowley, J.; Rami-Porta, R.; Asamura, H.; Eberhardt, W.E.; Nicholson, A.G.; Groome, P.; Mitchell, A.; Bolejack, V. The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer. J. Thorac. Oncol. 2016, 11, 39–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, H.Y.; Zhou, H.; Li, X.L.; Yin, Z.H.; Guan, P.; Zhou, B.S. Chemo-radiotherapy for advanced non-small cell lung cancer: Concurrent or sequential? It’s no longer the question: A systematic review. Int. J. Cancer 2010, 127, 718–728. [Google Scholar] [CrossRef]
- Hansen, R.N.; Zhang, Y.; Seal, B.; Ryan, K.; Yong, C.; Darilay, A.; Ramsey, S.D. Long-term survival trends in patients with unresectable stage III non-small cell lung cancer receiving chemotherapy and radiation therapy: A SEER cancer registry analysis. BMC Cancer 2020, 20, 276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.C.; Ji, W.; Lee, J.C.; Kim, H.R.; Song, S.Y.; Choi, C.M. Prognostic Factor and Clinical Outcome in Stage III Non-Small Cell Lung Cancer: A Study Based on Real-World Clinical Data in the Korean Population. Cancer Res. Treat. 2021, 53, 1033–1041. [Google Scholar] [CrossRef]
- McCall, N.S.; Dicker, A.P.; Lu, B. Beyond Concurrent Chemoradiation: The Emerging Role of PD-1/PD-L1 Inhibitors in Stage III Lung Cancer. Clin. Cancer Res. 2018, 24, 1271–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spigel, D.R.; Faivre-Finn, C.; Gray, J.E.; Vicente, D.; Planchard, D.; Paz-Ares, L.; Vansteenkiste, J.F.; Garassino, M.C.; Hui, R.; Quantin, X.; et al. Five-Year Survival Outcomes From the PACIFIC Trial: Durvalumab After Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2022, 40, 1301–1311. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.S.; Atlas, J.; Ison, G.; Ersek, J.L. Transforming Clinical Trial Eligibility Criteria to Reflect Practical Clinical Application. Am. Soc. Clin. Oncol. Educ. Book 2016, 35, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Harvey, R.D.; Bruinooge, S.S.; Chen, L.; Garrett-Mayer, E.; Rhodes, W.; Stepanski, E.; Uldrick, T.S.; Ison, G.; Khozin, S.; Rubinstein, W.S.; et al. Impact of Broadening Trial Eligibility Criteria for Patients with Advanced Non-Small Cell Lung Cancer: Real-World Analysis of Select ASCO-Friends Recommendations. Clin. Cancer Res. 2021, 27, 2430–2434. [Google Scholar] [CrossRef]
- Brown, J.P.; Douglas, I.J.; Hanif, S.; Thwaites, R.M.A.; Bate, A. Measuring the Effectiveness of Real-World Evidence to Ensure Appropriate Impact. Value Health 2021, 24, 1241–1244. [Google Scholar] [CrossRef]
- Pasello, G.; Pavan, A.; Attili, I.; Bortolami, A.; Bonanno, L.; Menis, J.; Conte, P.; Guarneri, V. Real world data in the era of Immune Checkpoint Inhibitors (ICIs): Increasing evidence and future applications in lung cancer. Cancer Treat. Rev. 2020, 87, 102031. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Yokoi, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 1919–1929. [Google Scholar] [CrossRef] [Green Version]
- Desilets, A.; Blanc-Durand, F.; Lau, S.; Hakozaki, T.; Kitadai, R.; Malo, J.; Belkaid, W.; Richard, C.; Messaoudene, M.; Cvetkovic, L.; et al. Durvalumab therapy following chemoradiation compared with a historical cohort treated with chemoradiation alone in patients with stage III non–small cell lung cancer: A real-world multicentre study. Eur. J. Cancer 2021, 142, 83–91. [Google Scholar] [CrossRef]
- LeClair, J.N.; Merl, M.Y.; Cohenuram, M.; Luon, D. Real-World Incidence of Pneumonitis in Patients Receiving Durvalumab. Clin. Lung Cancer 2022, 23, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Miura, Y.; Mouri, A.; Kaira, K.; Yamaguchi, O.; Shiono, A.; Hashimoto, K.; Nishihara, F.; Shinomiya, S.; Akagami, T.; Murayama, Y.; et al. Chemoradiotherapy followed by durvalumab in patients with unresectable advanced non-small cell lung cancer: Management of adverse events. Thorac. Cancer 2020, 11, 1280–1287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taugner, J.; Käsmann, L.; Eze, C.; Rühle, A.; Tufman, A.; Reinmuth, N.; Duell, T.; Belka, C.; Manapov, F. Real-world prospective analysis of treatment patterns in durvalumab maintenance after chemoradiotherapy in unresectable, locally advanced NSCLC patients. Invest. New Drugs 2021, 39, 1189–1196. [Google Scholar] [CrossRef]
- Tsukita, Y.; Yamamoto, T.; Mayahara, H.; Hata, A.; Takeda, Y.; Nakayama, H.; Tanaka, S.; Uchida, J.; Usui, K.; Toyoda, T.; et al. Intensity-modulated radiation therapy with concurrent chemotherapy followed by durvalumab for stage III non-small cell lung cancer: A multi-center retrospective study. Radiother. Oncol. 2021, 160, 266–272. [Google Scholar]
- Wang, Y.; Zhang, T.; Huang, Y.; Li, W.; Zhao, J.; Yang, Y.; Li, C.; Wang, L.; Bi, N. Real-World Safety and Efficacy of Consolidation Durvalumab After Chemoradiation Therapy for Stage III Non-small Cell Lung Cancer: A Systematic Review and Meta-analysis. Int. J. Radiat. Oncol. Biol. Phys. 2022, 112, 1154–1164. [Google Scholar] [CrossRef]
- Collignon, O.; Schritz, A.; Spezia, R.; Senn, S.J. Implementing Historical Controls in Oncology Trials. Oncologist 2021, 26, e859–e862. [Google Scholar] [CrossRef]
- Fireman, B.; Gruber, S.; Zhang, Z.; Wellman, R.; Nelson, J.C.; Franklin, J.; Maro, J.; Murray, C.R.; Toh, S.; Gagne, J.; et al. Consequences of Depletion of Susceptibles for Hazard Ratio Estimators Based on Propensity Scores. Epidemiology 2020, 31, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Kurata, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. Overall Survival with Durvalumab after Chemoradiotherapy in Stage III NSCLC. N. Engl. J. Med. 2018, 379, 2342–2350. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, J.J.; Soon, Y.Y.; Wong, A.; Aminkeng, F.; Ang, Y.; Asokumaran, Y.; Low, J.L.; Lee, M.; Choo, J.R.E.; et al. Real-world experience of consolidation durvalumab after concurrent chemoradiotherapy in stage III non-small cell lung cancer. Thorac. Cancer 2022, 13, 3152–3161. [Google Scholar] [CrossRef] [PubMed]
- Hellyer, J.A.; Aredo, J.V.; Das, M.; Ramchandran, K.; Padda, S.K.; Neal, J.W.; Wakelee, H.A. Role of Consolidation Durvalumab in Patients With EGFR- and HER2-Mutant Unresectable Stage III NSCLC. J. Thorac. Oncol. 2021, 16, 868–872. [Google Scholar] [CrossRef]
- Wang, C.C.; Chiu, L.C.; Ju, J.S.; Lin, Y.C.; Fang, Y.F.; Yang, C.T.; Hsu, P.C. Durvalumab as Consolidation Therapy in Post-Concurrent Chemoradiation (CCRT) in Unresectable Stage III Non-Small Cell Lung Cancer Patients: A Multicenter Observational Study. Vaccines 2021, 9, 1122. [Google Scholar] [CrossRef]
- Aredo, J.V.; Mambetsariev, I.; Hellyer, J.A.; Amini, A.; Neal, J.W.; Padda, S.K.; McCoach, C.E.; Riess, J.W.; Cabebe, E.C.; Naidoo, J.; et al. Durvalumab for Stage III EGFR-Mutated NSCLC After Definitive Chemoradiotherapy. J. Thorac. Oncol. 2021, 16, 1030–1041. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, Z.; Rinsurongkawong, W.; Gay, C.M.; Le, X.; Ning, M.S.; Lewis, J.; Rinsurongkawong, V.; Lee, J.J.; Roth, J.; et al. Association of Driver Oncogene Variations With Outcomes in Patients With Locally Advanced Non-Small Cell Lung Cancer Treated With Chemoradiation and Consolidative Durvalumab. JAMA Netw. Open 2022, 5, e2215589. [Google Scholar] [CrossRef]
- Morgensztern, D.; Govindan, R. Durvalumab Consolidation Should Be the Standard Therapy in Stage III EGFR-Mutant NSCLC After Chemoradiation. J. Thorac. Oncol. 2021, 16, 1999–2001. [Google Scholar] [CrossRef] [PubMed]
- Aredo, J.V.; Hellyer, J.A.; Neal, J.W.; Wakelee, H.A. Consolidation Durvalumab Should Not Be Administered to Patients With Stage III EGFR-Mutant NSCLC. J. Thorac. Oncol. 2021, 16, 1994–1998. [Google Scholar] [CrossRef]
- Schoenfeld, A.J.; Arbour, K.C.; Rizvi, H.; Iqbal, A.N.; Gadgeel, S.M.; Girshman, J.; Kris, M.G.; Riely, G.J.; Yu, H.A.; Hellmann, M.D. Severe immune-related adverse events are common with sequential PD-(L)1 blockade and osimertinib. Ann. Oncol. 2019, 30, 839–844. [Google Scholar] [CrossRef]
- Chaudhuri, A.A.; Chabon, J.J.; Lovejoy, A.F.; Newman, A.M.; Stehr, H.; Azad, T.D.; Khodadoust, M.S.; Esfahani, M.S.; Liu, C.L.; Zhou, L.; et al. Early Detection of Molecular Residual Disease in Localized Lung Cancer by Circulating Tumor DNA Profiling. Cancer Discov. 2017, 7, 1394–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moding, E.J.; Liu, Y.; Nabet, B.Y.; Chabon, J.J.; Chaudhuri, A.A.; Hui, A.B.; Bonilla, R.F.; Ko, R.B.; Yoo, C.H.; Gojenola, L.; et al. Circulating tumor DNA dynamics predict benefit from consolidation immunotherapy in locally advanced non-small-cell lung cancer. Nat. Cancer 2020, 1, 176–183. [Google Scholar] [CrossRef]
Before | After | ||||||||
---|---|---|---|---|---|---|---|---|---|
Primary Analysis | Sensitivity Analysis | ||||||||
Characteristics | CCRT Alone (n = 294) | DC (n = 91) | p-Value | CCRT Alone (n = 148) | DC (n = 74) | p-Value | CCRT Alone (n = 120) | DC (n = 60) | p-Value |
Age, years | |||||||||
Mean (SD) | 67.4 (8.5) | 66.3 (8.2) | 0.247 | 66.6 (8.4) | 65.9 (8.5) | 0.589 | 66.2 (8.0) | 66.0 (7.8) | 0.912 |
Median (range) | 67.1 (34–84) | 66.1 (45–81) | 0.949 | 66.1 (34–81) | 66.1 (45–78) | 0.834 | 66.0 (40–81) | 66.1 (49–78) | 0.926 |
Sex | |||||||||
Female, n (%) | 20 (6.8%) | 7 (7.7%) | 0.772 | 11 (7.4%) | 5 (6.8%) | 0.854 | 9 (7.5%) | 4 (6.7%) | 0.839 |
Male, n (%) | 274 (93.2%) | 84 (92.3%) | 137 (92.6%) | 69 (93.2%) | 111 (92.5%) | 56 (93.3%) | |||
Smoking | |||||||||
Never smoker, n (%) | 40 (13.6%) | 11 (12.1%) | 0.697 | 22 (14.9) | 11 (14.8) | 0.916 | 18 (15.0%) | 8 (13.3%) | 0.725 |
Current smoker, n (%) | 99 (33.7%) | 35 (38.5%) | 50 (33.8) | 27 (36.5) | 35 (29.2%) | 21 (35%) | |||
Ex-smoker, n (%) | 155 (52.7%) | 45 (49.5%) | 76 (51.4) | 36 (48.7) | 67 (55.8) | 31 (51.7%) | |||
BMI, kg/m2 | |||||||||
Mean (SD) | 24.1 (9.0) | 22.9 (3.1) | 0.216 | 23.3 (3.4) | 22.8 (3.1) | 0.327 | 23.4 (3.4) | 23.1 (2.9) | 0.587 |
BMI < 18.5, n (%) | 12 (4.1%) | 8 (8.8%) | 0.346 | 8 (5.4%) | 5 (6.8%) | 0.880 | 6 (5.0%) | 4 (6.7%) | 0.883 |
18.5 ≤ BMI < 25, n (%) | 182 (61.9%) | 56 (61.5%) | 90 (60.8%) | 47 (63.5%) | 74 (61.7%) | 35 (58.3%) | |||
25 ≤ BMI, n (%) | 86 (29.3%) | 22 (24.2%) | 41 (27.7%) | 17 (23.0%) | 33 (27.5%) | 16 (26.7%) | |||
Unknown BMI, n (%) | 14 (4.8%) | 5 (5.5%) | 9 (6.1%) | 5 (6.8%) | 7 (5.8%) | 5 (8.3%) | |||
ECOG performance status | |||||||||
0, n (%) | 122 (41.5 %) | 39 (42.9%) | 0.760 | 68 (46.0%) | 35 (47.3%) | 0.742 | 58 (48.3%) | 25 (41.7%) | 0.855 |
1, n (%) | 152 (51.7%) | 44 (48.4%) | 66 (44.6%) | 31 (41.9%) | 52 (43.3%) | 30 (50.0%) | |||
2, n (%) | 7 (2.4%) | 4 (4.4%) | 4 (2.7%) | 4 (5.4%) | 4 (3.3%) | 2 (3.3%) | |||
Unknown, n (%) | 13 (4.4%) | 4 (4.4%) | 10 (6.8%) | 4 (5.4%) | 6 (5.0%) | 3 (5.0%) | |||
Comorbidity | |||||||||
COPD, n (%) | 166 (56.4%) | 67 (73.6%) | 0.003 | 100 (67.6%) | 53 (71.6%) | 0.538 | 83 (69.2%) | 41 (68.3%) | 0.909 |
ILD, n (%) | 13 (4.4%) | 8 (8.8%) | 0.109 | 6 (4.0%) | 4 (5.4%) | 0.647 | 5 (4.2%) | 3 (5.0%) | 0.798 |
Histologic type | |||||||||
Non-squamous, n (%) | 105 (35.7%) | 30 (33.0%) | 0.631 | 57 (38.5%) | 25 (33.8%) | 0.491 | 49 (40.8%) | 22 (36.7%) | 0.590 |
Squamous, n (%) | 189 (64.3%) | 61 (67.0%) | 91 (61.5%) | 49 (66.2%) | 71 (59.2%) | 38 (63.3%) | |||
Stage (TNM 8th) | |||||||||
IIIA, n (%) | 146 (49.7%) | 47 (51.6%) | 0.001 | 75 (50.7%) | 37 (50.0%) | 0.267 | 61 (50.8%) | 31 (51.7%) | 0.969 |
IIIB, n (%) | 136 (45.3%) | 31 (34.1%) | 61 (41.2%) | 26 (35.1%) | 48 (40.0%) | 23 (38.3%) | |||
IIIC, n (%) | 12 (4.1%) | 13 (14.3%) | 12 (8.1%) | 11 (14.9%) | 11 (9.2%) | 6 (10.0%) | |||
EGFR mutation | |||||||||
Wild type, n (%) | 101 (34.4%) | 25 (27.5%) | 0.415 | 45 (30.4%) | 22 (29.7%) | 0.640 | 39 (32.5%) | 20 (33.3%) | 0.551 |
Mutant, n (%) | 12 (4.1%) | 3 (3.3%) | 8 (5.4%) | 2 (2.7%) | 6 (5.0%) | 1 (1.7%) | |||
Unknown, n (%) | 181 (61.6%) | 63 (70.2%) | 95 (64.2%) | 50 (67.6%) | 75 (62.5%) | 39 (65.0%) | |||
ALK rearrangement | |||||||||
Negative, n (%) | 82 (27.9%) | 25 (27.5%) | 0.992 | 40 (27.0%) | 22 (29.7%) | 0.891 | 39 (32.5) | 19 (31.7) | 0.996 |
Positive, n (%) | 9 (3.1%) | 3 (3.3%) | 5 (3.4%) | 2 (2.7%) | 4 (3.3) | 2 (3.3) | |||
Unknown, n (%) | 203 (69.1%) | 63 (69.2%) | 103 (69.6%) | 50 (67.6%) | 77 (64.2) | 39 (65.0) | |||
PD-L1 immunohistochemistry (SP263) | |||||||||
TPS <1%, n (%) | 82 (27.9%) | 14 (14.9%) | <0.0001 | 41 (27.7%) | 10 (13.5%) | <0.0001 | 27 (22.5%) | 10 (16.7%) | 0.284 |
TPS ≥1%, n (%) | 112 (29.0%) | 65 (69.2%) | 45 (30.4%) | 51 (68.9%) | 59 (49.2%) | 37 (61.7%) | |||
Unknown, n (%) | 175 (45.3%) | 15 (16.0%) | 62 (41.9%) | 13 (17.6%) | 34 (28.3%) | 13 (21.7%) | |||
Chemotherapy regimen | |||||||||
Pac-Cis, n (%) | 275 (93.5%) | 71 (78.0%) | <0.0001 | 131 (88.5) | 65 (87.8) | 0.883 | 109 (90.8%) | 52 (13.3%) | 0.3911 |
Pac-Car, n (%) | 19 (6.5%) | 20 (22.0%) | 17 (11.5%) | 9 (12.2) | 11 (9.2%) | 8 (87.0%) | |||
Chemotherapy cycle | |||||||||
Mean (SD) | 5.6 (0.63) | 5.9 (0.41) | <0.0001 | 5.8 (0.48) | 5.9 (0.43) | 0.681 | 5.9 (0.42) | 5.8 (0.46) | 0.714 |
3, n (%) | 1 (0.34%) | 0 (0.0%) | 0.001 | 0 (0.0%) | 0 (0.0%) | 0.878 | 0 (0.0%) | 0 (0.0%) | 0.931 |
4, n (%) | 20 (6.8%) | 2 (2.2%) | 6 (4.1%) | 2 (2.7%) | 3 (2.5%) | 2 (3.3%) | |||
5, n (%) | 80 (27.2%) | 9 (9.9%) | 14 (9.5%) | 7 (9.5%) | 11 (9.2%) | 6 (10.0%) | |||
6, n (%) | 193 (65.6%) | 80 (87.9%) | 128 (86.5%) | 65 (87.8%) | 106 (88.3%) | 52 (86.7%) | |||
RT fraction, mean (SD) | 28.7 (2.18) | 29.7 (1.10) | <0.0001 | 29.7 (1.18) | 29.7 (1.09) | 0.805 | 29.7 (1.15) | 29.7 (1.20) | 0.787 |
RT dose in Gy, mean (SD) | 61.3 (2.85) | 61.6 (2.63) | 0.457 | 61.8 (2.90) | 61.8 (2.78) | 0.923 | 62.0 (2.97) | 62.0 (2.82) | 1.000 |
Radiation pneumonitis | |||||||||
RP without treatment, n (%) | 168 (57.1%) | 65 (71.4%) | 0.033 | 95 (64.2%) | 49 (66.2%) | 0.823 | 84 (70.0%) | 41 (68.3%) | 0.479 |
RP with treatment, n (%) | 49 (16.7%) | 13 (14.3%) | 24 (16.2%) | 13 (17.6%) | 13 (10.8%) | 10 (16.7%) | |||
No RP, n (%) | 77 (26.2%) | 13 (14.3%) | 29 (19.6%) | 12 (16.2%) | 23 (19.2%) | 9 (15.0%) | |||
Anemia | |||||||||
No, n (%) | 156 (52.0%) | 39 (42.9%) | 0.126 | 66 (44.6%) | 32 (43.2%) | 0.848 | 56 (46.7%) | 29 (48.3%) | 0.833 |
Yes, n (%) | 141 (48.0%) | 52 (57.1%) | 82 (55.4%) | 42 (56.8%) | 64 (53.3%) | 31 (52.7%) | |||
Thrombocytopenia | |||||||||
No, n (%) | 270 (91.8%) | 87 (95.6%) | 0.227 | 141 (95.3%) | 70 (94.6%) | 0.827 | 113 (94.2%) | 58 (96.7%) | 0.468 |
Yes, n (%) | 24 (8.2%) | 4 (4.4%) | 7 (4.7%) | 4 (5.4%) | 7 (5.8%) | 2 (3.3%) | |||
Liver Failure | |||||||||
No, n (%) | 264 (89.8%) | 85 (93.4%) | 0.301 | 136 (91.9%) | 68 (91.9%) | 1.000 | 109 (90.8%) | 54 (90.0%) | 0.857 |
Yes, n (%) | 30 (10.2%) | 6 (6.6%) | 12 (8.1%) | 6 (8.1%) | 11 (9.2%) | 6 (10.0%) | |||
Kidney function by eGFR | |||||||||
eGFR ≥90, n (%) | 111 (37.7%) | 49 (53.9%) | 0.015 | 63 (42.6%) | 38 (51.4%) | 0.460 | 54 (45.0%) | 29 (48.3%) | 0.684 |
60 ≤ eGFR < 90, n (%) | 148 (50.3%) | 37 (40.7%) | 74 (50.0%) | 31 (41.9%) | 59 (49.2%) | 26 (43.3%) | |||
0 ≤ eGFR < 60, n (%) | 35 (11.9%) | 5 (6.5%) | 11 (7.4%) | 5 (6.8%) | 7 (5.83%) | 5 (8.3%) |
Main Analysis (N = 222) | Sensitivity Analysis (N = 180) | |
---|---|---|
No. of survival at 2 years/total patients in a group (%) | ||
PFS | DC: 35/74 (47.3%) | DC: 28/60 (46.7%) |
CCRT: 42/148 (28.4%) | CCRT: 38/120 (31.7%) | |
OS | DC: 55/74 (74.4%) | DC: 42/60 (70.0%) |
CCRT: 72/148 (48.6%) | CCRT: 69/120 (57.5%) | |
Median survival time in months (95% CI) | ||
PFS | DC: 13.5 (6.9–NR) | DC: 12.7 (8.7–NR) |
CCRT: 7.8 (6.7–9.5) | CCRT: 8.9 (6.9–13.6) | |
OS | DC: NR (23.5–NR) | DC: NR (23.4–NR) |
CCRT: 24.3 (17.5–NR) | CCRT: NR (22.7–NR) | |
Hazard Ratio (95% CI) | ||
PFS | 0.630 (0.416–0.957) | 0.647 (0.405–1.013) |
OS | 0.469 (0.270–0.815) | 0.477 (0.306–1.037) |
Outcome Type | Number of Events | Odds Ratio (95% Confidence Interval) | ||
---|---|---|---|---|
CCRT (n = 148) | DC (n = 74) | Unadjusted | Adjusted | |
Systemic use of antibiotics or steroid | 80 (54.1%) | 34 (46.0%) | 0.723 (0.413–1.265) | 0.472 (0.242–0.921) * |
Systemic use of antibiotics, regardless of duration | 70 (47.3%) | 27 (36.5%) | 0.640 (0.361–1.135) | 0.436 (0.220–0.865) * |
≥5 days | 67 (45.3%) | 27 (36.5%) | 0.695 (0.391–1.232) | 0.511 (0.261–1.002) |
≥10 days | 51 (34.5%) | 23 (31.1%) | 0.858 (0.472–1.559) | 0.681 (0.346–1.340) |
IV antibiotics, regardless of duration | 39 (26.4%) | 8 (10.8%) | 0.339 (0.149–0.769) | 0.205 (0.080–0.525) |
Systemic use of steroids, regardless of duration | 42 (27.7%) | 23 (31.8%) | 1.177 (0.640–2.166) | 0.800 (0.391–1.639) |
≥14 days | 34 (23.0%) | 17 (23.0%) | 1.000 (0.515–1.941) | 0.738 (0.339–1.610) |
≥28 days | 28 (18.9%) | 16 (21.6%) | 1.182 (0.593–2.536) | 0.952 (0.423–2.141) |
IV steroids, regardless of duration | 23 (15.5%) | 8 (10.8%) | 0.659 (0.279–1.554) | 0.367 (0.132–1.020) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, C.-K.; Jeon, N.; Park, H.-K.; Oh, H.-J.; Kim, Y.-C.; Jeon, H.-L.; Kim, Y.-H.; Ahn, S.-J.; Oh, I.-J. A Propensity-Matched Retrospective Comparative Study with Historical Control to Determine the Real-World Effectiveness of Durvalumab after Concurrent Chemoradiotherapy in Unresectable Stage III Non-Small Cell Lung Cancer. Cancers 2023, 15, 1606. https://doi.org/10.3390/cancers15051606
Park C-K, Jeon N, Park H-K, Oh H-J, Kim Y-C, Jeon H-L, Kim Y-H, Ahn S-J, Oh I-J. A Propensity-Matched Retrospective Comparative Study with Historical Control to Determine the Real-World Effectiveness of Durvalumab after Concurrent Chemoradiotherapy in Unresectable Stage III Non-Small Cell Lung Cancer. Cancers. 2023; 15(5):1606. https://doi.org/10.3390/cancers15051606
Chicago/Turabian StylePark, Cheol-Kyu, Nakyung Jeon, Hwa-Kyung Park, Hyung-Joo Oh, Young-Chul Kim, Ha-Lim Jeon, Yong-Hyub Kim, Sung-Ja Ahn, and In-Jae Oh. 2023. "A Propensity-Matched Retrospective Comparative Study with Historical Control to Determine the Real-World Effectiveness of Durvalumab after Concurrent Chemoradiotherapy in Unresectable Stage III Non-Small Cell Lung Cancer" Cancers 15, no. 5: 1606. https://doi.org/10.3390/cancers15051606
APA StylePark, C. -K., Jeon, N., Park, H. -K., Oh, H. -J., Kim, Y. -C., Jeon, H. -L., Kim, Y. -H., Ahn, S. -J., & Oh, I. -J. (2023). A Propensity-Matched Retrospective Comparative Study with Historical Control to Determine the Real-World Effectiveness of Durvalumab after Concurrent Chemoradiotherapy in Unresectable Stage III Non-Small Cell Lung Cancer. Cancers, 15(5), 1606. https://doi.org/10.3390/cancers15051606