Predictors for Success and Failure in Transoral Robotic Surgery—A Retrospective Study in the North of the Netherlands
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Setting
2.3. Inclusion
2.4. Variables
2.5. Outcomes
2.6. Success Definitions for Malignant Cases
2.7. Success Definitions for Benign Cases
2.8. Failure Definitions for All Cases
2.9. Statistical Methods
3. Results
3.1. Patient Characteristics
3.2. Surgical Characteristics
3.3. Tumor Characteristics
3.4. Benign Disease Characteristics
3.5. Predictors for Success in Malignant Cases
3.6. Predictors for Success in Benign Cases
3.7. Predictors for Failure
4. Discussion
4.1. Predictors for Success in Malignant Cases
4.2. Predictors for Success in Benign Cases
4.3. Predictors for Failure
4.4. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Item | No. | Recommendation |
Title and abstract | 1 | (a) Indicate the study’s design with a commonly used term in the title or the abstract. |
(b) Provide in the abstract an informative and balanced summary of what was done and what was found. | ||
Introduction | ||
Background/rationale | 2 | Explain the scientific background and rationale for the investigation being reported. |
Objectives | 3 | State specific objectives, including any prespecified hypotheses. |
Methods | ||
Study design | 4 | Present key elements of study design early in the paper. |
Setting | 5 | Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection. |
Participants | 6 | (a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up. |
(b) For matched studies, give matching criteria and number of exposed and unexposed. | ||
Variables | 7 | Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable. |
Data sources/measurement | 8 * | For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group. |
Bias | 9 | Describe any efforts to address potential sources of bias. |
Study size | 10 | Explain how the study size was arrived at. |
Quantitative variables | 11 | Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why. |
Statistical methods | 12 | (a) Describe all statistical methods, including those used to control for confounding. |
(b) Describe any methods used to examine subgroups and interactions. | ||
(c) Explain how missing data were addressed. | ||
(d) If applicable, explain how loss to follow-up was addressed. | ||
(e) Describe any sensitivity analyses. | ||
Results | ||
Participants | 13 * | (a) Report numbers of individuals at each stage of study—e.g., numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analyzed. |
(b) Give reasons for non-participation at each stage. | ||
(c) Consider use of a flow diagram. | ||
Descriptive data | 14 * | (a) Give characteristics of study participants (e.g., demographic, clinical, social) and information on exposures and potential confounders. |
(b) Indicate the number of participants with missing data for each variable of interest. | ||
(c) Summarize follow-up time (e.g., average and total amount). | ||
Outcome data | 15 * | Report numbers of outcome events or summary measures over time. |
Main results | 16 | (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (e.g., 95% confidence interval). Make clear which confounders were adjusted for and why they were included. |
(b) Report category boundaries when continuous variables were categorized. | ||
(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period. | ||
Other analyses | 17 | Report other analyses conducted—e.g., analyses of subgroups and interactions, and sensitivity analyses. |
Discussion | ||
Key results | 18 | Summarize key results with reference to study objectives |
Limitations | 19 | Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias. |
Interpretation | 20 | Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence. |
Generalisability | 21 | Discuss the generalizability (external validity) of the study results. |
Other information | ||
Funding | 22 | Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based. |
* Give information separately for exposed and unexposed groups. Note: An explanation and elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/ (accessed on 24 January 2024), Annals of Internal Medicine at http://www.annals.org/ (accessed on 24 January 2024), and Epidemiology at http://www.epidem.com/ (accessed on 24 January 2024)). Information on the STROBE Initiative is available at http://www.strobe-statement.org (accessed on 24 January 2024). |
References
- Chen, A.Y.; Schrag, N.; Hao, Y.; Stewart, A.; Ward, E. Changes in treatment of advanced oropharyngeal cancer, 1985–2001. Laryngoscope 2007, 117, 16–21. [Google Scholar] [CrossRef]
- D’Andrea, G.; Bordenave, L.; Nguyen, F.; Tao, Y.; Paleri, V.; Temam, S.; Moya-Plana, A.; Gorphe, P. A prospective longitudinal study of quality of life in robotic-assisted salvage surgery for oropharyngeal cancer. Eur. J. Surg. Oncol. 2022, 48, 1243–1250. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, G.S.; O’Malley, B.W., Jr.; Magnuson, J.S.; Carroll, W.R.; Olsen, K.D.; Daio, L.; Moore, E.J.; Holsinger, F.C. Transoral robotic surgery: A multicenter study to assess feasibility, safety, and surgical margins. Laryngoscope 2012, 122, 1701–1707. [Google Scholar] [CrossRef] [PubMed]
- Fu, T.S.; Foreman, A.; Goldstein, D.P.; de Almeida, J.R. The role of transoral robotic surgery, transoral laser microsurgery, and lingual tonsillectomy in the identification of head and neck squamous cell carcinoma of unknown primary origin: A systematic review. J. Otolaryngol. Head Neck Surg. 2016, 45, 28. [Google Scholar] [CrossRef] [PubMed]
- Hatten, K.M.; O’Malley, B.W., Jr.; Bur, A.M.; Patel, M.R.; Rassekh, C.H.; Newman, J.G.; Cannady, S.B.; Chalian, A.A.; Hodnett, B.L.; Lin, A.; et al. Transoral Robotic Surgery-Assisted Endoscopy With Primary Site Detection and Treatment in Occult Mucosal Primaries. JAMA Otolaryngol. Head Neck Surg. 2017, 143, 267–273. [Google Scholar] [CrossRef]
- Cracchiolo, J.R.; Roman, B.R.; Kutler, D.I.; Kuhel, W.I.; Cohen, M.A. Adoption of transoral robotic surgery compared with other surgical modalities for treatment of oropharyngeal squamous cell carcinoma. J. Surg. Oncol. 2016, 114, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Vicini, C.; Dallan, I.; Canzi, P.; Frassineti, S.; Nacci, A.; Seccia, V.; Panicucci, E.; Grazia La Pietra, M.; Montevecchi, F.; Tschabitscher, M. Transoral robotic surgery of the tongue base in obstructive sleep Apnea-Hypopnea syndrome: Anatomic considerations and clinical experience. Head Neck 2012, 34, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.C.; Nguyen, S.A.; Ong, A.A.; Gillespie, M.B. Transoral robotic base of tongue reduction for obstructive sleep apnea: A systematic review and meta-analysis. Laryngoscope 2017, 127, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Di Luca, M.; Iannella, G.; Montevecchi, F.; Magliulo, G.; De Vito, A.; Cocuzza, S.; Maniaci, A.; Meccariello, G.; Cammaroto, G.; Sgarzani, R.; et al. Use of the transoral robotic surgery to treat patients with recurrent lingual tonsillitis. Int. J. Med. Robot. 2020, 16, e2106. [Google Scholar] [CrossRef]
- Cuschieri, S. The STROBE guidelines. Saudi J. Anaesth. 2019, 13, S31–S34. [Google Scholar] [CrossRef]
- Sher, A.E.; Schechtman, K.B.; Piccirillo, J.F. The efficacy of surgical modifications of the upper airway in adults with obstructive sleep apnea syndrome. Sleep 1996, 19, 156–177. [Google Scholar] [CrossRef] [PubMed]
- Clavien, P.A.; Barkun, J.; de Oliveira, M.L.; Vauthey, J.N.; Dindo, D.; Schulick, R.D.; de Santibanes, E.; Pekolj, J.; Slankamenac, K.; Bassi, C.; et al. The Clavien-Dindo classification of surgical complications: Five-year experience. Ann. Surg. 2009, 250, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Seve, P.; Sawyer, M.; Hanson, J.; Broussolle, C.; Dumontet, C.; Mackey, J.R. The influence of comorbidities, age, and performance status on the prognosis and treatment of patients with metastatic carcinomas of unknown primary site: A population-based study. Cancer 2006, 106, 2058–2066. [Google Scholar] [CrossRef] [PubMed]
- Milne, S.; Parmar, J.; Ong, T.K. Adult Comorbidity Evaluation-27 as a predictor of postoperative complications, two-year mortality, duration of hospital stay, and readmission within 30 days in patients with squamous cell carcinoma of the head and neck. Br. J. Oral Maxillofac. Surg. 2019, 57, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Rogers, S.N.; Aziz, A.; Lowe, D.; Husband, D.J. Feasibility study of the retrospective use of the Adult Comorbidity Evaluation index (ACE-27) in patients with cancer of the head and neck who had radiotherapy. Br. J. Oral Maxillofac. Surg. 2006, 44, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Paleri, V.; Wight, R.G. A cross-comparison of retrospective notes extraction and combined notes extraction and patient interview in the completion of a comorbidity index (ACE-27) in a cohort of United Kingdom patients with head and neck cancer. J. Laryngol. Otol. 2002, 116, 937–941. [Google Scholar] [CrossRef] [PubMed]
- Keller, L.M.; Galloway, T.J.; Holdbrook, T.; Ruth, K.; Yang, D.; Dubyk, C.; Flieder, D.; Lango, M.N.; Mehra, R.; Burtness, B.; et al. p16 status, pathologic and clinical characteristics, biomolecular signature, and long-term outcomes in head and neck squamous cell carcinomas of unknown primary. Head Neck 2014, 36, 1677–1684. [Google Scholar] [CrossRef]
- Galloway, T.J.; Zhang, Q.E.; Nguyen-Tan, P.F.; Rosenthal, D.I.; Soulieres, D.; Fortin, A.; Silverman, C.L.; Daly, M.E.; Ridge, J.A.; Hammond, J.A.; et al. Prognostic Value of p16 Status on the Development of a Complete Response in Involved Oropharynx Cancer Neck Nodes After Cisplatin-Based Chemoradiation: A Secondary Analysis of NRG Oncology RTOG 0129. Int. J. Radiat. Oncol. Biol. Phys. 2016, 96, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Kaczmar, J.M.; Tan, K.S.; Heitjan, D.F.; Lin, A.; Ahn, P.H.; Newman, J.G.; Rassekh, C.H.; Chalian, A.A.; O’Malley, B.W., Jr.; Cohen, R.B.; et al. HPV-related oropharyngeal cancer: Risk factors for treatment failure in patients managed with primary transoral robotic surgery. Head Neck 2016, 38, 59–65. [Google Scholar] [CrossRef]
- De Virgilio, A.; Costantino, A.; Rizzo, D.; Crescio, C.; Gallus, R.; Spriano, G.; Mercante, G.; Festa, B.M.; Accorona, R.; Pignataro, L.; et al. Do We Have Enough Evidence to Specifically Recommend Transoral Robotic Surgery in HPV-Driven Oropharyngeal Cancer? A Systematic Review. Pathogens 2023, 12, 160. [Google Scholar] [CrossRef]
- Nichols, A.C.; Theurer, J.; Prisman, E.; Read, N.; Berthelet, E.; Tran, E.; Fung, K.; de Almeida, J.R.; Bayley, A.; Goldstein, D.P.; et al. Randomized Trial of Radiotherapy Versus Transoral Robotic Surgery for Oropharyngeal Squamous Cell Carcinoma: Long-Term Results of the ORATOR Trial. J. Clin. Oncol. 2022, 40, 866–875. [Google Scholar] [CrossRef] [PubMed]
- Lacy, P.D.; Piccirillo, J.F.; Merritt, M.G.; Zequeira, M.R. Head and neck squamous cell carcinoma: Better to be young. Otolaryngol. Head Neck Surg. 2000, 122, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Takano, G.; Tsukushi, S.; Ando, M.; Yatabe, Y.; Kodaira, T.; Nishikawa, D.; Beppu, S.; Hasegawa, Y.; Hanai, N. Impact of age for overall survival in head and neck sarcoma. Medicine 2023, 102, e32966. [Google Scholar] [CrossRef] [PubMed]
- Rathod, S.; Livergant, J.; Klein, J.; Witterick, I.; Ringash, J. A systematic review of quality of life in head and neck cancer treated with surgery with or without adjuvant treatment. Oral Oncol. 2015, 51, 888–900. [Google Scholar] [CrossRef] [PubMed]
- van Deudekom, F.J.; Schimberg, A.S.; Kallenberg, M.H.; Slingerland, M.; van der Velden, L.A.; Mooijaart, S.P. Functional and cognitive impairment, social environment, frailty and adverse health outcomes in older patients with head and neck cancer, a systematic review. Oral Oncol. 2017, 64, 27–36. [Google Scholar] [CrossRef]
- Cho, W.K.; Roh, J.L.; Cho, K.J.; Choi, S.H.; Nam, S.Y.; Kim, S.Y. Predictors of survival and recurrence after primary surgery for cervical metastasis of unknown primary. J. Cancer Res. Clin. Oncol. 2020, 146, 925–933. [Google Scholar] [CrossRef]
- Glazer, T.A.; Hoff, P.T.; Spector, M.E. Transoral robotic surgery for obstructive sleep apnea: Perioperative management and postoperative complications. JAMA Otolaryngol. Head Neck Surg. 2014, 140, 1207–1212. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.P.; Pogatzki-Zahn, E. Gender aspects in postoperative pain. Curr. Opin. Anaesthesiol. 2015, 28, 546–558. [Google Scholar] [CrossRef]
- van Dijk, J.F.M.; Zaslansky, R.; van Boekel, R.L.M.; Cheuk-Alam, J.M.; Baart, S.J.; Huygen, F.; Rijsdijk, M. Postoperative Pain and Age: A Retrospective Cohort Association Study. Anesthesiology 2021, 135, 1104–1119. [Google Scholar] [CrossRef]
CUP n = 40 | BOT Carcinoma n = 20 | Other Malignancies n = 24 | Total Malignant Cases n = 84 | OSA n = 48 | Chronic Lingual Tonsillitis n = 67 | Other Benign Pathologies n = 12 | Total Benign Cases n = 127 | |
---|---|---|---|---|---|---|---|---|
Center, n (%) | ||||||||
UMCG | 33 (82.5) | 14 (70.0) | 12 (50.0) | 59 (70.2) | 1 (2.1) | 31 (46.3) | 9 (75.0) | 41 (32.3) |
MCL | 7 (17.5) | 6 (30.0) | 12 (50.0) | 25 (29.8) | 47 (97.9) | 36 (53.7) | 3 (25.0) | 86 (67.7) |
Age, mean (SD) | 63 (9.0) | 64.2 (8.3) | 67.3 (11.7) | 64.6 (9.7) | 47.0 (11.2) | 48.9 | 58.3 (12.3) | 47.0 (14.3) |
Gender, n (%) | ||||||||
Female | 14 (35.0) | 6 (30.0) | 8 (33.3) | 28 (33.3) | 9 (18.8) | 52 (77.6) | 8 (66.7) | 69 (54.3) |
Male | 26 (65.0) | 14 (70.0) | 16 (66.7) | 56 (66.7) | 39 (81.3) | 15 (22.4) | 4 (33.3) | 58 (45.7) |
Comorbidities (ACE-27), median (IQR) | 1 (0–3) | 2 (0–3) | 1 (0–3) | 1 (0–2) | 0 (0–3) | 0 (0–2) | 1 (0–2) | 0 (0–1) |
ASA, median (IQR) | 2 (1–4) | 2 (1–3) | 2.5 (1–4) | 2 (2–3) | 2 (1–3) | 2 (1–3) | 2 (1–3) | 2 (2–2) |
Smoking, n (%) | ||||||||
Current | 13 (32.5) | 5 (25.0) | 10 (41.7) | 28 (33.3) | 13 (27.1) | 16 (23.9) | 1 (8.3) | 30 (23.6) |
Previous | 20 (50.0) | 9 (45.0) | 10 (41.7) | 39 (46.4) | 8 (16.7) | 27 (40.3) | 3 (25.0) | 38 (29.9) |
Never | 7 (17.5) | 3 (15.0) | 2 (8.3) | 12 (14.3) | 25 (52.1) | 17 (25.4) | 6 (50.0) | 48 (37.8) |
Unknown | - | 3 (15.0) | 2 (8.3) | 5 (6.0) | 2 (4.2) | 7 (10.4) | 2 (16.7) | 11 (8.7) |
Alcohol, n (%) | ||||||||
Current | 25 (62.5) | 13 (65.0) | 13 (54.2) | 51 (60.7) | 15 (31.3) | 15 (22.4) | 4 (33.3) | 34 (26.8) |
Previous | 4 (10.0) | 1 (5.0) | 5 (20.8) | 10 (11.9) | 7 (14.6) | 8 (11.9) | 2 (16.7) | 17 (13.4) |
Never | 9 (22.5) | 3 (15.0) | 4 (16.7) | 16 (19.1) | 25 (52.1) | 34 (50.8) | 2 (16.7) | 61 (48.0) |
Unknown | 2 (5.0) | 3 (15.0) | 2 (8.3) | 7(8.3) | 1 (2.0) | 10 (14.9) | (33.3) | 15 (11.8) |
Anticoagulation, n (%) | ||||||||
Platelets aggregation inhibitors | 9 (22.5) | 5 (25.0) | 5 (20.8) | 19 (22.6) | 1 (2.1) | 2 (3.0) | 2 (16.7) | 5 (3.9) |
Coumarins | 1 (2.5) | 1 (5.0) | 1 (4.2) | 3 (3.6) | - | - | - | - |
Heparins | - | - | - | - | - | - | 1 (8.3) | 1 (0.8) |
DOACs | 2 (5) | - | 3 (12.5) | 5 (6.0) | - | 1 (1.5) | - | 1 (0.8) |
None | 28 (70.0) | 14 (70.0) | 15 (62.5) | 57 (67.8) | 47 (97.9) | 64 (95.5) | 9 (75.0) | 120 (94.5) |
CUP n = 40 | BOT Carcinoma n = 24 | Other Malignancies n = 25 | OSA n = 51 | Chronic Lingual Tonsillitis n = 67 | Other Benign Pathologies n = 13 | |
---|---|---|---|---|---|---|
Center, n (%) | ||||||
UMCG | 33 (82.5) | 17 (70.8) | 12 (48.0) | 1 (2.0) | 28 (41.8) | 10 (76.9) |
MCL | 7 (17.5) | 7 (29.2) | 13 (52.0) | 50 (98.0) | 39 (58.2) | 3 (23.1) |
Type of surgery, n (%) | ||||||
Tonsillectomy | 1 (2.5) | 1(4.1) | - | - | - | 1 (8.3) |
BOT resection | 12 (30.0) | 23(95.9) | - | 31 (60.8) | 58 (86.5) | 2 (16.7) |
Combination | 27 (67.5) | - | - | 20 (39.2) | 5 (7.5) | - |
Pharyngectomy | - | - | 17(68.0) | - | 1 (1.5) | 2 (16.7) |
Other | - | - | 8 (32.0) | - | 3 (4.5) | 9 (69.3) |
Duration surgery in minutes, mean (SD) | 60(28.3) | 77.7 (51.2) | 63.4 (36.4) | 72.5 (21.9) | 53.3 (24.4) | 51.5 (19.7) |
Postoperative complications following the Clavien–Dindo classification, n (%) | ||||||
Grade I | 1 (2.5) | - | 3 (12.0) | 4 (7.8) | 6 (9.0) | 13 (100) |
Grade II | - | 2 (8.3) | 1 (4.0) | 1 (2.0) | 3 (4.5) | - |
Grade III | 4 (10.0) | 1 (4.2) | 2 (8.0) | 2 (3.9) | 1 (1.5) | - |
Grade IV | 1 (2.5) | 1 (4.2) | - | 1 (2.0) | - | - |
Grade V | - | - | - | - | - | - |
None | 34 (85.0) | 20 (83.3) | 19 (76.0) | 43 (84.3) | 56 (83.6) | - |
Postoperative complications, n (%) | ||||||
Hemorrhage | 1 (2.5) | 2 (8.3) | 1 (4.0) | 6 (11.8) | - | - |
Infection | - | 2 (8.3) | 1 (4.0) | 1 (2.0) | 1 (1.5) | - |
Non-surgical complications | - | - | - | 1 (2.0) | 1 (1.5) | - |
None | 34 (85.0) | 20 (83.4) | 22 (88.0) | 39 (76.5) | 56 (83.6) | 12 (92.3) |
Other | - | - | - | 4 (7.8) | 1 (1.5) | 1 (7.7) |
Missing | 5 (12.5) | - | 1 (4.0) | - | 8 (11.9) | - |
Postoperative feeding, n (%) | ||||||
Normal | 40 (100) | 20 (83.3) | 18 (72.0) | 51 (100.0) | 67 (100.0) | 12 (92.3) |
Tube | - | 4 (16.7) | 7 (28.0) | - | - | 1 (7.7) |
Hospitalization duration, mean (SD) | 1.9 (1.4) | 4.1 (3.9) | 3.9 (3.5) | 3.2 (1.1) | 3.2 (1.3) | 2.5 (1.8) |
Pain score postoperative day 1, mean (SD) | 2.9 (1.8) | 3.0 (2.4) | 2.4 (1.8) | 2.8 (2.0) | 3.8 (1.9) | 2.9 (1.2) |
Dichotomous, n (%) | ||||||
<3 | 25 (62.5) | 14 (58.3) | 19 (76.0) | 37 (72.5) | 31 (46.3) | 8 (61.5) |
>3 | 13 (32.5) | 9 (37.5) | 6 (24.0) | 14 (27.5) | 36 (53.7) | 4 (30.8) |
Missing | 2 (5.0) | 1 (4.2) | - | - | - | 1 (7.7) |
CUP n = 40 | BOT Carcinoma n = 24 | Other Malignancies n = 25 | |
---|---|---|---|
Histology, n (%) | |||
Squamous cell carcinoma | 38 (95.0) | 19 (79.2) | 20 (80.0) |
Other | 2 (5.0) | 5 (20.8) | 5 (20.0) |
P16 status, n (%) | |||
Positive | 18 (45.0) | 9 (37.5) | 4 (16.0) |
Negative | 10 (25.0) | 11 (45.8) | 11 (44.0) |
Unknown | 10 (25.0) | 3 (12.5) | 7 (28.0) |
Missing | 2 (5.0) | 1 (4.2) | 3 (12.0) |
Histological margin, mean (SD) | 2.0 (1.6) | 1.8 (2.2) | 2.7 (2.5) |
History of other malignancies, n (%) | |||
Present None | - 40 (100) | 17 (70.8) 7 (29.2) | 10 (40.0) 15 (60.0) |
Adjuvant treatment, n (%) | |||
Neck dissection | 2 (5.0) | - | - |
PORT | 13 (32.5) | 9 (37.5) | 5 (20.0) |
POCRT | 7 (17.5) | - | 2 (8.0) |
Neck dissection and RT | 14 (35.0) | - | 1 (4.0) |
Other | 4 (10.0) | 15 (62.5) | 17 (68.0) |
Follow-up time, median (IQR) | 20 (7–36) | 22 (5–38) | 28 (11–40) |
Survival status, n (%) | |||
AWD | 2 (5.0) | 4 (16.7) | 3 (12.0) |
AWoD | 28 (70.0) | 16 (66.7) | 14(56.0) |
DOOC | 3 (7.5) | 3 (12.5) | 3 (12.0) |
DOD | 6 (15.0) | 1 (4.2) | 3 (12.0) |
OSA n = 51 | Chronic Lingual Tonsillitis n = 67 | Other Benign Pathologies n = 13 | |
---|---|---|---|
AHI, median (IQR) | |||
Pre-operative | 19.2 (11.0–25.9) | 13.1 (8.6–16.3) | - |
Missing, n | 1 | 60 | 13 |
Postoperative | 10.6 (4.7–22.5) | 8.5 (6.2–10.9) | - |
Missing, n | 7 | 5 | 13 |
ODI 4% | |||
Pre-operative | 20.6 (13.5–30.9) | 15.9(9.5–71.3) | - |
Missing, n | 3 | 61 | 13 |
Postoperative | 12.1(5.3–23.9) | 9.6 (5.9–13.0) | - |
Missing, n | 7 | 62 | 13 |
VAS tonsillitis, median (IQR) | |||
Pre-operative | - | 8.0 (7.0–8.3) | - |
Missing, n | 51 | 33 | 13 |
Postoperative | 4.0 (4.0–4.0) | 2.0 (1.0–4.5) | - |
Missing, n | 50 | 33 | 13 |
Predictor | Significance | Odds Ratio |
---|---|---|
Gender | 0.842 | 0.875 (0.236–3.241) |
Smoking | 0.345 | 2.353 (0.398–13.900) |
Alcohol | 0.575 | 0.650 (0.144–2.927) |
ACE27 | 0.007 * | 0.147 (0.036–0.595) |
Previous malignancies H&N | N.A. | |
P16 status | 0.09 * | 11.667 (1.863–73.066) |
Age | 0.024 * | 0.903 (0.826–0.987) |
BMI | 0.695 | 0.979 (0.883–1.087) |
Surgery time | 0.817 | 1.003 (0.981–1.025) |
Predictor | Significance | Odds Ratio |
---|---|---|
Gender | 0.244 | 0.410 (0.092–1.834) |
Alcohol | 0.651 | 0.667 (0.115–3.872) |
ACE27 | 0.537 | 1.750 (0.296–10.340) |
Previous malignancies H&N | 0.681 | 1.310 (0.363–4.728) |
P16 status | 0.568 | 0.646 (0.144–2.899) |
Age | 0.184 | 0.954 (0.890–1.023) |
BMI | 0.971 | 1.002 (0.886–1.134) |
Surgery time | 0.137 | 1.011 (0.996–1.026) |
Predictor | Significance | Odds Ratio |
---|---|---|
Gender | 0.065 | 2.343 (0.947–5.797) |
Smoking | 0.641 | 0.810 (0.334–1.963) |
Alcohol | 0.552 | 0.760 (0.308–1.878) |
ACE27 | 0.106 | 0.482 (0.199–1.168) |
Previous malignancies H&N | 0.787 | 0.727 (00072–7.303) |
Age | 0.797 | 0.996 (0.966–1.027) |
BMI | 0.929 | 0.996 (0.906–1.095) |
Surgery time | 0.758 | 1.003 (0.985–1.021) |
Predictor | Significance | Odds Ratio |
---|---|---|
Gender male vs. female | 0.011 * | 6.118 (1.508–24.826) |
Smoking | 0.431 | 0.611 (0.179–2.081) |
Alcohol | 0.431 | 0.611 (0.179–2.081) |
ACE27 | 0.273 | 0.519 (0.160–1.676) |
AHI (5–15, 15–30, >30) | 0 vs. 1: 0.030 * | 6.187 (1.198–31.967) |
0 vs. 2: 0.270 | 4.5 (0.310–65.229) | |
AHI (<15 vs. >15) | 0.027 * | 5.850 (1.222–27.994) |
VAS fatigue < 8 vs. ≥8 | 0.204 | 2.571 (0.598–11.059) |
VAS snoring < 8 vs ≥8 | 0.177 | 3.56 (0.79–1.594) |
VAS tonsillitis < 8 vs. ≥8 | N.A. | |
Age | 0.774 | 0.994 (0.951–1.038) |
BMI | 0.138 | 0.894 (0.771–1.037) |
Surgery time | 0.803 | 0.997 (0.997–1.020) |
Predictor | Significance | Odds Ratio |
---|---|---|
Surgery type CUP vs. other indications ** | CUP vs. 2: 0.644 | 1.400 (0.337–5.8210) |
CUP vs. 3: 0.952 | 0.955 (0.207–4.397) | |
CUP vs. 4: 0.864 | 1.114 (0.325–3.812) | |
CUP vs. 5: 0.338 | 0.509 (0.128–2.026) | |
CUP vs. 6: N.A. | ||
CUP vs. 7: 0.638 | 0.583 (0.062–5.506) | |
Gender | 0.748 | 0.869 (0.368–2.051) |
Smoking | 0.705 | 0.833 (0.324–2.143) |
Alcohol | 0.546 | 1.371 (0.492–3.822) |
Postoperative feeding | 0.125 | 2.952 (0.741–11.763) |
ASA score | 0.007 * | 3.382 (1.386–8.252) |
ACE27 | 0.485 | 1.358 (0.575–3.204) |
Anticoagulation use | 0.022 * | 2.982 (1.167–7.622) |
Pain score | 0.212 | 1.757 (0.725–4.261) |
Pain medication | 0.640 | 0.689 (0.144–3.288) |
Age | 0.646 | 1.007 (0.979–1.035) |
BMI | 0.257 | 1.044 (0.969–1.126) |
Surgery time | 0.208 | 1.008 (0.996–1.020) |
Previous malignancies H&N | 0.114 | 2.267 (0.822–6.254) |
Predictor | Significance | Odds Ratio |
---|---|---|
Surgery type CUP vs. other indications ** | CUP vs. 2: 0.698 | 1.236 (0.423–3.613) |
CUP vs. 3: 0.390 | 0.607 (0.195–1.892) | |
CUP vs. 4: 0.493 | 0.728 (0.293–1.807) | |
CUP vs. 5: 0.038 * | 2.441 (1.049–5.680) | |
CUP vs. 6: 0.859 | 1.154 (0.238–5.605) | |
CUP vs. 7: 0.955 | 0.962 (0.243–3.802) | |
Surgery type malignant vs. benign | 0.184 | 1.472 (0.832–2.603) |
Gender | 0.038 * | 1.802 (1.034–3.140) |
Smoking | 0.408 | 1.294 (0.702–2.386) |
Alcohol | 0.727 | 0.898 (0.491–1.643) |
ASA score | 0.415 | 0.745 (0.368–1.512) |
ACE27 | 0.670 | 0.887 (0.512–1.538) |
Postoperative feeding | 0.786 | 1.178 (0.361–3.842) |
Age | 0.017 * | 0.978 (0.960–0.996) |
BMI | 0.207 | 1.036 (0.981–1.094) |
Surgery time | 0.559 | 0.997 (0.988–1.006) |
Previous malignancies | 0.926 | 1.038 (0.475–2.267) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toppenberg, A.G.L.; Nijboer, T.S.; van der Laan, W.G.W.J.; Wedman, J.; Schwandt, L.Q.; Plaat, R.E.; Witjes, M.J.H.; Wegner, I.; Halmos, G.B. Predictors for Success and Failure in Transoral Robotic Surgery—A Retrospective Study in the North of the Netherlands. Cancers 2024, 16, 1458. https://doi.org/10.3390/cancers16081458
Toppenberg AGL, Nijboer TS, van der Laan WGWJ, Wedman J, Schwandt LQ, Plaat RE, Witjes MJH, Wegner I, Halmos GB. Predictors for Success and Failure in Transoral Robotic Surgery—A Retrospective Study in the North of the Netherlands. Cancers. 2024; 16(8):1458. https://doi.org/10.3390/cancers16081458
Chicago/Turabian StyleToppenberg, Alexandra G. L., Thomas S. Nijboer, Wisse G. W. J. van der Laan, Jan Wedman, Leonora Q. Schwandt, Robert E. Plaat, Max J. H. Witjes, Inge Wegner, and Gyorgy B. Halmos. 2024. "Predictors for Success and Failure in Transoral Robotic Surgery—A Retrospective Study in the North of the Netherlands" Cancers 16, no. 8: 1458. https://doi.org/10.3390/cancers16081458
APA StyleToppenberg, A. G. L., Nijboer, T. S., van der Laan, W. G. W. J., Wedman, J., Schwandt, L. Q., Plaat, R. E., Witjes, M. J. H., Wegner, I., & Halmos, G. B. (2024). Predictors for Success and Failure in Transoral Robotic Surgery—A Retrospective Study in the North of the Netherlands. Cancers, 16(8), 1458. https://doi.org/10.3390/cancers16081458