New Emerging Chemokine Receptors: CCR5 or CXCR5 on Tumor Is Associated with Poor Response to Chemotherapy and Poor Prognosis in Locally Advanced Triple-Negative Breast Cancer
Abstract
:Simple Summary
Abstract
1. Background
2. Methods
2.1. Patients and Tissue Material
2.2. Immunohistochemical Evaluation
3. Statistical Analysis
4. Results
5. Outcomes
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ibrahim, E.; Al-Gahmi, A.M.; Zeenelin, A.A.; Zekri, J.M.; Elkhodary, T.R.; Gaballa, H.E.; Fawzy, E.E.; El sayed, M.E.; Alzahrani, M.S. Basal vs. luminal A breast cancer subtypes: A matched case-control study using estrogen receptor, progesterone receptor, and HER-2 as surrogate markers. Med. Oncol. 2009, 26, 372–378. [Google Scholar] [CrossRef]
- Denkert, C.; Loibl, S.; Noske, A.; Roller, M.; Müller, B.M.; Komor, M.; Budczies, J.; Darb-Esfahani, S.; Kronenwett, R.; Hanusch, C.; et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J. Clin. Oncol. 2010, 28, 105–113. [Google Scholar] [CrossRef]
- Costa, R.; Shah, A.N.; Santa-Maria, C.A.; Cruz, M.R.; Mahalingam, D.; Carneiro, B.A.; Chae, Y.K.; Cristofanilli, M.; Gradishar, W.J.; Giles, F.J. Targeting epidermal growth factor receptor in triple negative breast cancer: New discoveries and practical insights for drug development. Cancer Treat. Rev. 2017, 53, 111–119. [Google Scholar] [CrossRef]
- Denkert, C.; Liedtke, C.; Tutt, A.; von Minckwitz, G. Molecular alterations in triple-negative breast cancer—The road to new treatment strategies. Lancet 2017, 389, 2430–2442. [Google Scholar] [CrossRef]
- Gelmon, K.; Dent, R.; Mackey, J.R.; Laing, K.; McLeod, D.; Verma, S. Targeting triple-negative breast cancer: Optimising therapeutic outcomes. Ann. Oncol. 2012, 23, 2223–2234. [Google Scholar] [CrossRef]
- Rayson, V.C.; Harris, M.A.; Savas, P.; Hun, M.L.; Virassamy, B.; Salgado, R.; Loi, S. The anti-cancer immune response in breast cancer: Current and emerging biomarkers and treatments. Trends Cancer 2024, 10, 490–506. [Google Scholar] [CrossRef]
- Carey, L.A.; Dees, E.C.; Sawyer, L.; Gatti, L.; Moore, D.T.; Collichio, F.; Ollila, D.W.; Sartor, C.I.; Graham, M.L.; Perou, C.M. The triple negative paradox: Primary tumor chemosensitivity of breast cancer subtypes. Clin. Cancer Res. 2007, 13, 2329–2334. [Google Scholar] [CrossRef]
- Müller, A.; Homey, B.; Soto, H.; Ge, N.; Catron, D.; Buchanan, M.E.; McClanahan, T.; Murphy, E.; Yuan, W.; Wagner, S.N.; et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001, 410, 50–56. [Google Scholar] [CrossRef]
- Cabioglu, N.; Summy, J.; Miller, C.; Parikh, N.U.; Sahin, A.A.; Tuzlali, S.; Pumiglia, K.; Gallick, G.E.; Price, J.E. CXCL-12/stromal cell-derived factor-1 alpha transactivates HER2-neu in breast cancer cells by a novel pathway involving Src kinase activation. Cancer Res. 2005, 65, 6493–6497. [Google Scholar] [CrossRef]
- Ruffini, P.A.; Morandi, P.; Cabioglu, N.; Altundag, K.; Cristofanilli, M. Manipulating the chemokine-chemokine receptor network to treat cancer. Cancer 2009, 109, 2392–2404. [Google Scholar] [CrossRef] [PubMed]
- Cabioglu, N.; Sahin, A.; Doucet, M.; Yavuz, E.; Igci, A.; Yildirim, E.O.; Aktas, E.; Bilgic, S.; Kiran, B.; Deniz, G.; et al. Chemokine receptor CXCR4 expression in breast cancer as a potential predictive marker of isolated tumor cells in bone marrow. Clin. Exp. Metastasis 2005, 22, 39–46. [Google Scholar] [CrossRef]
- Cabioglu, N.; Sahin, A.A.; Morandi, P.; Meric-Bernstam, F.; Islam, R.; Lin, H.Y.; Bucana, C.D.; Gonzalez-Angulo, A.M.; Hortobagyi, G.N.; Cristofanilli, M. Chemokine receptors in advanced breast cancer: Differential expression in metastatic disease sites with diagnostic and therapeutic implications. Ann. Oncol. 2009, 20, 1013–1019. [Google Scholar] [CrossRef]
- Cabioglu, N.; Yazici, M.S.; Arun, B.; Broglio, K.R.; Hortobagyi, G.N.; Price, J.E.; Sahin, A. CCR7 and CXCR4 as novel biomarkers predicting axillary lymph node metastasis in T1 breast cancer. Clin. Cancer Res. 2005, 11, 5686–5693. [Google Scholar] [CrossRef]
- Kato, M.; Kitayama, J.; Kazama, S.; Nagawa, H. Expression pattern of CXC chemokine receptor-4 is correlated with lymph node metastasis in human invasive ductal carcinoma. Breast Cancer Res. 2003, 5, R144–R150. [Google Scholar] [CrossRef]
- Andre, F.; Cabioglu, N.; Assi, H.; Sabourin, J.C.; Delaloge, S.; Sahin, A.; Broglio, K.; Spano, J.P.; Combadiere, C.; Bucana, C.; et al. Expression of chemokine receptors predicts the site of metastatic relapse in patients with axillary node positive primary breast cancer. Ann. Oncol. 2006, 17, 945–951. [Google Scholar] [CrossRef]
- Cabioglu, N.; Gong, Y.; Islam, R.; Broglio, K.R.; Sneige, N.; Sahin, A.; Gonzalez-Angulo, A.M.; Morandi, P.; Bucana, C.; Hortobagyi, G.N.; et al. Expression of growth factor and chemokine receptors: New insights in the biology of inflammatory breast cancer. Ann. Oncol. 2007, 18, 1021–1029. [Google Scholar] [CrossRef]
- Andre, F.; Xia, W.; Conforti, R.; Wei, Y.; Boulet, T.; Tomasic, G.; Spielmann, M.; Zoubir, M.; Berrada, N.; Arriagada, R.; et al. CXCR4 expression in early breast cancer and risk of distant recurrence. Oncologist 2009, 14, 1182–1188. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, D.; Sheng, M.; Tong, D.; Liu, H.; Dong, L.; Ma, J. CXCL13/CXCR5 are potential biomarkers for diagnosis and prognosis for breast cancer. J. Buon. 2020, 25, 2552–2561. [Google Scholar]
- Norton, K.-A.; Wallace, T.; Pandey, N.B.; Popel, A.S. An agent-based model of triple-negative breast cancer: The interplay between chemokine receptor CCR5 expression, cancer stem cells, and hypoxia. BMC Syst. Biol. 2017, 11, 68. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, S.; Xie, S.M.; Liu, W.; Gagea, M.; Hanker, A.B.; Nguyen, N.; Raghavendra, A.S.; Yang-Kolodji, G.; Chu, F.; Neelapu, S.S.; et al. Targeting CXCR4 abrogates resistance to trastuzumab by blocking cell cycle progression and synergizes with docetaxel in breast cancer treatment. Breast Cancer Res. 2023, 25, 62–82. [Google Scholar] [CrossRef]
- Chu, Q.D.; Panu, L.; Holm, N.T.; Li, B.D.; Johnson, L.W.; Zhang, S. High chemokine receptor CXCR4 level in triple negative breast cancer specimens predicts poor clinical outcome. J. Surg. Res. 2010, 159, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, L.; Liu, J.; Wang, Y.; Wang, Z.; Wang, Y.; Liu, W.; Zhou, Z.; Chen, C.; Liu, R.; et al. CC chemokine receptor 7 promotes triple-negative breast cancer growth and metastasis. Acta Biochim. Biophys. Sin. 2018, 50, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Zhong, W.; Wu, H.; Feng, J.; Zouxu, X.; Huang, X.; Li, S.; Shuang, Z. Identification of key genes affecting the tumor microenvironment and prognosis of triple-negative breast cancer. Front. Oncol. 2021, 11. [Google Scholar] [CrossRef]
- Mittendorf, E.A.; Philips, A.V.; Meric-Bernstam, F.; Qiao, N.; Wu, Y.; Harrington, S.; Su, X.; Wang, Y.; Gonzalez-Angulo, A.M.; Akcakanat, A.; et al. PD-L1 expression in triple-negative breast cancer. Cancer Immunol. Res. 2014, 2, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Marin-Acevedo, J.A.; Dholaria, B.; Soyano, A.E.; Knutson, K.L.; Chumsri, S.; Lou, Y. Next generation of immune checkpoint therapy in cancer: New developments and challenges. J. Hematol. Oncol. 2018, 11, 39. [Google Scholar] [CrossRef]
- Cortes, J.; Rugo, H.S.; Cescon, D.W.; Im, S.-A.; Yusof, M.M.; Gallardo, C.; Lipatov, O.; Barrios, C.H.; Perez-Garcia, J.; Iwata, H.; et al. Pembrolizumab plus chemotherapy in advanced triple-negative breast cancer. N. Engl. J. Med. 2022, 387, 217–226. [Google Scholar] [CrossRef]
- Karn, V.; Sandhya, S.; Hsu, W.; Parashar, D.; Singh, H.N.; Jha, N.K.; Gupta, S.; Dubey, N.K.; Kumar, S. CRISPR/Cas9 system in breast cancer therapy: Advancement, limitations and future scope. Cancer Cell Int. 2022, 22, 234. [Google Scholar] [CrossRef]
- Tiwari, P.K.; Ko, T.-H.; Dubey, R.; Chouhan, M.; Tsai, L.-W.; Singh, H.N.; Chaubey, K.K.; Dayal, D.; Chiang, C.-W.; Kumar, S. CRISPR/Cas9 as a therapeutic tool for triple negative breast cancer: From bench to clinics. Front. Mol. Biosci. 2023, 10, 1214489. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, Y.; Li, J.; Lei, W.; Wang, H.; Ni, Y.; Liu, Y.; Yan, H.; Tian, Y.; Wang, Z.; Yang, Z.; et al. CXCL12-CXCR4/CXCR7 Axis in Cancer: From Mechanisms to Clinical Applications. Int. J. Biol. Sci. 2023, 19, 3341–3359. [Google Scholar] [CrossRef]
- Peintinger, F.; Sinn, B.; Hatzis, C.; Albarracin, C.; Downs-Kelly, E.; Morkowski, J.; Gould, R.; Symmans, W.F. Reproducibility of residual cancer burden for prognostic assessment of breast cancer after neoadjuvant chemotherapy. Mod. Pathol. 2015, 28, 913–920. [Google Scholar] [CrossRef]
- Salvucci, O.; Bouchard, A.; Baccarelli, A.; Deschenes, J.; Sauter, G.; Simon, R.; Bianchi, R.; Basik, M. The role of CXCR4 receptor expression in breast cancer: A large tissue microarray study. Breast Cancer Res. Treat. 2006, 97, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ji, R.; Li, J.; Gu, Q.; Zhao, X.; Sun, T.; Wang, J.; Li, J.; Du, Q.; Sun, B. Correlation effect of EGFR and CXCR4 and CCR7 chemokine receptors in predicting breast cancer metastasis and prognosis. J. Exp. Clin. Cancer Res. 2010, 29, 16. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Wang, X.; Liu, G.; Zhu, X.; Chen, Y. High level of CXCR4 in triple-negative breast cancer specimens associated with a poor clinical outcome. Acta. Med. Okayama. 2013, 67, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.-P.; Shen, H.; Liu, L.-X.; Shu, Y.-Q. The impact of chemokine receptor CXCR4 on breast cancer prognosis: A meta-analysis. Cancer Epidemiol. 2013, 37, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ni, C.; Chen, W.; Wu, P.; Wang, Z.; Yin, J.; Huang, J.; Qiu, F. Expression of CXCR4 and breast cancer prognosis: A systematic review and meta-analysis. BMC Cancer 2014, 14, 49. [Google Scholar] [CrossRef] [PubMed]
- Guembarovski, A.L.; Guembarovski, R.L.; Hirata, B.K.B.; Vitiello, G.A.F.; Suzuki, K.M.; Enokida, M.T.; Watanabe, M.A.E.; Reiche, E.M.V. CXCL12 chemokine and CXCR4 receptor: Association with susceptibility and prognostic markers in triple negative breast cancer. Mol. Biol. Rep. 2018, 45, 741–750. [Google Scholar] [CrossRef] [PubMed]
- Shim, B.; Jin, M.; Moon, J.H.; Park, I.A.; Ryu, H.S. High cytoplasmic CXCR4 expression predicts prolonged survival in triple-negative breast cancer patients treated with adjuvant chemotherapy. J. Pathol. Transl. Med. 2018, 52, 369–377. [Google Scholar] [CrossRef]
- Harris, R.J.; Cheung, A.; Ng, J.C.; Laddach, R.; Chenoweth, A.M.; Crescioli, S.; Fittall, M.; Dominguez-Rodriguez, D.; Roberts, J.; Levi, D.; et al. Tumor-infiltrating B lymphocyte profiling identifies IgG-biased, clonally expanded prognostic phenotypes in triple-negative breast cancer. Cancer Res. 2021, 81, 4290–4304. [Google Scholar] [CrossRef]
- Hayasaka, H.; Yoshida, J.; Kuroda, Y.; Nishiguchi, A.; Matsusaki, M.; Kishimoto, K.; Nishimura, H.; Okada, M.; Shimomura, Y.; Kobayashi, D.; et al. CXCL12 promotes CCR7 ligand–mediated breast cancer cell invasion and migration toward lymphatic vessels. Cancer Sci. 2022, 113, 1338–1351. [Google Scholar] [CrossRef]
- Ma, R.; Guan, X.; Teng, N.; Du, Y.; Ou, S.; Li, X. Construction of ceRNA prognostic model based on the CCR7/CCL19 chemokine axis as a biomarker in breast cancer. BMC Med. Genom. 2023, 16, 254. [Google Scholar] [CrossRef]
- Rizeq, B.; Malki, M.I. The Role of CCL21/CCR7 chemokine axis in breast cancer progression. Cancers 2020, 12, 1036. [Google Scholar] [CrossRef]
- Vahedi, L.; Ghasemi, M.; Yazdani, J.; Ranjbar, S.; Nouri, B.; Alizadeh, A.; Afshar, P. Investigation of CCR7 marker expression using immunohistochemical method and its association with clinicopathologic properties in patients with breast cancer. Int. J. Hematol. Oncol. Stem. Cell Res. 2018, 12, 103–110. [Google Scholar]
- Gurgel, D.C.; Wong, D.V.T.; Bandeira, A.M.; Pereira, J.F.B.; Gomes-Filho, J.V.; Pereira, A.C.; Silva, P.G.B.; Távora, F.R.F.; Pereira, A.F.; Lima-Júnior, R.C.P.; et al. Cytoplasmic CCR7 (CCR7c) immunoexpression is associated with local tumor recurrence in triple-negative breast cancer. Pathol. Res. Pract. 2020, 216, 153265. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, F.; Li, W.; Zhou, C.; Guan, Z.; Fan, H. Association of chemotactic factor receptor 5 gene with breast cancer. Genet. Mol. Res. 2013, 12, 5289–5300. [Google Scholar] [CrossRef]
- Jiao, X.; Velasco-Velázquez, M.A.; Wang, M.; Li, Z.; Rui, H.; Peck, A.R.; Korkola, J.E.; Chen, X.; Xu, S.; DuHadaway, J.B.; et al. CCR5 Governs DNA Damage Repair and Breast Cancer Stem Cell Expansion. Cancer Res. 2018, 78, 1657–1671. [Google Scholar] [CrossRef]
- Raghavakaimal, A.; Cristofanilli, M.; Tang, C.-M.; Alpaugh, R.K.; Gardner, K.P.; Chumsri, S.; Adams, D.L. CCR5 activation and endocytosis in circulating tumor-derived cells isolated from the blood of breast cancer patients provide information about clinical outcome. Breast Cancer Res. 2022, 24, 35. [Google Scholar] [CrossRef] [PubMed]
- Gu-Trantien, C.; Migliori, E.; Buisseret, L.; de Wind, A.; Brohée, S.; Garaud, S.; Noël, G.; Dang Chi, V.L.; Lodewyckx, J.-N.; Naveaux, C.; et al. CXCL13-producing TFH cells link immune suppression and adaptive memory in human breast cancer. J. Clin. Investig. 2017, 2, e91487. [Google Scholar] [CrossRef] [PubMed]
- Crotty, S. A brief history of T cell help to B cells. Nat. Rev. Immunol. 2015, 15, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Gu-Trantien, C.; Loi, S.; Garaud, S.; Equeter, C.; Libin, M.; de Wind, A.; Ravoet, M.; Le Buanec, H.; Sibille, C.; Manfouo-Foutsop, G.; et al. CD4+ follicular helper T cell infiltration predicts breast cancer survival. J. Clin. Invest. 2013, 123, 2873–2892. [Google Scholar] [CrossRef]
- Bindea, G.; Mlecnik, B.; Tosolini, M.; Kirilovsky, A.; Waldner, M.; Obenauf, A.C.; Angell, H.; Fredriksen, T.; Lafontaine, L.; Berger, A.; et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 2013, 39, 782–795. [Google Scholar] [CrossRef]
- Razis, E.; Kalogeras, K.T.; Kotoula, V.; Eleftheraki, A.G.; Nikitas, N.; Kronenwett, R.; Timotheadou, E.; Christodoulou, C.; Pectasides, D.; Gogas, H.; et al. Improved outcome of high-risk early HER2 positive breast cancer with high CXCL13-CXCR5 messenger RNA expression. Clin. Breast Cancer 2012, 12, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Noël, G.; Fontsa, M.L.; Garaud, S.; De Silva, P.; de Wind, A.; Eynden, G.G.V.D.; Salgado, R.; Boisson, A.; Locy, H.; Thomas, N.; et al. Functional Th1-oriented T follicular helper cells that infiltrate human breast cancer promote effective adaptive immunity. J. Clin. Invest. 2021, 131, e139905. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, I.; Tavukcuoglu, E.; Horzum, U.; Yilmaz, K.B.; Akinci, M.; Gulcelik, M.A.; Oral, H.B.; Esendagli, G. Immune checkpoint status and exhaustion-related phenotypes of CD8+ T cells from the tumor-draining regional lymph nodes in breast cancer. Predictive markers of response to neoadjuvant durvalumab with Nab-Paclitaxel and dose-dense Doxorubicin/Cyclophosphamide in basal-like triple-negative breast cancer. Cancer Med. 2023, 12, 22196–22205. [Google Scholar] [CrossRef] [PubMed]
- Baldasici, O.; Soritau, O.; Roman, A.; Lisencu, C.; Visan, S.; Maja, L.; Pop, B.; Fetica, B.; Cismaru, A.; Vlase, L.; et al. The transcriptional landscape of cancer stem-like cell functionality in breast cancer. J. Transl. Med. 2024, 22, 530. [Google Scholar] [CrossRef] [PubMed]
- Blenman, K.R.; Marczyk, M.; Karn, T.; Qing, T.; Li, X.; Gunasekharan, V.; Yaghoobi, V.; Bai, Y.; Ibrahim, E.Y.; Park, T.; et al. Predictive Markers of Response to Neoadjuvant Durvalumab with Nab-Paclitaxel and Dose-Dense Doxorubicin/Cyclophosphamide in Basal-Like Triple-Negative Breast Cancer. Clin. Cancer Res. 2022, 28, 2587–2597. [Google Scholar] [CrossRef] [PubMed]
- Blaye, C.; Darbo, M.; Debled, M.; Brouste, V.; Vélasco, V.; Pinard, C.; Larmonier, N.; Pellegrin, I.; Tarricone, A.; Arnedos, M.; et al. An immunological signature to predict outcome in patients with triple-negative breast cancer with residual disease after neoadjuvant chemotherapy. ESMO Open 2022, 7, 100502. [Google Scholar] [CrossRef] [PubMed]
- González-Arriagada, W.A.; García, I.E.; Martínez-Flores, R.; Morales-Pison, S.; Coletta, R.D. Therapeutic Perspectives of HIV-Associated Chemokine Receptor (CCR5 and CXCR4) Antagonists in Carcinomas. Int. J. Mol. Sci. 2022, 24, 478. [Google Scholar] [CrossRef]
- Halvorsen, E.C.; Hamilton, M.J.; Young, A.; Wadsworth, B.J.; LePard, N.E.; Lee, H.N.; Firmino, N.; Collier, J.L.; Bennewith, K.L. Maraviroc decreases CCL8-mediated migration of CCR5+ regulatory T cells and reduces metastatic tumor growth in the lungs. Oncoimmunology 2016, 5, e1150398. [Google Scholar] [CrossRef] [PubMed]
- Chaudary, N.; Pintilie, M.; Jelveh, S.; Lindsay, P.; Hill, R.P.; Milosevic, M. Plerixafor improves primary tumor response and reduces metastases in cervical cancer treated with radio-chemotherapy. Clin. Cancer Res. 2017, 23, 1242–1249. [Google Scholar] [CrossRef] [PubMed]
- Princen, K.; Hatse, S.; Vermeire, K.; Aquaro, S.; De Clercq, E.; Gerlach, L.O.; Rosenkilde, M.; Schwartz, T.W.; Skerlj, R.; Bridger, G.; et al. Inhibition of human immunodeficiency virus replication by a dual CCR5/CXCR4 antagonist. J. Virol. 2004, 78, 12996–13006. [Google Scholar] [CrossRef]
- Grande, F.; Occhiuzzi, M.A.; Rizzuti, B.; Ioele, G.; De Luca, M.; Tucci, P.; Svicher, V.; Aquaro, S.; Garofalo, A. CCR5/CXCR4 dual antagonism for the improvement of HIV infection therapy. Molecules 2019, 24, 550. [Google Scholar] [CrossRef] [PubMed]
- Pervaiz, A.; Zepp, M.; Mahmood, S.; Ali, D.M.; Berger, M.R.; Adwan, H. CCR5 blockage by maraviroc: A potential therapeutic option for metastatic breast cancer. Cell. Oncol. 2019, 42, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Haag, G.M.; Springfeld, C.; Grün, B.; Apostolidis, L.; Zschäbitz, S.; Dietrich, M.; Berger, A.-K.; Weber, T.F.; Zoernig, I.; Schaaf, M.; et al. Pembrolizumab and maraviroc in refractory mismatch repair proficient/microsatellite-stable metastatic colorectal cancer—The PICCASSO phase I trial. Eur. J. Cancer 2022, 167, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.D.; Jiang, X.; Sullivan, K.M.; Jalikis, F.G.; Smythe, K.S.; Abbasi, A.; Vignali, M.; Park, J.O.; Daniel, S.K.; Pollack, S.M.; et al. Mobilization of CD8+ T cells via CXCR4 blockade facilitates PD-1 checkpoint therapy in human pancreatic cancer. Clin. Cancer Res. 2019, 25, 3934–3945. [Google Scholar] [CrossRef]
N = 63 | Mean Value (%) +/− sd | Median Value (Min–Max) | Any Expression Rate | Positive Expression |
---|---|---|---|---|
CCR5-TM | 66.60 ± 21.18 | 70 (1–90) | 74.60% (47/63) | ≥50%, any cytoplasmic staining |
CCR7-TM | 52.49 ± 24.38 | 50 (2–90) | 66.67% (42/63) | ≥30%, any cytoplasmic staining |
CXCR4-TM | 33.60 ± 18.85 | 30 (5–70) | 42.86% (27/63) | ≥30%, any cytoplasmic staining |
CXCR4-TIL | 40.60 ± 20.33 | 40 (5–70) | 69.84% (44/63) | ≥1%, ≥20% (high expression) |
CXCR5-TM | 48.85 ± 22.37 | 60 (5–80) | 74.60% (47/63) | ≥50%, any cytoplasmic staining |
CXCR5-TIL | 45.15 ± 15.24 | 45 (20–90) | 52.38% (33/63) | ≥1% = ≥20% |
Clinical Characteristics | n (%) (N = 63) |
---|---|
Premenopausal | 28 (44.4%) |
Postmenopausal | 35 (55.6%) |
Age | |
≤40 | 23 (36.5%) |
>40 | 40 (63.5%) |
≤50 | 34 (54%) |
>50 | 29 (46%) |
Clinical TNM-stage | |
cT1 | 3 (4.8%) |
cT2 | 27 (42.9%) |
cT3 | 10 (15.9%) |
cT4 | 23 (36.5%) |
cN0 | 3 (4.8%) |
cN1 | 37 (58.7%) |
cN2 | 16 (25.4%) |
cN3 | 7 (11.1%) |
Surgery after NAC | |
Breast-conserving surgery + sentinel lymph node biopsy | 4 (6.3%) |
Breast-conserving surgery +/− sentinel lymph node biopsy + axillary lymph node dissection | 13 (19.6%) |
Mastectomy + sentinel lymph node biopsy | 4 (6.3%) |
Mastectomy +/− sentinel lymph node biopsy + axillary lymph node dissection | 42 (66.7%) |
ypN0 | 23 (36.5%) |
ypN(+) | 40 (63.5%) |
MDARB-Index | |
Class 0 | 9 (14.3%) |
Class I | 4 (6.3%) |
Class II | 21 (33.3%) |
Class III | 29 (46.0%) |
MDARCB-Index (*R/p-Value) | Biomarker Expression | % (N = 63) | Class 0 (pCR) vs. Class I-III | p-Value | Class 0–I vs. Class II–III | p-Value | |
---|---|---|---|---|---|---|---|
CCR5-TM | 0.617/ <0.0001 | ≥50% | 34 (53.97%) | 0/9 vs. 34/54 | 0.0001 | 0/13 vs. 34/50 | 0.0001 |
CCR7-TM | 0.188/ 0.141 | ≥30% | 33 (52.38%) | 1/9 vs. 32/54 | 0.010 | 2/13 vs. 31/50 | 0.004 |
CXCR4-TM | 0.211/ 0.097 | ≥30% | 13 (20.63%) | 0/9 vs. 13/54 | 0.184 | 0/13 vs. 13/50 | 0.053 |
CXCR4-TIL (≥1%) | 0.011/0.933 | ≥1% | 44 (69.84%) | 6/9 vs. 38/54 | 0.999 | 8/13 vs. 36/50 | 0.508 |
CXCR4-TILhigh (≥20%) | N.A. | ≥20% | 36 (57.14%) | 2/9 vs. 34/54 | 0.028 | 4/13 vs. 32/50 | 0.057 |
CXCR5-TM | 0.339/ 0.007 | ≥50 | 23 (36.51%) | 0/9 vs. 23/54 | 0.020 | 0/13 vs. 23/50 | 0.002 |
CXCR5-TIL | −0.349/ 0.005 | ≥1% | 33 (52.38%) | 7/9 vs. 26/54 | 0.152 | 9/13 vs. 24/50 | 0.221 |
5-Year DFS (%) | p-Value | 10-Year DFS (%) | p-Value | 5-Year DSS (%) | p | 10-Year DSS (%) | p | |
---|---|---|---|---|---|---|---|---|
cT (clinical = physical exam&radiological evaluation) | 0.651 | 0.527 | 0.893 | 0.760 | ||||
cT1-2 (n = 30) | 54.7 | 54.7 | 58.5 | 54.3 | ||||
cT3-4 (n = 33) | 51.7 | 47.8 | 61.6 | 52.7 | ||||
cN | 0.651 | 0.770 | 0.133 | 0.320 | ||||
cN0-1 (n = 40) | 54.3 | 50.9 | 65.5 | 55 | ||||
cN2-3 (n = 23) | 50.2 | 50.2 | 50.1 | 50.1 | ||||
Axillary response | 0.052 | 0.035 | 0.067 | 0.019 | ||||
ypN0 (n = 23) | 69.6 | 69.6 | 73.9 | 73.9 | ||||
ypN1-3 (n = 40) | 42.7 | 39.1 | 51.5 | 39.8 | ||||
MDARB-Index | 0.044 | 0.036 | 0.089 | 0.049 | ||||
Class 0 (pathologic CR) (n = 9) | 88.9 | 88.9 | 88.9 | 88.9 | ||||
Class I-III (n = 53) | 46.9 | 44.4 | 54.9 | 46.8 | ||||
0.022 | 0.017 | 0.061 | 0.029 | |||||
Class 0-I (n = 13) | 84.6 | 84.6 | 84.6 | 84.6 | ||||
Class II-III (n = 50) | 44.7 | 42.1 | 53.4 | 44.8 | ||||
Biomarker expressions | ||||||||
CCR5-TM | 0.003 | 0.005 | 0.008 | 0.004 | ||||
<50% (n = 28) | 75.3 | 71.1 | 78.2 | 73 | ||||
≥50% (n = 35) | 33.4 | 33.4 | 44.3 | 36.2 | ||||
CCR7-TM | 0.084 | 0.120 | 0.075 | 0.104 | ||||
<30% (n = 30) | 64.8 | 60.8 | 71.7 | 63 | ||||
≥30% (n = 33) | 42.9 | 42.9 | 49.7 | 45.6 | ||||
CXCR4-TM | 0.013 | 0.017 | 0.048 | 0.093 | ||||
<30% (n = 50) | 59.3 | 56.7 | 66 | 57.7 | ||||
≥30% (n = 13) | 30.8 | 30.8 | 38.5 | 38.5 | ||||
CXCR4-TIL | 0.744 | 0.846 | 0.644 | 0.961 | ||||
<1% (n = 19) | 52.1 | 52.1 | 57.4 | 57.4 | ||||
≥1% (n = 44) | 53.6 | 50.6 | 61.2 | 51.7 | ||||
CXCR4-TIL | 0.406 | 0.482 | 0.636 | 0.527 | ||||
<20% (n = 27) | 62 | 57.2 | 65.5 | 60.4 | ||||
≥20% (n = 36) | 46.7 | 46.7 | 56.1 | 49.1 | ||||
CXCR5-TM | 0.440 | 0.513 | 0.570 | 0.563 | ||||
<50% (n = 40) | 58.8 | 55.7 | 64 | 57 | ||||
≥50% (n = 23) | 42.7 | 42.7 | 52.7 | 46.9 | ||||
CXCR5-TIL | 0.028 | 0.015 | 0.004 | 0.001 | ||||
<1% (n = 30) | 36.9 | 32.3 | 40.2 | 31.3 | ||||
≥1% (n = 33) | 68 | 68 | 77.5 | 73.7 |
Disease Free Survival | Disease Specific Survival | |||
---|---|---|---|---|
Factors | Hazard Ratio (95% CI) | p Value | HR (95% CI) | p Value |
Pathologic Complete Response (axilla) | 0.044 | 0.048 | ||
ypN0 | Reference (1) | Reference (1) | ||
ypN-positive | 2.655 (1.029–6.852) | 2.763 (1.008–7.574) | ||
CCR5-TM | 0.133 | 0.046 | ||
<50% | Reference (1) | Reference (1) | ||
≥50% | 2.036 (0.805–5.148) | 2.689 (1.020–7.090) | ||
CXCR4-TM | 0.035 | 0.141 | ||
CXCR4-TM (−) | Reference (1) | Reference (1) | ||
CXCR4-TM (+) | 2.908 (1.080–7.829) | 2.132 (0.778–5.846) | ||
CXCR5-TIL | 0.011 | 0.001 | ||
CXCR5-TIL (−) | 2.838 (1.266–6.362) | 4.211 (1.770–10.016) | ||
CXCR5-TIL (+) | Reference (1) | Reference (1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabioglu, N.; Onder, S.; Karatay, H.; Bayram, A.; Oner, G.; Tukenmez, M.; Muslumanoglu, M.; Igci, A.; Dinccag, A.; Ozmen, V.; et al. New Emerging Chemokine Receptors: CCR5 or CXCR5 on Tumor Is Associated with Poor Response to Chemotherapy and Poor Prognosis in Locally Advanced Triple-Negative Breast Cancer. Cancers 2024, 16, 2388. https://doi.org/10.3390/cancers16132388
Cabioglu N, Onder S, Karatay H, Bayram A, Oner G, Tukenmez M, Muslumanoglu M, Igci A, Dinccag A, Ozmen V, et al. New Emerging Chemokine Receptors: CCR5 or CXCR5 on Tumor Is Associated with Poor Response to Chemotherapy and Poor Prognosis in Locally Advanced Triple-Negative Breast Cancer. Cancers. 2024; 16(13):2388. https://doi.org/10.3390/cancers16132388
Chicago/Turabian StyleCabioglu, Neslihan, Semen Onder, Hüseyin Karatay, Aysel Bayram, Gizem Oner, Mustafa Tukenmez, Mahmut Muslumanoglu, Abdullah Igci, Ahmet Dinccag, Vahit Ozmen, and et al. 2024. "New Emerging Chemokine Receptors: CCR5 or CXCR5 on Tumor Is Associated with Poor Response to Chemotherapy and Poor Prognosis in Locally Advanced Triple-Negative Breast Cancer" Cancers 16, no. 13: 2388. https://doi.org/10.3390/cancers16132388
APA StyleCabioglu, N., Onder, S., Karatay, H., Bayram, A., Oner, G., Tukenmez, M., Muslumanoglu, M., Igci, A., Dinccag, A., Ozmen, V., Aydiner, A., Saip, P., & Yavuz, E. (2024). New Emerging Chemokine Receptors: CCR5 or CXCR5 on Tumor Is Associated with Poor Response to Chemotherapy and Poor Prognosis in Locally Advanced Triple-Negative Breast Cancer. Cancers, 16(13), 2388. https://doi.org/10.3390/cancers16132388