A Comparison of 7 Tesla MR Spectroscopic Imaging and 3 Tesla MR Fingerprinting for Tumor Localization in Glioma Patients
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Magnetic Resonance Spectroscopic Imaging
1.2. Magnetic Resonance Fingerprinting
1.3. Motivation and Purpose
2. Materials and Methods
2.1. Study Population
2.2. MRSI Protocol and Data Processing
2.3. MRF and Clinical Protocol
2.4. Data Analysis
3. Results
3.1. Median Relaxation Times and Metabolic Ratios
3.2. Similarity Measures
3.3. Complementary Information
4. Discussion
Limitations and Outlook
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Acquisition delay |
CE | Concentration estimates |
Cho | Choline |
COID | Center of intensity differences |
Cr | Creatine |
CRT | Concentric ring trajectories |
DSC | Sørensen–Dice similarity coefficient |
FID | Free induction decay |
FISP | Fast imaging with steady-state precession |
FLAIR | Fluid-attenuated inversion recovery |
FOV | Field of view |
Gln | Glutamine |
Glu | Glutamate |
Gly | Glycine |
Ins | Myo-inositol |
MP2RAGE | Magnetization-prepared 2 rapid gradient-echo |
MRF | Magnetic resonance fingerprinting |
MRI | Magnetic resonance imaging |
MRSI | Magnetic resonance spectroscopic imaging |
NAA | N-acetylaspartate |
NAWM | Normal-appearing white matter |
PET | Positron emission tomography |
PT | Peritumoral segmentation |
ROI | Region of interest |
SNR | Signal to noise ratio |
TA | Acquisition time |
tCho | Total choline |
tCr | Total creatine |
TE | Echo time |
tNAA | Total N-acetylaspartate |
TR | Repetition time |
TU | Tumor segmentation |
References
- Petr, J.; Hogeboom, L.; Nikulin, P.; Wiegers, E.; Schroyen, G.; Kallehauge, J.; Chmelík, M.; Clement, P.; Nechifor, R.E.; Fodor, L.-A.; et al. A systematic review on the use of quantitative imaging to detect cancer therapy adverse effects in normal-appearing brain tissue. Magn. Reson. Mater. Phys. 2022, 35, 163–186. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, O.M.; Del Mar Álvarez-Torres, M.; Figueiredo, P.; Hangel, G.; Keil, V.C.; Nechifor, R.E.; Riemer, F.; Schmainda, K.M.; Warnert, E.A.H.; Wiegers, E.C.; et al. High-Grade Glioma Treatment Response Monitoring Biomarkers: A Position Statement on the Evidence Supporting the Use of Advanced MRI Techniques in the Clinic, and the Latest Bench-to-Bedside Developments. Part 1: Perfusion and Diffusion Techniques. Front. Oncol. 2022, 12, 810263. [Google Scholar] [CrossRef]
- Booth, T.C.; Wiegers, E.C.; Warnert, E.A.H.; Schmainda, K.M.; Riemer, F.; Nechifor, R.E.; Keil, V.C.; Hangel, G.; Figueiredo, P.; Álvarez-Torres, M.D.M.; et al. High-Grade Glioma Treatment Response Monitoring Biomarkers: A Position Statement on the Evidence Supporting the Use of Advanced MRI Techniques in the Clinic, and the Latest Bench-to-Bedside Developments. Part 2: Spectroscopy, Chemical Exchange Saturation, Multiparametric Imaging, and Radiomics. Front. Oncol. 2022, 11, 811425. [Google Scholar] [CrossRef] [PubMed]
- Mert, A.; Kiesel, B.; Wöhrer, A.; Martínez-Moreno, M.; Minchev, G.; Furtner, J.; Knosp, E.; Wolfsberger, S.; Widhalm, G. Introduction of a standardized multimodality image protocol for navigation-guided surgery of suspected low-grade gliomas. Neurosurg. Focus. 2015, 38, E4. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Gulani, V.; Seiberlich, N.; Liu, K.; Sunshine, J.L.; Duerk, J.L.; Griswold, M.A. Magnetic resonance fingerprinting. Nature 2013, 495, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Hangel, G.; Cadrien, C.; Lazen, P.; Furtner, J.; Lipka, A.; Hečková, E.; Hingerl, L.; Motyka, S.; Gruber, S.; Strasser, B.; et al. High-resolution metabolic imaging of high-grade gliomas using 7T-CRT-FID-MRSI. Neuroimage Clin. 2020, 28, 102433. [Google Scholar] [CrossRef]
- Hangel, G.; Lazen, P.; Sharma, S.; Hristoska, B.; Cadrien, C.; Furtner, J.; Rausch, I.; Lipka, A.; Niess, E.; Hingerl, L.; et al. 7T HR FID-MRSI Compared to Amino Acid PET: Glutamine and Glycine as Promising Biomarkers in Brain Tumors. Cancers 2022, 14, 2163. [Google Scholar] [CrossRef]
- Amelio, I.; Cutruzzolá, F.; Antonov, A.; Agostini, M.; Melino, G. Serine and glycine metabolism in cancer. Trends Biochem. Sci. 2014, 39, 191–198. [Google Scholar] [CrossRef]
- DeBerardinis, R.J.; Cheng, T. Q’s next: The diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 2010, 29, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Wise, D.R.; Thompson, C.B. Glutamine addiction: A new therapeutic target in cancer. Trends Biochem. Sci. 2010, 35, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Sonkar, K.; Ayyappan, V.; Tressler, C.M.; Adelaja, O.; Cai, R.; Cheng, M.; Glunde, K. Focus on the glycerophosphocholine pathway in choline phospholipid metabolism of cancer. NMR Biomed. 2019, 32, e4112. [Google Scholar] [CrossRef] [PubMed]
- Nagashima, H.; Sasayama, T.; Tanaka, K.; Kyotani, K.; Sato, N.; Maeyama, M.; Kohta, M.; Sakata, J.; Yamamoto, Y.; Hosoda, K.; et al. Myo-inositol concentration in MR spectroscopy for differentiating high grade glioma from primary central nervous system lymphoma. J. Neurooncol 2018, 136, 317–326. [Google Scholar] [CrossRef]
- Best, J.G.; Stagg, C.J.; Dennis, A. Chapter 2.5—Other Significant Metabolites: Myo-Inositol, GABA, Glutamine, and Lactate. In Magnetic Resonance Spectroscopy; Stagg, C., Rothman, D., Eds.; Academic Press: San Diego, CA, USA, 2014; pp. 122–138. ISBN 978-0-12-401688-0. [Google Scholar]
- Moffett, J.R.; Ross, B.; Arun, P.; Madhavarao, C.N.; Namboodiri, A.M.A. N-Acetylaspartate in the CNS: From neurodiagnostics to neurobiology. Prog. Neurobiol. 2007, 81, 89–131. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Abiko, K.; Sheriff, S.; Maudsley, A.A.; Urushibata, Y.; Ahn, S.; Tha, K.K. The Distribution of Major Brain Metabolites in Normal Adults: Short Echo Time Whole-Brain MR Spectroscopic Imaging Findings. Metabolites 2022, 12, 543. [Google Scholar] [CrossRef]
- Hingerl, L.; Strasser, B.; Moser, P.; Hangel, G.; Motyka, S.; Heckova, E.; Gruber, S.; Trattnig, S.; Bogner, W. Clinical High-Resolution 3D-MR Spectroscopic Imaging of the Human Brain at 7 T. Investig. Radiol. 2020, 55, 239–248. [Google Scholar] [CrossRef]
- Tomiyasu, M.; Harada, M. In vivo Human MR Spectroscopy Using a Clinical Scanner: Development, Applications, and Future Prospects. Magn. Reson. Med. Sci. 2022, 21, 235–252. [Google Scholar] [CrossRef] [PubMed]
- Hattingen, E.; Müller, A.; Jurcoane, A.; Mädler, B.; Ditter, P.; Schild, H.; Herrlinger, U.; Glas, M.; Kebir, S. Value of quantitative magnetic resonance imaging T1-relaxometry in predicting contrast-enhancement in glioblastoma patients. Oncotarget 2017, 8, 53542–53551. [Google Scholar] [CrossRef]
- Liu, L.; Yin, B.; Geng, D.Y.; Lu, Y.P.; Peng, W.J. Changes of T2 Relaxation Time from Neoadjuvant Chemotherapy in Breast Cancer Lesions. Iran. J. Radiol. 2016, 13, e24014. [Google Scholar] [CrossRef]
- Mauler, J.; Maudsley, A.A.; Langen, K.-J.; Nikoubashman, O.; Stoffels, G.; Sheriff, S.; Lohmann, P.; Filss, C.; Galldiks, N.; Kops, E.R.; et al. Spatial Relationship of Glioma Volume Derived from 18F-FET PET and Volumetric MR Spectroscopy Imaging: A Hybrid PET/MRI Study. J. Nucl. Med. 2018, 59, 603–609. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Provencher, S.W. Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed. 2001, 14, 260–264. [Google Scholar] [CrossRef]
- Považan, M.; Strasser, B.; Hangel, G.; Heckova, E.; Gruber, S.; Trattnig, S.; Bogner, W. Simultaneous mapping of metabolites and individual macromolecular components via ultra-short acquisition delay 1H MRSI in the brain at 7T. Magn. Reson. Med. 2018, 79, 1231–1240. [Google Scholar] [CrossRef]
- Považan, M.; Hangel, G.; Strasser, B.; Gruber, S.; Chmelik, M.; Trattnig, S.; Bogner, W. Mapping of brain macromolecules and their use for spectral processing of 1H-MRSI data with an ultra-short acquisition delay at 7T. NeuroImage 2015, 121, 126–135. [Google Scholar] [CrossRef]
- Lin, A.; Andronesi, O.; Bogner, W.; Choi, I.-Y.; Coello, E.; Cudalbu, C.; Juchem, C.; Kemp, G.J.; Kreis, R.; Krššák, M.; et al. Minimum Reporting Standards for in vivo Magnetic Resonance Spectroscopy (MRSinMRS): Experts’ consensus recommendations. NMR Biomed. 2021, 34, e4484. [Google Scholar] [CrossRef] [PubMed]
- Dice, L.R. Measures of the Amount of Ecologic Association Between Species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Carass, A.; Roy, S.; Gherman, A.; Reinhold, J.C.; Jesson, A.; Arbel, T.; Maier, O.; Handels, H.; Ghafoorian, M.; Platel, B.; et al. Evaluating White Matter Lesion Segmentations with Refined Sørensen-Dice Analysis. Sci. Rep. 2020, 10, 8242. [Google Scholar] [CrossRef] [PubMed]
- Hirschler, L.; Sollmann, N.; Schmitz-Abecassis, B.; Pinto, J.; Arzanforoosh, F.; Barkhof, F.; Booth, T.; Calvo-Imirizaldu, M.; Cassia, G.; Chmelik, M.; et al. Advanced MR Techniques for Preoperative Glioma Characterization: Part 1. J. Magn. Reson. Imaging 2023, 57, 1655–1675. [Google Scholar] [CrossRef] [PubMed]
- de Blank, P.; Badve, C.; Gold, D.R.; Stearns, D.; Sunshine, J.; Dastmalchian, S.; Tomei, K.; Sloan, A.E.; Barnholtz-Sloan, J.S.; Lane, A.; et al. Magnetic Resonance Fingerprinting to Characterize Childhood and Young Adult Brain Tumors. Pediatr. Neurosurg. 2019, 54, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Springer, E.; Cardoso, P.L.; Strasser, B.; Bogner, W.; Preusser, M.; Widhalm, G.; Nittka, M.; Koerzdoerfer, G.; Szomolanyi, P.; Hangel, G.; et al. MR Fingerprinting-A Radiogenomic Marker for Diffuse Gliomas. Cancers 2022, 14, 723. [Google Scholar] [CrossRef] [PubMed]
- Marik, W.; Cardoso, P.L.; Springer, E.; Bogner, W.; Preusser, M.; Widhalm, G.; Hangel, G.; Hainfellner, J.A.; Rausch, I.; Weber, M.; et al. Evaluation of Gliomas with Magnetic Resonance Fingerprinting with PET Correlation—A Comparative Study. Cancers 2023, 15, 2740. [Google Scholar] [CrossRef] [PubMed]
- Hangel, G.; Niess, E.; Lazen, P.; Bednarik, P.; Bogner, W.; Strasser, B. Emerging methods and applications of ultra-high field MR spectroscopic imaging in the human brain. Anal. Biochem. 2022, 638, 114479. [Google Scholar] [CrossRef] [PubMed]
- Hangel, G.; Schmitz-Abecassis, B.; Sollmann, N.; Pinto, J.; Arzanforoosh, F.; Barkhof, F.; Booth, T.; Calvo-Imirizaldu, M.; Cassia, G.; Chmelik, M.; et al. Advanced MR Techniques for Preoperative Glioma Characterization: Part 2. J. Magn. Reson. Imaging 2023, 57, 1676–1695. [Google Scholar] [CrossRef] [PubMed]
- Chekouo, T.; Mohammed, S.; Rao, A. A Bayesian 2D functional linear model for gray-level co-occurrence matrices in texture analysis of lower grade gliomas. Neuroimage Clin. 2020, 28, 102437. [Google Scholar] [CrossRef]
- Hangel, G.; Spurny-Dworak, B.; Lazen, P.; Cadrien, C.; Sharma, S.; Hingerl, L.; Hečková, E.; Strasser, B.; Motyka, S.; Lipka, A.; et al. Inter-subject stability and regional concentration estimates of 3D-FID-MRSI in the human brain at 7 T. NMR Biomed. 2021, 34, e4596. [Google Scholar] [CrossRef]
- Gottschalk, M.; Troprès, I.; Lamalle, L.; Grand, S.; Le Bas, J.-F.; Segebarth, C. Refined modelling of the short-T2 signal component and ensuing detection of glutamate and glutamine in short-TE, localised, (1) H MR spectra of human glioma measured at 3 T. NMR Biomed. 2016, 29, 943–951. [Google Scholar] [CrossRef]
- Schneider, J.F.; Confort-Gouny, S.; Viola, A.; Le Fur, Y.; Viout, P.; Bennathan, M.; Chapon, F.; Figarella-Branger, D.; Cozzone, P.; Girard, N. Multiparametric differentiation of posterior fossa tumors in children using diffusion-weighted imaging and short echo-time 1H-MR spectroscopy. J. Magn. Reson. Imaging 2007, 26, 1390–1398. [Google Scholar] [CrossRef] [PubMed]
- Lecocq, A.; Le Fur, Y.; Amadon, A.; Vignaud, A.; Cozzone, P.J.; Guye, M.; Ranjeva, J.-P. Fast water concentration mapping to normalize (1)H MR spectroscopic imaging. MAGMA 2015, 28, 87–100. [Google Scholar] [CrossRef] [PubMed]
Cohort Overview | |||||
---|---|---|---|---|---|
Patient ID | Classification | Grade | IDH | Age | Sex |
1 | Glioblastoma | 4 | WT | 47 | F |
2 | Anaplastic astrocytoma | 3 | Mut | 46 | F |
3 | Anaplastic astrocytoma | 3 | Mut | 29 | M |
4 | Glioblastoma | 4 | WT | 52 | M |
5 | Diffuse astrocytoma | 2 | Mut | 33 | M |
6 | Glioblastoma | 4 | WT | 58 | M |
7 | Diffuse astrocytoma | 2 | Mut | 77 | F |
8 | Oligodendroglioma | 3 | Mut | 51 | M |
9 | Glioblastoma | 4 | WT | 61 | M |
10 | Anaplastic astrocytoma | 3 | Mut | 28 | F |
11 | Oligodendroglioma | 2 | Mut | 38 | F |
12 | Oligodendroglioma | 2 | Mut | 61 | M |
DSCs between Different Hotspots | |||
---|---|---|---|
Segmentations | TU | TU + PT | PT |
DSC between | Median (Q1, Q3) | Median (Q1, Q3) | Median (Q1, Q3) |
T1 and ROI | 0.73 (0.66, 0.83) | 0.47 (0.44, 0.52) | 0.58 (0.45, 0.65) |
T2 and ROI | 0.79 (0.67, 0.86) | 0.46 (0.42, 0.54) | 0.58 (0.43, 0.62) |
tCho/tNAA and ROI | 0.45 (0.35, 0.71) | 0.24 (0.16, 0.33) | 0.28 (0.13, 0.35) |
Gln/tNAA and ROI | 0.78 (0.60, 0.91) | 0.55 (0.38, 0.59) | 0.65 (0.46, 0.80) |
Gly/tNAA and ROI | 0.54 (0.48, 0.69) | 0.33 (0.28, 0.38) | 0.41 (0.34, 0.44) |
Ins/tNAA and ROI | 0.35 (0.26, 0.53) | 0.21 (0.12, 0.23) | 0.25 (0.10, 0.28) |
tCho/tNAA and T1 | 0.61 (0.40, 0.73) | 0.39 (0.25, 0.47) | 0.29 (0.13, 0.36) |
Gln/tNAA and T1 | 0.75 (0.54, 0.87) | 0.60 (0.54, 0.64) | 0.51 (0.41, 0.56) |
Gly/tNAA and T1 | 0.57 (0.46, 0.70) | 0.45 (0.38, 0.49) | 0.35 (0.31, 0.39) |
Ins/tNAA and T1 | 0.43 (0.33, 0.52) | 0.32 (0.15, 0.37) | 0.25 (0.10, 0.30) |
tCho/tNAA and T2 | 0.58 (0.47, 0.72) | 0.39 (0.26, 0.47) | 0.28 (0.14, 0.33) |
Gln/tNAA and T2 | 0.80 (0.68, 0.87) | 0.61 (0.46, 0.64) | 0.47 (0.34, 0.56) |
Gly/tNAA and T2 | 0.62 (0.51, 0.73) | 0.45 (0.39, 0.51) | 0.34 (0.29, 0.39) |
Ins/tNAA and T2 | 0.41 (0.36, 0.53) | 0.33 (0.17, 0.38) | 0.25 (0.12, 0.29) |
Median Values in Different Regions of Interest | |||||
---|---|---|---|---|---|
Segmentations | TU | PT | TU vs. PT | TU + PT | NAWM |
Quantity | Median (Q1, Q3) | Median (Q1, Q3) | p-Values | Median (Q1, Q3) | Median (Q1, Q3) |
T1 | 1724 (1690, 1804) | 1756 (1661, 1810) | 0.773 | 1770 (1712, 1792) | 950 (941, 972) |
T2 | 85.5 (80.1, 105.8) | 102.0 (90.0, 117.3) | 0.272 | 101.6 (94.0, 106.0) | 42.9 (42.6, 43.3) |
tCho/tNAA | 0.48 (0.42, 0.55) | 0.38 (0.34, 0.44) | 0.004 | 0.40 (0.39, 0.49) | 0.20 (0.18, 0.21) |
Gln/tNAA | 0.61 (0.56, 0.70) | 0.38 (0.35, 0.52) | 0.001 | 0.43 (0.40, 0.50) | 0.16 (0.13, 0.20) |
Gly/tNAA | 0.28 (0.20, 0.36) | 0.20 (0.16, 0.24) | 0.003 | 0.22 (0.18, 0.26) | 0.07 (0.06, 0.10) |
Ins/tNAA | 1.15 (1.04, 1.21) | 1.06 (0.90, 1.13) | 0.030 | 1.09 (0.94, 1.14) | 0.54 (0.51, 0.59) |
tCho/tCr | 0.69 (0.63, 0.80) | 0.76 (0.66, 0.83) | 0.867 | 0.72 (0.65, 0.81) | 0.37 (0.35, 0.40) |
Gln/tCr | 0.90 (0.75, 1.31) | 0.67 (0.58, 1.12) | 0.042 | 0.70 (0.61, 1.31) | 0.32 (0.26, 0.45) |
Gly/tCr | 0.51 (0.33, 0.64) | 0.42 (0.28, 0.52) | 0.024 | 0.42 (0.30, 0.55) | 0.15 (0.10, 0.22) |
Ins/tCr | 1.98 (1.88, 2.53) | 1.97 (1.85, 2.34) | 0.471 | 1.95 (1.85, 2.21) | 1.05 (0.96, 1.16) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazen, P.; Lima Cardoso, P.; Sharma, S.; Cadrien, C.; Roetzer-Pejrimovsky, T.; Furtner, J.; Strasser, B.; Hingerl, L.; Lipka, A.; Preusser, M.; et al. A Comparison of 7 Tesla MR Spectroscopic Imaging and 3 Tesla MR Fingerprinting for Tumor Localization in Glioma Patients. Cancers 2024, 16, 943. https://doi.org/10.3390/cancers16050943
Lazen P, Lima Cardoso P, Sharma S, Cadrien C, Roetzer-Pejrimovsky T, Furtner J, Strasser B, Hingerl L, Lipka A, Preusser M, et al. A Comparison of 7 Tesla MR Spectroscopic Imaging and 3 Tesla MR Fingerprinting for Tumor Localization in Glioma Patients. Cancers. 2024; 16(5):943. https://doi.org/10.3390/cancers16050943
Chicago/Turabian StyleLazen, Philipp, Pedro Lima Cardoso, Sukrit Sharma, Cornelius Cadrien, Thomas Roetzer-Pejrimovsky, Julia Furtner, Bernhard Strasser, Lukas Hingerl, Alexandra Lipka, Matthias Preusser, and et al. 2024. "A Comparison of 7 Tesla MR Spectroscopic Imaging and 3 Tesla MR Fingerprinting for Tumor Localization in Glioma Patients" Cancers 16, no. 5: 943. https://doi.org/10.3390/cancers16050943
APA StyleLazen, P., Lima Cardoso, P., Sharma, S., Cadrien, C., Roetzer-Pejrimovsky, T., Furtner, J., Strasser, B., Hingerl, L., Lipka, A., Preusser, M., Marik, W., Bogner, W., Widhalm, G., Rössler, K., Trattnig, S., & Hangel, G. (2024). A Comparison of 7 Tesla MR Spectroscopic Imaging and 3 Tesla MR Fingerprinting for Tumor Localization in Glioma Patients. Cancers, 16(5), 943. https://doi.org/10.3390/cancers16050943