Population Pharmacokinetics of Trametinib and Impact of Nonadherence on Drug Exposure in Oncology Patients as Part of the Optimizing Oral Targeted Anticancer Therapies Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.2. Modelling and Simulations Analyses
2.2.1. Model Building
2.2.2. Sensibility Analysis
2.2.3. Model Selection
2.2.4. Model Validation
2.2.5. Simulations
3. Results
3.1. Population Studied
3.2. PopPK Model
3.3. Simulations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALAT | Alanine aminotransferase |
ASAT | Aspartate aminotransferase |
BFM | Body fat percentage |
BMI | Body mass index |
BSA | Body surface area |
BW | Bodyweight |
CL | Clearance |
Cmin | Minimum concentration |
CrCL | Creatinine clearance |
CYP | Cytochrome P |
FFM | Fat-free mass |
IIV | Inter-individual variability |
ka | Absorption rate constants |
MAPK/ERK | Mitogen-activated protein kinase/extracellular-regulated kinase |
MEK | Mitogen-activated protein kinases |
Nonmem | Nonlinear mixed effect modelling |
OpTAT | Optimizing oral Targeted Anticancer Therapies |
PAL | Alkaline phosphatase |
pcVPC | Prediction-corrected visual predictive check |
PK | Pharmacokinetics |
popPK | Population pharmacokinetic |
PsN | Pearl speaks Nonmem |
Q | Intercompartmental clearance |
RSE | Relative standard error |
TDM | Therapeutic drug monitoring |
Tmax | Time required to reach maximum concentration |
V2 | Central volume |
V3 | Peripheral volume |
ΔOFV | Difference in objective function values |
95% PI | 95% prediction interval |
Appendix A
Appendix B
References
- World Health Organization. Internatonal Agency for Research on Cancer. Cancer Today. Absolute Numbers, Incidence, Both Sexes, in 2022. Available online: https://gco.iarc.fr/today/en/dataviz/pie?mode=population&group_populations=0 (accessed on 15 April 2024).
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Hashim, D.; Boffetta, P.; La Vecchia, C.; Rota, M.; Bertuccio, P.; Malvezzi, M.; Negri, E. The global decrease in cancer mortality: Trends and disparities. Ann. Oncol. 2016, 27, 926–933. [Google Scholar] [CrossRef]
- Cronin, K.A.; Scott, S.; Firth, A.U.; Sung, H.; Henley, S.J.; Sherman, R.L.; Siegel, R.L.; Anderson, R.N.; Kohler, B.A.; Benard, V.B.; et al. Annual report to the nation on the status of cancer, part 1: National cancer statistics. Cancer 2022, 128, 4251–4284. [Google Scholar] [CrossRef] [PubMed]
- Burney, I.A.; Al-Moundhri, M.S. Major Advances in the Treatment of Cancer: What does a Non-Oncologist need to know? Sultan Qaboos Univ. Med. J. 2008, 8, 137–148. [Google Scholar]
- Schlichtig, K.; Dürr, P.; Dörje, F.; Fromm, M.F. New Oral Anti-Cancer Drugs and Medication Safety. Dtsch. Ärzteblatt Int. 2019, 119, 775–782. [Google Scholar] [CrossRef]
- Roskoski, R. Properties of FDA-approved small molecule protein kinase inhibitors: A 2024 update. Pharmacol. Res. 2024, 200, 107059. [Google Scholar] [CrossRef]
- Tipton, J. Overview of the Challenges Related to Oral Agents for Cancer and Their Impact on Adherence. Clin. J. Oncol. Nurs. 2015, 19, 37–40. [Google Scholar] [CrossRef]
- Krohe, M.; Eek, D.; Mazar, I.; Horsfield, A.; Pompilus, F.; Friebe, R.; Shields, A. Patient-reported preferences for oral versus intravenous administration for the treatment of cancer: A review of the literature. Patient Prefer. Adherence 2016, 10, 1609–1621. [Google Scholar] [CrossRef]
- Shuel, S.L. Targeted cancer therapies. Can. Fam. Physician 2022, 68, 515–518. [Google Scholar] [CrossRef]
- Keefe, D.M.K.; Bateman, E.H. Potential Successes and Challenges of Targeted Cancer Therapies. JNCI Monogr. 2019, 2019, lgz008. [Google Scholar] [CrossRef]
- Keefe, D.M.K.; Bateman, E.H. Tumor control versus adverse events with targeted anticancer therapies. Nat. Rev. Clin. Oncol. 2012, 9, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Greer, J.A.; Amoyal, N.; Nisotel, L.; Fishbein, J.N.; Macdonald, J.; Stagl, J.; Lennes, I.; Temel, J.S.; Safren, S.A.; Pirl, W.F. A Systematic Review of Adherence to Oral Antineoplastic Therapies. Oncologist 2016, 21, 354–376. [Google Scholar] [CrossRef] [PubMed]
- Bandiera, C.; Locatelli, I.; Courlet, P.; Cardoso, E.; Zaman, K.; Stravodimou, A.; Dolcan, A.; Sarivalasis, A.; Zurcher, J.-P.; Aedo-Lopez, V.; et al. Adherence to the CDK 4/6 Inhibitor Palbociclib and Omission of Dose Management Supported by Pharmacometric Modelling as Part of the OpTAT Study. Cancers 2023, 15, 316. [Google Scholar] [CrossRef] [PubMed]
- Higano, C.S.; Hafron, J. Adherence With Oral Anticancer Therapies: Clinical Trial vs Real-world Experiences With a Focus on Prostate Cancer. J. Urol. 2023, 209, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, E.; Guidi, M.; Blanchet, B.; Schneider, M.P.; Decosterd, L.A.; Buclin, T.; Csajka, C.; Widmer, N. Therapeutic Drug Monitoring of Targeted Anticancer Protein Kinase Inhibitors in Routine Clinical Use: A Critical Review. Ther. Drug Monit. 2020, 42, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Bandiera, C.; Cardoso, E.; Locatelli, I.; Digklia, A.; Zaman, K.; Diciolla, A.; Cristina, V.; Stravodimou, A.; Veronica, A.L.; Dolcan, A.; et al. Optimizing Oral Targeted Anticancer Therapies Study for Patients With Solid Cancer: Protocol for a Randomized Controlled Medication Adherence Program Along With Systematic Collection and Modeling of Pharmacokinetic and Pharmacodynamic Data. JMIR Res. Protoc. 2021, 10, e30090. [Google Scholar] [CrossRef] [PubMed]
- Van Der Kleij, M.B.A.; Guchelaar, N.A.D.; Mathijssen, R.H.J.; Versluis, J.; Huitema, A.D.R.; Koolen, S.L.W.; Steeghs, N. Therapeutic Drug Monitoring of Kinase Inhibitors in Oncology. Clin. Pharmacokinet. 2023, 62, 1333–1364. [Google Scholar] [CrossRef]
- Gilmartin, A.G.; Bleam, M.R.; Groy, A.; Moss, K.G.; Minthorn, E.A.; Kulkarni, S.G.; Rominger, C.M.; Erskine, S.; Fisher, K.E.; Yang, J.; et al. GSK1120212 (JTP-74057) Is an Inhibitor of MEK Activity and Activation with Favorable Pharmacokinetic Properties for Sustained In Vivo Pathway Inhibition. Clin. Cancer Res. 2011, 17, 989–1000. [Google Scholar] [CrossRef] [PubMed]
- Lugowska, I.; Kosela-Paterczyk, H.; Kozak, K.; Rutkowski, P. Trametinib: A MEK inhibitor for management of metastatic melanoma. Onco Targets Ther. 2015, 8, 2251–2259. [Google Scholar] [CrossRef]
- Kim, K.B.; Kefford, R.; Pavlick, A.C.; Infante, J.R.; Ribas, A.; Sosman, J.A.; Fecher, L.A.; Millward, M.; McArthur, G.A.; Hwu, P.; et al. Phase II Study of the MEK1/MEK2 Inhibitor Trametinib in Patients With Metastatic BRAF-Mutant Cutaneous Melanoma Previously Treated With or Without a BRAF Inhibitor. J. Clin. Oncol. 2013, 31, 482–489. [Google Scholar] [CrossRef]
- Falchook, G.S.; Lewis, K.D.; Infante, J.R.; Gordon, M.S.; Vogelzang, N.J.; Demarini, D.J.; Sun, P.; Moy, C.; Szabo, S.A.; Roadcap, L.T.; et al. Activity of the oral MEK inhibitor trametinib in patients with advanced melanoma: A phase 1 dose-escalation trial. Lancet Oncol. 2012, 13, 782–789. [Google Scholar] [CrossRef] [PubMed]
- Menzies, A.M.; Long, G.V. Dabrafenib and Trametinib, Alone and in Combination for BRAF-Mutant Metastatic Melanoma. Clin. Cancer Res. 2014, 20, 2035–2043. [Google Scholar] [CrossRef] [PubMed]
- Corrie, P.; Meyer, N.; Berardi, R.; Guidoboni, M.; Schlueter, M.; Kolovos, S.; Macabeo, B.; Trouiller, J.-B.; Laramée, P. Comparative efficacy and safety of targeted therapies for BRAF-mutant unresectable or metastatic melanoma: Results from a systematic literature review and a network meta-analysis. Cancer Treat. Rev. 2022, 110, 102463. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Das, J.; Kalra, M.; Ratto, B. Comparative efficacy of dabrafenib + trametinib versus treatment options for metastatic melanoma in first-line settings. J. Comp. Eff. Res. 2021, 10, 267–280. [Google Scholar] [CrossRef] [PubMed]
- Robert, C.; Flaherty, K.; Nathan, P.; Hersey, P.; Garbe, C.; Milhem, M.; Demidov, L.; Mohr, P.; Hassel, J.C.; Rutkowski, P.; et al. Five-year outcomes from a phase 3 METRIC study in patients with BRAF V600 E/K–mutant advanced or metastatic melanoma. Eur. J. Cancer 2019, 109, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Piejko, K.; Cybulska-Stopa, B.; Czarnecka, A.M.; Ostaszewski, K.; Ziętek, M.; Galus, L.; Bal, W.; Kubiatowski, T.; Kaminska-Winciorek, G.; Suwinski, R.; et al. 1115P Comparison of efficacy and toxicity of dabrafenib/trametinib versus vemurafenib/cobimetinib therapy in routine medical practice: Eight years of BRAF/MEK inhibitor use in routine clinical practice. Ann. Oncol. 2023, 34, S672. [Google Scholar] [CrossRef]
- Garbe, C.; Amaral, T.; Peris, K.; Hauschild, A.; Arenberger, P.; Basset-Seguin, N.; Bastholt, L.; Bataille, V.; Del Marmol, V.; Dréno, B.; et al. European consensus-based interdisciplinary guideline for melanoma. Part 2: Treatment—Update 2022. Eur. J. Cancer 2022, 170, 256–284. [Google Scholar] [CrossRef] [PubMed]
- Seth, R.; Agarwala, S.S.; Messersmith, H.; Alluri, K.C.; Ascierto, P.A.; Atkins, M.B.; Bollin, K.; Chacon, M.; Davis, N.; Faries, M.B.; et al. Systemic Therapy for Melanoma: ASCO Guideline Update. J. Clin. Oncol. 2023, 41, 4794–4820. [Google Scholar] [CrossRef]
- Hanna, N.H.; Robinson, A.G.; Temin, S.; Baker, S.; Brahmer, J.R.; Ellis, P.M.; Gaspar, L.E.; Haddad, R.Y.; Hesketh, P.J.; Jain, D.; et al. Therapy for Stage IV Non–Small-Cell Lung Cancer With Driver Alterations: ASCO and OH (CCO) Joint Guideline Update. J. Clin. Oncol. 2021, 39, 1040–1091. [Google Scholar] [CrossRef]
- Keilholz, U.; Ascierto, P.A.; Dummer, R.; Robert, C.; Lorigan, P.; Van Akkooi, A.; Arance, A.; Blank, C.U.; Chiarion Sileni, V.; Donia, M.; et al. ESMO consensus conference recommendations on the management of metastatic melanoma: Under the auspices of the ESMO Guidelines Committee. Ann. Oncol. 2020, 31, 1435–1448. [Google Scholar] [CrossRef]
- Garutti, M.; Bergnach, M.; Polesel, J.; Palmero, L.; Pizzichetta, M.A.; Puglisi, F. BRAF and MEK Inhibitors and Their Toxicities: A Meta-Analysis. Cancers 2022, 15, 141. [Google Scholar] [CrossRef]
- European medicines agency (EMA). Mekinist, CHMP Assessment Report; European Medicines Agency (EMA): Amsterdam, The Netherlands, 2013. [Google Scholar]
- SwissMedicInfo. Mekinist (Trametinib). Available online: https://www.swissmedicinfo.ch/ViewMonographie (accessed on 20 May 2024).
- Thota, R.; Johnson, D.B.; Sosman, J.A. Trametinib in the treatment of melanoma. Expert. Opin. Biol. Ther. 2015, 15, 735–747. [Google Scholar] [CrossRef] [PubMed]
- Mathijssen, R.H.J.; Sparreboom, A.; Verweij, J. Determining the optimal dose in the development of anticancer agents. Nat. Rev. Clin. Oncol. 2014, 11, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Ouellet, D.; Kassir, N.; Chiu, J.; Mouksassi, M.-S.; Leonowens, C.; Cox, D.; Demarini, D.J.; Gardner, O.; Crist, W.; Patel, K. Population pharmacokinetics and exposure–response of trametinib, a MEK inhibitor, in patients with BRAF V600 mutation-positive melanoma. Cancer Chemother. Pharmacol. 2016, 77, 807–817. [Google Scholar] [CrossRef] [PubMed]
- Balakirouchenane, D.; Guégan, S.; Csajka, C.; Jouinot, A.; Heidelberger, V.; Puszkiel, A.; Zehou, O.; Khoudour, N.; Courlet, P.; Kramkimel, N.; et al. Population Pharmacokinetics/Pharmacodynamics of Dabrafenib Plus Trametinib in Patients with BRAF-Mutated Metastatic Melanoma. Cancers 2020, 12, 931. [Google Scholar] [CrossRef] [PubMed]
- Infante, J.R.; Fecher, L.A.; Falchook, G.S.; Nallapareddy, S.; Gordon, M.S.; Becerra, C.; Demarini, D.J.; Cox, D.S.; Xu, Y.; Morris, S.R.; et al. Safety, pharmacokinetic, pharmacodynamic, and efficacy data for the oral MEK inhibitor trametinib: A phase 1 dose-escalation trial. Lancet Oncol. 2012, 13, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Reviews; Food and Drug Administration: Rockville, MD, USA, 2013. [Google Scholar]
- Cardoso, E.; Mercier, T.; Wagner, A.D.; Homicsko, K.; Michielin, O.; Ellefsen-Lavoie, K.; Cagnon, L.; Diezi, M.; Buclin, T.; Widmer, N.; et al. Quantification of the next-generation oral anti-tumor drugs dabrafenib, trametinib, vemurafenib, cobimetinib, pazopanib, regorafenib and two metabolites in human plasma by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 2018, 1083, 124–136. [Google Scholar] [CrossRef]
- Vrijens, B.; De Geest, S.; Hughes, D.A.; Przemyslaw, K.; Demonceau, J.; Ruppar, T.; Dobbels, F.; Fargher, E.; Morrison, V.; Lewek, P.; et al. A new taxonomy for describing and defining adherence to medications. Br. J. Clin. Pharmacol. 2012, 73, 691–705. [Google Scholar] [CrossRef] [PubMed]
- Cockcroft, D.W.; Gault, H. Prediction of Creatinine Clearance from Serum Creatinine. Nephron 1976, 16, 31–41. [Google Scholar] [CrossRef]
- Deurenberg, P.; Weststrate, J.A.; Seidell, J.C. Body mass index as a measure of body fatness: Age- and sex-specific prediction formulas. Br. J. Nutr. 1991, 65, 105–114. [Google Scholar] [CrossRef]
- PSN. Documentation. Available online: https://uupharmacometrics.github.io/PsN/docs.html (accessed on 15 April 2024).
- Bergstrand, M.; Hooker, A.C.; Wallin, J.E.; Karlsson, M.O. Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J. 2011, 13, 143–151. [Google Scholar] [CrossRef]
- Mueller-Schoell, A.; Groenland, S.L.; Scherf-Clavel, O.; Van Dyk, M.; Huisinga, W.; Michelet, R.; Jaehde, U.; Steeghs, N.; Huitema, A.D.R.; Kloft, C. Therapeutic drug monitoring of oral targeted antineoplastic drugs. Eur. J. Clin. Pharmacol. 2021, 77, 441–464. [Google Scholar] [CrossRef]
- Verheijen, R.B.; Yu, H.; Schellens, J.H.M.; Beijnen, J.H.; Steeghs, N.; Huitema, A.D.R. Practical Recommendations for Therapeutic Drug Monitoring of Kinase Inhibitors in Oncology. Clin. Pharmacol. Ther. 2017, 102, 765–776. [Google Scholar] [CrossRef]
- Larsson, I.; Lissner, L.; Samuelson, G.; Fors, H.; Lantz, H.; Näslund, I.; Carlsson, L.M.S.; Sjöström, L.; Bosaeus, I. Body composition through adult life: Swedish reference data on body composition. Eur. J. Clin. Nutr. 2015, 69, 837–842. [Google Scholar] [CrossRef]
- Özdemir, B.C.; Gerard, C.L.; Espinosa da Silva, C. Sex and Gender Differences in Anticancer Treatment Toxicity: A Call for Revisiting Drug Dosing in Oncology. Endocrinology 2022, 163, bqac058. [Google Scholar] [CrossRef]
- Wagner, A.D.; Oertelt-Prigione, S.; Adjei, A.; Buclin, T.; Cristina, V.; Csajka, C.; Coukos, G.; Dafni, U.; Dotto, G.P.; Ducreux, M.; et al. Gender medicine and oncology: Report and consensus of an ESMO workshop. Ann. Oncol. 2019, 30, 1914–1924. [Google Scholar] [CrossRef]
- Özdemir, B.C.; Csajka, C.; Dotto, G.-P.; Wagner, A.D. Sex Differences in Efficacy and Toxicity of Systemic Treatments: An Undervalued Issue in the Era of Precision Oncology. J. Clin. Oncol. 2018, 36, 2680–2683. [Google Scholar] [CrossRef]
- Soldin, O.P.; Mattison, D.R. Sex Differences in Pharmacokinetics and Pharmacodynamics. Clin. Pharmacokinet. 2009, 48, 143–157. [Google Scholar] [CrossRef]
- Mangoni, A.A.; Jackson, S.H.D. Age-related changes in pharmacokinetics and pharmacodynamics: Basic principles and practical applications. Br. J. Clin. Pharmacol. 2003, 57, 6–14. [Google Scholar] [CrossRef]
- European Medicines Agency. Tafinlar: EPAR—Product information. Available online: https://www.ema.europa.eu/en/documents/product-information/tafinlar-epar-product-information_en.pdf (accessed on 20 May 2024).
- Hernando, J.; Roca-Herrera, M.; García-Álvarez, A.; Raymond, E.; Ruszniewski, P.; Kulke, M.H.; Grande, E.; García-Carbonero, R.; Castellano, D.; Salazar, R.; et al. Sex differences on multikinase inhibitors toxicity in patients with advanced gastroenteropancreatic neuroendocrine tumours. Eur. J. Cancer 2023, 188, 39–48. [Google Scholar] [CrossRef]
- Van Der Kooij, M.; Dekkers, O.; Aarts, M.; Van Den Berkmortel, F.; Boers-Sonderen, M.; De Groot, J.; Hospers, G.; Piersma, D.; Van Rijn, R.; Suijkerbuijk, K.; et al. Sex-Based Differences in Treatment with Immune Checkpoint Inhibition and Targeted Therapy for Advanced Melanoma: A Nationwide Cohort Study. Cancers 2021, 13, 4639. [Google Scholar] [CrossRef]
- Murphy, C.C.; Bartholomew, L.K.; Carpentier, M.Y.; Bluethmann, S.M.; Vernon, S.W. Adherence to adjuvant hormonal therapy among breast cancer survivors in clinical practice: A systematic review. Breast Cancer Res. Treat. 2012, 134, 459–478. [Google Scholar] [CrossRef]
- Demonceau, J.; Ruppar, T.; Kristanto, P.; Hughes, D.A.; Fargher, E.; Kardas, P.; De Geest, S.; Dobbels, F.; Lewek, P.; Urquhart, J.; et al. Identification and Assessment of Adherence-Enhancing Interventions in Studies Assessing Medication Adherence Through Electronically Compiled Drug Dosing Histories: A Systematic Literature Review and Meta-Analysis. Drugs 2013, 73, 545–562. [Google Scholar] [CrossRef]
- Kamal, S.; Glass, T.R.; Doco-Lecompte, T.; Locher, S.; Bugnon, O.; Parienti, J.-J.; Cavassini, M.; Schneider, M.P. An Adherence-Enhancing Program Increases Retention in Care in the Swiss HIV Cohort. Open Forum Infect. Dis. 2020, 7, ofaa323. [Google Scholar] [CrossRef]
- Bandiera, C.; Dotta-Celio, J.; Locatelli, I.; Nobre, D.; Wuerzner, G.; Pruijm, M.; Lamine, F.; Burnier, M.; Zanchi, A.; Schneider, M.P. The differential impact of a 6-versus 12-month pharmacist-led interprofessional medication adherence program on medication adherence in patients with diabetic kidney disease: The randomized PANDIA-IRIS study. Front. Pharmacol. 2024, 15, 1294436. [Google Scholar] [CrossRef]
- Rosenberg, S.M.; Petrie, K.J.; Stanton, A.L.; Ngo, L.; Finnerty, E.; Partridge, A.H. Interventions to Enhance Adherence to Oral Antineoplastic Agents: A Scoping Review. J. Natl. Cancer Inst. 2020, 112, 443–465. [Google Scholar] [CrossRef]
- Levit, L.A.; Arora, S.; Kluetz, P.G.; Magnuson, A.; Rahman, A.; Harvey, R.D. Call to Action for Improving Oral Anticancer Agent Adherence. J. Clin. Oncol. 2022, 40, 1036–1040. [Google Scholar] [CrossRef]
- Groenland, S.L.; Janssen, J.M.; Nijenhuis, C.M.; De Vries, N.; Rosing, H.; Wilgenhof, S.; Van Thienen, J.V.; Haanen, J.B.A.G.; Blank, C.U.; Beijnen, J.H.; et al. Exposure–response analyses of BRAF- and MEK-inhibitors dabrafenib plus trametinib in melanoma patients. Cancer Chemother. Pharmacol. 2023, 91, 447–456. [Google Scholar] [CrossRef]
- Raynal, M.; Alvarez, J.C.; Saiag, P.; Beauchet, A.; Funck-Brentano, C.; Funck-Brentano, E. Monitoring of plasma concentrations of dabrafenib and trametinib in advanced BRAFV600mut melanoma patients. Ann. Dermatol. Vénéréol. 2022, 149, 32–38. [Google Scholar] [CrossRef]
Characteristics | n (%) or Median (min, max) | Missing Data (%) |
---|---|---|
Women 1 | 15 (45%) | - |
Age [y] 2 | 63 (30, 85) | - |
Body weight [kg] 2 | 70 (45, 96) | - |
Size [cm] 2 | 170 (150, 188) | 4 |
BMI [kg/m2] 2 | 25.3 (17.3, 33.8) | 4 |
BSA [m2] 2 | 1.78 (1.40, 2.23) | 4 |
FFM [kg] 2 | 46.35 (32, 68) | 4 |
FFMI [kg/m2] 2 | 16.37 (12.96, 19.34) | 4 |
Serum creatinine [µmol/L] 2 | 76 (46, 129) | 2 |
CrCL [mL/min/1.73 m2] 2 | 84 (42, 164) | 2 |
ASAT [U/L] 2 | 30 (12, 211) | 1 |
ALAT [U/L] 2 | 26 (8, 152) | - |
PAL [U/L] 2 | 91 (49, 873) | 2 |
Total bilirubin [µmol/L] 2 | 5 (3, 12) | 1 |
Type of cancer 1 | ||
Melanoma | 22 (67%) | - |
Ovarian cancer | 3 (9%) | - |
Breast cancer | 2 (6%) | - |
Cholangiocarcinoma | 2 (6%) | - |
Thyroid carcinoma | 1 (3%) | - |
Gastrointestinal stromal tumour | 1 (3%) | - |
Hepatocellular carcinoma | 1 (3%) | - |
Ileocecal carcinoma | 1 (3%) | - |
PK Parameter | Final Model Estimation (RSE %) | Bootstrap Performed on 2000 Runs Median (95% PI) |
---|---|---|
(h−1) | 0.913 fixed | - |
(L·h−1) | 3.96 (6) | 3.98 (3.52, 4.45) |
−0.69 (32) | −0.66 (−1.25 to −0.20) | |
1.41 (17) | 1.41 (0.92, 1.90) | |
(L) | 108 (16) | 101.84 (65.42, 143.40) |
(L·h−1) | 29.4 (30) | 28.83 (12.69, 60.68) |
(L) | 286 (25) | 286.48 (104.63, 385.40) |
(%) | 23 (14) | 22 (13, 28) |
(%) | 20 (10) | 20 (16, 24) |
Doses Tested | 0.5 mg | 1 mg | 1.5 mg | 2 mg | |
---|---|---|---|---|---|
Age: 30–65 years | |||||
Women | Cmin < 10.6 ng/mL | 100% [99.5%, 100%] | 84% [82.1%, 87.2%] | 53% [50.7%, 55.7%] | 29% [26.2%, 41.5%] |
Cmin ≥ 10.6 ng/mL | 0% [0, 0.5%] | 16% [12.8%, 17.9%] | 47% [44.3%, 49.3%] | 71% [68.5%, 73.8%] | |
Men | Cmin < 10.6 ng/mL | 100% [99.9%, 100%] | 99% [98.3%, 99.8%] | 87% [84.8%, 89.4%] | 63% [59.3%, 66%] |
Cmin ≥ 10.6 ng/mL | 0% [0%, 0.1%] | 1% [0.2%, 1.7%] | 13% [10.6%, 15.2%] | 37% [34%, 40.7%] | |
Age: 65–85 years | |||||
Women | Cmin < 10.6 ng/mL | 98% [96.4%, 98.6%] | 55% [51.7%, 58.3%] | 21% [18.8%, 23.6%] | 7% [4.8%, 8.1%] |
Cmin ≥ 10.6 ng/mL | 2% [1.4%, 3.8%] | 45% [41.7%, 48.3%] | 79% [76.4%, 81.2%] | 93% [91.9%, 95.2%] | |
Men | Cmin < 10.6 ng/mL | 100% [99.8%, 100%] | 90% [87.3%, 92.1%] | 54% [49.6%, 57.5%] | 25% [22.4%, 26.8%] |
Cmin ≥ 10.6 ng/mL | 0% [0%, 0.2%] | 10% [7.9%, 12.7%] | 46% [42.5%, 49.4%] | 75% [73.2%, 77.6%] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravix, A.; Bandiera, C.; Cardoso, E.; Lata-Pedreira, A.; Chtioui, H.; Decosterd, L.A.; Wagner, A.D.; Schneider, M.P.; Csajka, C.; Guidi, M. Population Pharmacokinetics of Trametinib and Impact of Nonadherence on Drug Exposure in Oncology Patients as Part of the Optimizing Oral Targeted Anticancer Therapies Study. Cancers 2024, 16, 2193. https://doi.org/10.3390/cancers16122193
Ravix A, Bandiera C, Cardoso E, Lata-Pedreira A, Chtioui H, Decosterd LA, Wagner AD, Schneider MP, Csajka C, Guidi M. Population Pharmacokinetics of Trametinib and Impact of Nonadherence on Drug Exposure in Oncology Patients as Part of the Optimizing Oral Targeted Anticancer Therapies Study. Cancers. 2024; 16(12):2193. https://doi.org/10.3390/cancers16122193
Chicago/Turabian StyleRavix, Anne, Carole Bandiera, Evelina Cardoso, Adrian Lata-Pedreira, Haithem Chtioui, Laurent Arthur Decosterd, Anna Dorothea Wagner, Marie Paule Schneider, Chantal Csajka, and Monia Guidi. 2024. "Population Pharmacokinetics of Trametinib and Impact of Nonadherence on Drug Exposure in Oncology Patients as Part of the Optimizing Oral Targeted Anticancer Therapies Study" Cancers 16, no. 12: 2193. https://doi.org/10.3390/cancers16122193
APA StyleRavix, A., Bandiera, C., Cardoso, E., Lata-Pedreira, A., Chtioui, H., Decosterd, L. A., Wagner, A. D., Schneider, M. P., Csajka, C., & Guidi, M. (2024). Population Pharmacokinetics of Trametinib and Impact of Nonadherence on Drug Exposure in Oncology Patients as Part of the Optimizing Oral Targeted Anticancer Therapies Study. Cancers, 16(12), 2193. https://doi.org/10.3390/cancers16122193