Immunotherapy in Neuroendocrine Neoplasms: A Diamond to Cut
Abstract
:Simple Summary
Abstract
1. Introduction
2. Immunotherapy in Neuroendocrine Neoplasms: Current Evidence of Efficacy
2.1. Pembrolizumab
2.2. Avelumab
2.3. Spartalizumab
2.4. Toripalimab
3. Dual Therapy
3.1. Nivolumab Plus Ipilimumab
3.2. Durvalumab Plus Tremelimumab
3.3. Nivolumab Plus Platinum-Doublet Chemotherapy
3.4. Nivolumab Plus Temozolamide
3.5. Atezolizumab Plus Bevacizumab
3.6. Spartalizumab Plus LAG525
4. Other Immunotherapy Approaches
5. Combination of Surgical Procedures and Immunotherapy in Neuroendocrine Neoplasms
6. Predictive Biomarkers
6.1. PD-L1
6.2. Tumor Mutational Burden
6.3. Immune Cell Infiltration in the Tumor
6.4. Notch Signaling Pathway
7. Discussion
8. Future Directions
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rizen, E.N.; Phan, A.T. Neuroendocrine Tumors: A Relevant Clinical Update. Curr. Oncol. Rep. 2022, 24, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Dasari, A.; Shen, C.; Halperin, D.; Zhao, B.; Zhou, S.; Xu, Y.; Shih, T.; Yao, J.C. Trends in the Incidence, Prevalence, and Survival Outcomes in Patients with Neuroendocrine Tumors in the United States. JAMA Oncol. 2017, 3, 1335–1342. [Google Scholar] [CrossRef] [PubMed]
- Borbath, I.; Garcia-Carbonero, R.; Bikmukhametov, D.; Jimenez-Fonseca, P.; Castaño, A.; Barkmanova, J.; Sedlackova, E.; Kollár, A.; Christ, E.; Kaltsas, G.; et al. The European Neuroendocrine Tumour Society Registry, a Tool to Assess the Prognosis of Neuroendocrine Neoplasms. Eur. J. Cancer Oxf. Engl. 1990 2022, 168, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Pavel, M.; O’Toole, D.; Costa, F.; Capdevila, J.; Gross, D.; Kianmanesh, R.; Krenning, E.; Knigge, U.; Salazar, R.; Pape, U.-F.; et al. ENETS Consensus Guidelines Update for the Management of Distant Metastatic Disease of Intestinal, Pancreatic, Bronchial Neuroendocrine Neoplasms (NEN) and NEN of Unknown Primary Site. Neuroendocrinology 2016, 103, 172–185. [Google Scholar] [CrossRef] [PubMed]
- Waldman, A.D.; Fritz, J.M.; Lenardo, M.J. A Guide to Cancer Immunotherapy: From T Cell Basic Science to Clinical Practice. Nat. Rev. Immunol. 2020, 20, 651–668. [Google Scholar] [CrossRef] [PubMed]
- Lamarca, A.; Nonaka, D.; Breitwieser, W.; Ashton, G.; Barriuso, J.; McNamara, M.G.; Moghadam, S.; Rogan, J.; Mansoor, W.; Hubner, R.A.; et al. PD-L1 Expression and Presence of TILs in Small Intestinal Neuroendocrine Tumours. Oncotarget 2018, 9, 14922–14938. [Google Scholar] [CrossRef] [PubMed]
- Mehnert, J.M.; Bergsland, E.; O’Neil, B.H.; Santoro, A.; Schellens, J.H.M.; Cohen, R.B.; Doi, T.; Ott, P.A.; Pishvaian, M.J.; Puzanov, I.; et al. Pembrolizumab for the Treatment of Programmed Death-Ligand 1-Positive Advanced Carcinoid or Pancreatic Neuroendocrine Tumors: Results from the KEYNOTE-028 Study. Cancer 2020, 126, 3021–3030. [Google Scholar] [CrossRef] [PubMed]
- Strosberg, J.; Mizuno, N.; Doi, T.; Grande, E.; Delord, J.-P.; Shapira-Frommer, R.; Bergsland, E.; Shah, M.; Fakih, M.; Takahashi, S.; et al. Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Neuroendocrine Tumors: Results From the Phase II KEYNOTE-158 Study. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2020, 26, 2124–2130. [Google Scholar] [CrossRef] [PubMed]
- Fottner, C.; Apostolidis, L.; Ferrata, M.; Krug, S.; Michl, P.; Schad, A.; Roth, W.; Jaeger, D.; Galle, P.R.; Weber, M.M. A Phase II, Open Label, Multicenter Trial of Avelumab in Patients with Advanced, Metastatic High-Grade Neuroendocrine Carcinomas NEC G3 (WHO 2010) Progressive after First-Line Chemotherapy (AVENEC). J. Clin. Oncol. 2019, 37, 4103. [Google Scholar] [CrossRef]
- Yao, J.C.; Strosberg, J.; Fazio, N.; Pavel, M.E.; Bergsland, E.; Ruszniewski, P.; Halperin, D.M.; Li, D.; Tafuto, S.; Raj, N.; et al. Spartalizumab in Metastatic, Well/Poorly-Differentiated Neuroendocrine Neoplasms. Endocr. Relat. Cancer 2021, 28, 161–172. [Google Scholar] [CrossRef]
- Lu, M.; Zhang, P.; Zhang, Y.; Li, Z.; Gong, J.; Li, J.; Li, J.; Li, Y.; Zhang, X.; Lu, Z.; et al. Efficacy, Safety, and Biomarkers of Toripalimab in Patients with Recurrent or Metastatic Neuroendocrine Neoplasms: A Multiple-Center Phase Ib Trial. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2020, 26, 2337–2345. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.P.; Othus, M.; Chae, Y.K.; Giles, F.J.; Hansel, D.E.; Singh, P.P.; Fontaine, A.; Shah, M.H.; Kasi, A.; Baghdadi, T.A.; et al. A Phase II Basket Trial of Dual Anti-CTLA-4 and Anti-PD-1 Blockade in Rare Tumors (DART SWOG 1609) in Patients with Nonpancreatic Neuroendocrine Tumors. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2020, 26, 2290–2296. [Google Scholar] [CrossRef] [PubMed]
- Klein, O.; Kee, D.; Markman, B.; Michael, M.; Underhill, C.; Carlino, M.S.; Jackett, L.; Lum, C.; Scott, C.; Nagrial, A.; et al. Immunotherapy of Ipilimumab and Nivolumab in Patients with Advanced Neuroendocrine Tumors: A Subgroup Analysis of the CA209-538 Clinical Trial for Rare Cancers. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2020, 26, 4454–4459. [Google Scholar] [CrossRef] [PubMed]
- Capdevila, J.; Hernando, J.; Teule, A.; Lopez, C.; Garcia-Carbonero, R.; Benavent, M.; Custodio, A.; Garcia-Alvarez, A.; Cubillo, A.; Alonso, V.; et al. Durvalumab plus Tremelimumab for the Treatment of Advanced Neuroendocrine Neoplasms of Gastroenteropancreatic and Lung Origin. Nat. Commun. 2023, 14, 2973. [Google Scholar] [CrossRef] [PubMed]
- Riesco Martinez, M.C.; Capdevila Castillon, J.; Alonso, V.; Jimenez-Fonseca, P.; Teule, A.; Grande, E.; Sevilla, I.; Benavent, M.; Alonso-Gordoa, T.; Custodio, A.; et al. Final overall survival results from the NICE-NEC trial (GETNE-T1913): A phase II study of nivolumab and platinum-doublet chemotherapy (CT) in untreated advanced G3 neuroendocrine neoplasms (NENs) of gastroenteropancreatic (GEP) or unknown (UK) origin. Ann. Oncol. 2022, 33 (Suppl. S7), S225–S226. [Google Scholar] [CrossRef]
- Owen, D.H.; Benner, B.; Wei, L.; Sukrithan, V.; Goyal, A.; Zhou, Y.; Pilcher, C.; Suffren, S.-A.; Christenson, G.; Curtis, N.; et al. A Phase II Clinical Trial of Nivolumab and Temozolomide for Neuroendocrine Neoplasms. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2023, 29, 731–741. [Google Scholar] [CrossRef] [PubMed]
- Halperin, D.M.; Liu, S.; Dasari, A.; Fogelman, D.; Bhosale, P.; Mahvash, A.; Estrella, J.S.; Rubin, L.; Morani, A.C.; Knafl, M.; et al. Assessment of Clinical Response Following Atezolizumab and Bevacizumab Treatment in Patients with Neuroendocrine Tumors: A Nonrandomized Clinical Trial. JAMA Oncol. 2022, 8, 904–909. [Google Scholar] [CrossRef]
- Capdevila Castillon, J.; Molina-Cerrillo, J.; Benavent Viñuale, M.; Garcia-Carbonero, R.; Teule, A.; Custodio, A.; Jimenez-Fonseca, P.; López, C.; Hierro, C.; Carmona-Bayonas, A.; et al. 723O—Cabozantinib plus atezolizumab in advanced and progressive neoplasms of the endocrine system: A multi-cohort basket phase II trial (CABATEN/GETNE-T1914). Ann. Oncol. 2023, 34 (Suppl. S2), S498–S502. [Google Scholar] [CrossRef]
- Kaufman, H.L.; Russell, J.; Hamid, O.; Bhatia, S.; Terheyden, P.; D’Angelo, S.P.; Shih, K.C.; Lebbé, C.; Linette, G.P.; Milella, M.; et al. Avelumab in Patients with Chemotherapy-Refractory Metastatic Merkel Cell Carcinoma: A Multicentre, Single-Group, Open-Label, Phase 2 Trial. Lancet Oncol. 2016, 17, 1374–1385. [Google Scholar] [CrossRef]
- D’Angelo, S.P.; Russell, J.; Lebbé, C.; Chmielowski, B.; Gambichler, T.; Grob, J.-J.; Kiecker, F.; Rabinowits, G.; Terheyden, P.; Zwiener, I.; et al. Efficacy and Safety of First-Line Avelumab Treatment in Patients with Stage IV Metastatic Merkel Cell Carcinoma: A Preplanned Interim Analysis of a Clinical Trial. JAMA Oncol. 2018, 4, e180077. [Google Scholar] [CrossRef]
- D’Angelo, S.P.; Lebbé, C.; Mortier, L.; Brohl, A.S.; Fazio, N.; Grob, J.-J.; Prinzi, N.; Hanna, G.J.; Hassel, J.C.; Kiecker, F.; et al. First-Line Avelumab in a Cohort of 116 Patients with Metastatic Merkel Cell Carcinoma (JAVELIN Merkel 200): Primary and Biomarker Analyses of a Phase II Study. J. Immunother. Cancer 2021, 9, e002646. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, S.P.; Bhatia, S.; Brohl, A.S.; Hamid, O.; Mehnert, J.M.; Terheyden, P.; Shih, K.C.; Brownell, I.; Lebbé, C.; Lewis, K.D.; et al. Avelumab in Patients with Previously Treated Metastatic Merkel Cell Carcinoma (JAVELIN Merkel 200): Updated Overall Survival Data after >5 Years of Follow-Up. ESMO Open 2021, 6, 100290. [Google Scholar] [CrossRef] [PubMed]
- Girard, N.; Mazieres, J.; Otto, J.; Lena, H.; Lepage, C.; Egenod, T.; Smith, D.; Madelaine, J.; Gérinière, L.; El Hajbi, F.; et al. LBA41—Nivolumab (nivo) ± ipilimumab (ipi) in pre-treated patients with advanced, refractory pulmonary or gastroenteropancreatic poorly differentiated neuroendocrine tumors (NECs) (GCO-001 NIPINEC). Ann. Oncol. 2021, 32 (Suppl. S5), S1283–S1346. [Google Scholar] [CrossRef]
- Capdevila, J.; Teule, A.; López, C.; Garcia-Carbonero, R.; Benavent, M.; Custodio, A.; Cubillo, A.; Alonso, V.; Gordoa, T.; Carmona-Bayonas, A.; et al. 1157O A Multi-Cohort Phase II Study of Durvalumab plus Tremelimumab for the Treatment of Patients (Pts) with Advanced Neuroendocrine Neoplasms (NENs) of Gastroenteropancreatic or Lung Origin: The DUNE Trial (GETNE 1601). Ann. Oncol. 2020, 31, S770–S771. [Google Scholar] [CrossRef]
- Uboha, N.V.; Milhem, M.M.; Kovacs, C.; Amin, A.; Magley, A.; Purkayastha, D.D.; Piha-Paul, S.A. Phase II Study of Spartalizumab (PDR001) and LAG525 in Advanced Solid Tumors and Hematologic Malignancies. J. Clin. Oncol. 2019, 37, 2553. [Google Scholar] [CrossRef]
- Garcia-Carbonero, R.; Anton-Pascual, B.; Modrego, A.; Riesco-Martinez, M.D.C.; Lens-Pardo, A.; Carretero-Puche, C.; Rubio-Cuesta, B.; Soldevilla, B. Advances in the Treatment of Gastroenteropancreatic Neuroendocrine Carcinomas: Are We Moving Forward? Endocr. Rev. 2023, 44, 724–736. [Google Scholar] [CrossRef] [PubMed]
- Bakos, O.; Lawson, C.; Rouleau, S.; Tai, L.-H. Combining Surgery and Immunotherapy: Turning an Immunosuppressive Effect into a Therapeutic Opportunity. J. Immunother. Cancer 2018, 6, 86. [Google Scholar] [CrossRef] [PubMed]
- Riechelmann, R.P.; Taboada, R.G.; de Jesus, V.H.F.; Iglesia, M.; Trikalinos, N.A. Therapy Sequencing in Patients with Advanced Neuroendocrine Neoplasms. Am. Soc. Clin. Oncol. Educ. Book Am. Soc. Clin. Oncol. Annu. Meet. 2023, 43, e389278. [Google Scholar] [CrossRef] [PubMed]
- Topalian, S.L.; Bhatia, S.; Amin, A.; Kudchadkar, R.R.; Sharfman, W.H.; Lebbé, C.; Delord, J.-P.; Dunn, L.A.; Shinohara, M.M.; Kulikauskas, R.; et al. Neoadjuvant Nivolumab for Patients with Resectable Merkel Cell Carcinoma in the CheckMate 358 Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 2476–2487. [Google Scholar] [CrossRef]
- Sampedro-Núñez, M.; Serrano-Somavilla, A.; Adrados, M.; Cameselle-Teijeiro, J.M.; Blanco-Carrera, C.; Cabezas-Agricola, J.M.; Martínez-Hernández, R.; Martín-Pérez, E.; Muñoz de Nova, J.L.; Díaz, J.Á.; et al. Analysis of Expression of the PD-1/PD-L1 Immune Checkpoint System and Its Prognostic Impact in Gastroenteropancreatic Neuroendocrine Tumors. Sci. Rep. 2018, 8, 17812. [Google Scholar] [CrossRef]
- Kim, S.T.; Ha, S.Y.; Lee, S.; Ahn, S.; Lee, J.; Park, S.H.; Park, J.O.; Lim, H.Y.; Kang, W.K.; Kim, K.-M.; et al. The Impact of PD-L1 Expression in Patients with Metastatic GEP-NETs. J. Cancer 2016, 7, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Ferrata, M.; Schad, A.; Zimmer, S.; Musholt, T.J.; Bahr, K.; Kuenzel, J.; Becker, S.; Springer, E.; Roth, W.; Weber, M.M.; et al. PD-L1 Expression and Immune Cell Infiltration in Gastroenteropancreatic (GEP) and Non-GEP Neuroendocrine Neoplasms with High Proliferative Activity. Front. Oncol. 2019, 9, 343. [Google Scholar] [CrossRef] [PubMed]
- da Silva, A.; Bowden, M.; Zhang, S.; Masugi, Y.; Thorner, A.R.; Herbert, Z.T.; Zhou, C.W.; Brais, L.; Chan, J.A.; Hodi, F.S.; et al. Characterization of the Neuroendocrine Tumor Immune Microenvironment. Pancreas 2018, 47, 1123–1129. [Google Scholar] [CrossRef] [PubMed]
- Cives, M.; Strosberg, J.; Al Diffalha, S.; Coppola, D. Analysis of the Immune Landscape of Small Bowel Neuroendocrine Tumors. Endocr. Relat. Cancer 2019, 26, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Bösch, F.; Brüwer, K.; Altendorf-Hofmann, A.; Auernhammer, C.J.; Spitzweg, C.; Westphalen, C.B.; Boeck, S.; Schubert-Fritschle, G.; Werner, J.; Heinemann, V.; et al. Immune Checkpoint Markers in Gastroenteropancreatic Neuroendocrine Neoplasia. Endocr. Relat. Cancer 2019, 26, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Kole, C.; Charalampakis, N.; Vailas, M.; Tolia, M.; Sotiropoulou, M.; Tsakatikas, S.; Kouris, N.-I.; Tsoli, M.; Koumarianou, A.; Karamouzis, M.V.; et al. Immunotherapy for Gastroenteropancreatic Neuroendocrine Neoplasms (GEP-NENs): A 2021 Update. Cancer Immunol. Immunother. CII 2022, 71, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Cives, M.; Pelle’, E.; Quaresmini, D.; Rizzo, F.M.; Tucci, M.; Silvestris, F. The Tumor Microenvironment in Neuroendocrine Tumors: Biology and Therapeutic Implications. Neuroendocrinology 2019, 109, 83–99. [Google Scholar] [CrossRef] [PubMed]
- Strickler, J.H.; Hanks, B.A.; Khasraw, M. Tumor Mutational Burden as a Predictor of Immunotherapy Response: Is More Always Better? Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2021, 27, 1236–1241. [Google Scholar] [CrossRef] [PubMed]
- Marabelle, A.; Fakih, M.; Lopez, J.; Shah, M.; Shapira-Frommer, R.; Nakagawa, K.; Chung, H.C.; Kindler, H.L.; Lopez-Martin, J.A.; Miller, W.H.J.; et al. Association of Tumour Mutational Burden with Outcomes in Patients with Advanced Solid Tumours Treated with Pembrolizumab: Prospective Biomarker Analysis of the Multicohort, Open-Label, Phase 2 KEYNOTE-158 Study. Lancet Oncol. 2020, 21, 1353–1365. [Google Scholar] [CrossRef]
- Turajlic, S.; Litchfield, K.; Xu, H.; Rosenthal, R.; McGranahan, N.; Reading, J.L.; Wong, Y.N.S.; Rowan, A.; Kanu, N.; Al Bakir, M.; et al. Insertion-and-Deletion-Derived Tumour-Specific Neoantigens and the Immunogenic Phenotype: A Pan-Cancer Analysis. Lancet Oncol. 2017, 18, 1009–1021. [Google Scholar] [CrossRef]
- Salem, M.E.; Puccini, A.; Grothey, A.; Raghavan, D.; Goldberg, R.M.; Xiu, J.; Korn, W.M.; Weinberg, B.A.; Hwang, J.J.; Shields, A.F.; et al. Landscape of Tumor Mutation Load, Mismatch Repair Deficiency, and PD-L1 Expression in a Large Patient Cohort of Gastrointestinal Cancers. Mol. Cancer Res. MCR 2018, 16, 805–812. [Google Scholar] [CrossRef] [PubMed]
- van Riet, J.; van de Werken, H.J.G.; Cuppen, E.; Eskens, F.A.L.M.; Tesselaar, M.; van Veenendaal, L.M.; Klümpen, H.-J.; Dercksen, M.W.; Valk, G.D.; Lolkema, M.P.; et al. The Genomic Landscape of 85 Advanced Neuroendocrine Neoplasms Reveals Subtype-Heterogeneity and Potential Therapeutic Targets. Nat. Commun. 2021, 12, 4612. [Google Scholar] [CrossRef] [PubMed]
- Scarpa, A.; Chang, D.K.; Nones, K.; Corbo, V.; Patch, A.-M.; Bailey, P.; Lawlor, R.T.; Johns, A.L.; Miller, D.K.; Mafficini, A.; et al. Whole-Genome Landscape of Pancreatic Neuroendocrine Tumours. Nature 2017, 543, 65–71. [Google Scholar] [CrossRef]
- Venizelos, A.; Elvebakken, H.; Perren, A.; Nikolaienko, O.; Deng, W.; Lothe, I.M.B.; Couvelard, A.; Hjortland, G.O.; Sundlöv, A.; Svensson, J.; et al. The Molecular Characteristics of High-Grade Gastroenteropancreatic Neuroendocrine Neoplasms. Endocr. Relat. Cancer 2021, 29, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Albertelli, M.; Dotto, A.; Nista, F.; Veresani, A.; Patti, L.; Gay, S.; Sciallero, S.; Boschetti, M.; Ferone, D. Present and Future of Immunotherapy in Neuroendocrine Tumors. Rev. Endocr. Metab. Disord. 2021, 22, 615–636. [Google Scholar] [CrossRef] [PubMed]
- Milione, M.; Miceli, R.; Barretta, F.; Pellegrinelli, A.; Spaggiari, P.; Tagliabue, G.; Centonze, G.; Paolino, C.; Mangogna, A.; Kankava, K.; et al. Microenvironment and Tumor Inflammatory Features Improve Prognostic Prediction in Gastro-Entero-Pancreatic Neuroendocrine Neoplasms. J. Pathol. Clin. Res. 2019, 5, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, D.; Kojima, M.; Suzuki, T.; Sugimoto, M.; Kobayashi, S.; Takahashi, S.; Konishi, M.; Gotohda, N.; Ikeda, M.; Nakatsura, T.; et al. Profiling the Tumour Immune Microenvironment in Pancreatic Neuroendocrine Neoplasms with Multispectral Imaging Indicates Distinct Subpopulation Characteristics Concordant with WHO 2017 Classification. Sci. Rep. 2018, 8, 13166. [Google Scholar] [CrossRef] [PubMed]
- Katz, S.C.; Donkor, C.; Glasgow, K.; Pillarisetty, V.G.; Gönen, M.; Espat, N.J.; Klimstra, D.S.; D’Angelica, M.I.; Allen, P.J.; Jarnagin, W.; et al. T Cell Infiltrate and Outcome Following Resection of Intermediate-Grade Primary Neuroendocrine Tumours and Liver Metastases. HPB 2010, 12, 674–683. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Michelakos, T.; Deshpande, V.; Arora, K.S.; Yamada, T.; Ting, D.T.; Taylor, M.S.; Castillo, C.F.-D.; Warshaw, A.L.; Lillemoe, K.D.; et al. Role of Tumor-Associated Macrophages in the Clinical Course of Pancreatic Neuroendocrine Tumors (PanNETs). Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 2644–2655. [Google Scholar] [CrossRef]
- de Reuver, P.R.; Mehta, S.; Gill, P.; Andrici, J.; D’Urso, L.; Clarkson, A.; Mittal, A.; Hugh, T.J.; Samra, J.S.; Gill, A.J. Immunoregulatory Forkhead Box Protein P3-Positive Lymphocytes Are Associated with Overall Survival in Patients with Pancreatic Neuroendocrine Tumors. J. Am. Coll. Surg. 2016, 222, 281–287. [Google Scholar] [CrossRef]
- Vikman, S.; Sommaggio, R.; De La Torre, M.; Oberg, K.; Essand, M.; Giandomenico, V.; Loskog, A.; Totterman, T.H. Midgut Carcinoid Patients Display Increased Numbers of Regulatory T Cells in Peripheral Blood with Infiltration into Tumor Tissue. Acta Oncol. Stockh. Swed. 2009, 48, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Leonetti, A.; Facchinetti, F.; Minari, R.; Cortellini, A.; Rolfo, C.D.; Giovannetti, E.; Tiseo, M. Notch Pathway in Small-Cell Lung Cancer: From Preclinical Evidence to Therapeutic Challenges. Cell. Oncol. Dordr. 2019, 42, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Saunders, L.R.; Bankovich, A.J.; Anderson, W.C.; Aujay, M.A.; Bheddah, S.; Black, K.; Desai, R.; Escarpe, P.A.; Hampl, J.; Laysang, A.; et al. A DLL3-Targeted Antibody-Drug Conjugate Eradicates High-Grade Pulmonary Neuroendocrine Tumor-Initiating Cells in Vivo. Sci. Transl. Med. 2015, 7, 302ra136. [Google Scholar] [CrossRef] [PubMed]
- Liverani, C.; Bongiovanni, A.; Mercatali, L.; Pieri, F.; Spadazzi, C.; Miserocchi, G.; Di Menna, G.; Foca, F.; Ravaioli, S.; De Vita, A.; et al. Diagnostic and Predictive Role of DLL3 Expression in Gastroenteropancreatic Neuroendocrine Neoplasms. Endocr. Pathol. 2021, 32, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Batista da Costa, J.; Gibb, E.A.; Bivalacqua, T.J.; Liu, Y.; Oo, H.Z.; Miyamoto, D.T.; Alshalalfa, M.; Davicioni, E.; Wright, J.; Dall’Era, M.A.; et al. Molecular Characterization of Neuroendocrine-like Bladder Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 3908–3920. [Google Scholar] [CrossRef]
- Yao, J.; Bergsland, E.; Aggarwal, R.; Aparicio, A.; Beltran, H.; Crabtree, J.S.; Hann, C.L.; Ibrahim, T.; Byers, L.A.; Sasano, H.; et al. DLL3 as an Emerging Target for the Treatment of Neuroendocrine Neoplasms. Oncol. 2022, 27, 940–951. [Google Scholar] [CrossRef] [PubMed]
- Alì, G.; Di Stefano, I.; Poma, A.M.; Ricci, S.; Proietti, A.; Davini, F.; Lucchi, M.; Melfi, F.; Fontanini, G. Prevalence of Delta-Like Protein 3 in a Consecutive Series of Surgically Resected Lung Neuroendocrine Neoplasms. Front. Oncol. 2021, 11, 729765. [Google Scholar] [CrossRef]
- Tanaka, K.; Isse, K.; Fujihira, T.; Takenoyama, M.; Saunders, L.; Bheddah, S.; Nakanishi, Y.; Okamoto, I. Prevalence of Delta-like Protein 3 Expression in Patients with Small Cell Lung Cancer. Lung Cancer Amst. Neth. 2018, 115, 116–120. [Google Scholar] [CrossRef]
- Gay, C.M.; Stewart, C.A.; Park, E.M.; Diao, L.; Groves, S.M.; Heeke, S.; Nabet, B.Y.; Fujimoto, J.; Solis, L.M.; Lu, W.; et al. Patterns of Transcription Factor Programs and Immune Pathway Activation Define Four Major Subtypes of SCLC with Distinct Therapeutic Vulnerabilities. Cancer Cell 2021, 39, 346–360.e7. [Google Scholar] [CrossRef]
- Fazio, N.; Abdel-Rahman, O. Immunotherapy in Neuroendocrine Neoplasms: Where Are We Now? Curr. Treat. Options Oncol. 2021, 22, 19. [Google Scholar] [CrossRef]
- Cives, M.; Pelle’, E.; Strosberg, J. Emerging Treatment Options for Gastroenteropancreatic Neuroendocrine Tumors. J. Clin. Med. 2020, 9, 3655. [Google Scholar] [CrossRef] [PubMed]
Clinical Trial | Treatment | Therapy | Primary Site | N | Main Outcomes |
---|---|---|---|---|---|
KEYNOTE-028 [7] | Pembrolizumab | Monotherapy | Advanced PD-L1+ carcinoids or PanNENs | 25 GI-NETs and 16 PanNENs | ORR: 12.0% (GI-NENs) and 6.3% (PanNENs) |
KEYNOTE-158 [8] | Monotherapy | Advanced, well-differentiated NENs | 40 PanNETs, 43 GI-NETs and 14 lung NETs | ORR: 3.7% | |
AVENEC [9] | Avelumab | Monotherapy | Advanced G3 NECs | 29 NENs from different origins (72.4% GEP) | ORR: 6.9% |
Yao et al. [10] | Spartalizumab | Monotherapy | Advanced thoracic/GEP-NENs and GEP-NECs | 31 GI-NETs, 33 PanNETs, 30 thoracic NETs and 21 GEP-NECs | ORR: 7.4% (NENs) and 4.8% (NECs) |
Lu et al. [11] | Toripalimab | Monotherapy | Advanced NENs (Ki-67 ≥ 10%) | 8 WD-NENs and 32 NECs; 9 PanNENs and 31 ePanNENs | ORR: 25% (WD-NENs) and 18.7% (NECs) |
DART SWOG 1609 [12] | Nivolumab and ipilimumab | Dual therapy (anti-PD1–anti-CTLA4) | Advanced, any grade NENs (excluding PanNENs) | 14 WD-NENs and 18 NECs; 45% GI-NENs and 18% lung NENs | ORR: 0% (WD-NENs) and 44% (NECs) |
CA209-538 [13] | Nivolumab and ipilimumab | Dual therapy (anti-PD1–anti-CTLA4) | Advanced, any grade NENs | 29 NENs; 90% had G2 or G3; 39% lung NENs and 23% GEP-NENs | ORR: 24%; 43% in PanNENs, and 33% for atypical lung carcinoids |
DUNE [14] | Durvalumab and tremelimumab | Dual therapy (anti-PDL1–anti-CTLA4) | Cohort 1: G1/2 lung NETs—Cohort 2: G1/G2 GI-NETs—Cohort 3: G1/2 PanNENs—Cohort 4: G3 GEP-NENs | 27 lung carcinoids, 31 grade 1-2 GI-NETs, 32 grade 1-2 PanNETs and 33 grade 3 GEP-NENs (91% NECs) | ORR: 11.1% (cohort 1), 0% (cohort 2), 6.3% (cohort 3) and 9.1% (cohort 4) |
NICE-NEC trial [15] | Nivolumab and platinum-based chemotherapy | Dual therapy (anti-PD1–chemotherapy) | GEP or unknown origin G3 NENs | 38 NENs; 68.4% NECs | ORR: 54.1% |
Owen et al. [16] | Nivolumab and temozolomide | Dual therapy (anti-PD1–chemotherapy) | Advanced, any grade NENs | 28 NENs; 3 PanNENs, 11 lung NENs, 11 GI-NENs, 1 head and neck NENs and 2 unknown NENs | ORR: 32.1% (lung vs. others, p = 0.020) |
Halperin D et al. [17] | Atezolizumab and bevacizumab | Dual therapy (anti-PDL1–antiangiogenic) | Advanced, G1/2 NENs | 40 NENs; 20 PanNENs and 20 ePanNENs | ORR: 20% PanNENs and 15% ePanNENs |
CABATEN/GETNE-T1914 [18] | Atezolizumab and cabozantinib | Dual therapy (anti-PDL1–kinase inhibitor) | Cohort 1: WD lung NENs—Cohort 2: ATC—Cohort 3: ACC—Cohort 4: PPGL—Cohort 5: WD GEP NENs—Cohort 6: G3 extrapulmonary NENs | 9 WD lung NENs, 14 ATC, 24 ACC, 13 PPGL, 24 WD GEP NENs and 9 G3 extrapulmonary NENs | ORR: 0% (cohort 1), 21.4% (cohort 2), 8.3% (cohort 3), 7.7% (cohort 4), 16.7% (cohort 5) and 0% (cohort 6) |
Clinical Trials.gov Identifier | Study Title | Phase | NEN Population | Treatment Arms | Primary Endpoint |
---|---|---|---|---|---|
03457948 | Pembrolizumab With Liver-Directed or Peptide Receptor Radionuclide Therapy for Neuroendocrine Tumors and Liver Metastases | II | Advanced grade 1–2 NENs |
| ORR |
04525638 | A Clinical Study to Assess the Combination of Two Drugs (177Lu-DOTATATE and Nivolumab) in Neuroendocrine Tumors | II | Advanced, well-differentiated grade 3 NENs or NECs of the pancreas, GI, lung, and unknown primary | All subjects will be treated with nivolumab + 177-Lu-DOTATATE (maximum 4 cycles). | ORR |
05058651 | Evaluating the Addition of the Immunotherapy Drug Atezolizumab to Standard Chemotherapy Treatment for Advanced or Metastatic Neuroendocrine Carcinomas That Originate Outside the Lung | II/III | Advanced extrapulmonary NECs |
| OS |
04969887 | Combination Immunotherapy in Rare Cancers Under InvesTigation (MOST-CIRCUIT) | II | Atypical bronchial carcinoid, NECs, and grade 3 NENs independent of primary site (SCLC excluded) | All subjects will be treated with nivolumab + ipilimumab at concurrently (4 cycles). Nivolumab until progression (up to 2 years). | 6 months PFS and ORR |
01174121 | Immunotherapy Using Tumor Infiltrating Lymphocytes for Patients with Metastatic Cancer | II | Metastatic NENs |
| ORR |
03412877 | Administration of Autologous T-Cells Genetically Engineered to Express T-Cell Receptors Reactive Against Neoantigens in People with Metastatic Cancer | II | NENs refractory to second-vb line therapy |
| ORR |
05882058 | A Study to Test Whether Different Doses of BI 764532 Help People with Small Cell Lung Cancer or Other Neuroendocrine Cancers | II | SCLC, epNECs, LCNEC | Drug: BI 764532 (DLL3/CD3 T cell engaging bispecific antibody—two different doses). | OR |
04702737 | A Study of AMG 757 in Participants with Neuroendocrine Prostate Cancer | I | Neuroendocrine prostate cancer | Drug: tarlatamab (bispecific T-cell engager molecule, binds both DLL3 and CD3—dose exploration/expansion). | Security |
5652686 | A Phase 1 Study of PT217 in Patients with Advanced Refrac-tory Cancers Expressing DLL3 | I | LCNEC, neuroendocrine prostate cancer and GEP-NEC | Drug: PT217 (bispecific antibody (bsAb) against human DLL3 (huDLL3) and human CD47 (huCD47)) | Security |
5879978 | A Study to Test How Well Different Doses of BI 764532 in Combination with Ezabenlimab Are Tolerated by People with SCLC and Other Neuroendocrine Tumos That Are Positive for DLL3 | I | LCNEC and NEC of any origin | Drug: BI 764532 (a DLL3)/CD3 IgG-like T-cell engager) Drug: ezabenlimab (anti-PD-1 mAb) | MTD |
4471727 | Study in Patients with Advanced Cancers Associated with Expression of DLL3 | I/II | Neuroendocrine prostate cancer, high grade neuroendocrine tumor types other than SCLC | Drug: HPN328 (tri-specific DLL3-targeting T-cell engager—dose exploration/expansion) Drug: atezolizumab (combination) | Security |
4429087 | A Study to Test Different Doses of BI 764532 in Patients with SCLC and Other Neuroendocrine Tumours That Are Positive for DLL3 | I | LCNEC and NEC | Drug: BI 764532 (a DLL3)/CD3 IgG-like T-cell engager) | MTD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Torralba, E.; Garcia-Lorenzo, E.; Doger, B.; Spada, F.; Lamarca, A. Immunotherapy in Neuroendocrine Neoplasms: A Diamond to Cut. Cancers 2024, 16, 2530. https://doi.org/10.3390/cancers16142530
García-Torralba E, Garcia-Lorenzo E, Doger B, Spada F, Lamarca A. Immunotherapy in Neuroendocrine Neoplasms: A Diamond to Cut. Cancers. 2024; 16(14):2530. https://doi.org/10.3390/cancers16142530
Chicago/Turabian StyleGarcía-Torralba, Esmeralda, Esther Garcia-Lorenzo, Bernard Doger, Francesca Spada, and Angela Lamarca. 2024. "Immunotherapy in Neuroendocrine Neoplasms: A Diamond to Cut" Cancers 16, no. 14: 2530. https://doi.org/10.3390/cancers16142530
APA StyleGarcía-Torralba, E., Garcia-Lorenzo, E., Doger, B., Spada, F., & Lamarca, A. (2024). Immunotherapy in Neuroendocrine Neoplasms: A Diamond to Cut. Cancers, 16(14), 2530. https://doi.org/10.3390/cancers16142530