Prenatal and Perinatal Factors Associated with Infant Acute Lymphoblastic Leukaemia: A Scoping Review
Simple Summary
Abstract
1. Introduction
2. Methods
3. Results
3.1. Dietary Factors
3.2. Pesticides and Other Toxic Chemicals
3.3. Outdoor Air Pollution
3.4. Smoking, Alcohol, and Other Drugs
3.5. Medication Use
3.6. Infections
3.7. Parental Characteristics and Reproductive History
3.8. Birth Weight, Foetal Growth, and Other Perinatal Characteristics
3.9. Caesarean Section
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhakta, N.; Force, L.M.; Allemani, C.; Atun, R.; Bray, F.; Coleman, M.P.; Steliarova-Foucher, E.; Frazier, A.L.; Robison, L.L.; Rodriguez-Galindo, C.; et al. Childhood Cancer Burden: A Review of Global Estimates. Lancet Oncol. 2019, 20, e42–e53. [Google Scholar] [CrossRef] [PubMed]
- Marcos-Gragera, R.; Galceran, J.; Martos, C.; de Munain, A.L.; Vicente-Raneda, M.; Navarro, C.; Quirós-Garcia, J.R.; Sánchez, M.J.; Ardanaz, E.; Ramos, M.; et al. Incidence and Survival Time Trends for Spanish Children and Adolescents with Leukaemia from 1983 to 2007. Clin. Transl. Oncol. 2017, 19, 301–316. [Google Scholar] [CrossRef]
- Sanjuan-Pla, A.; Bueno, C.; Prieto, C.; Acha, P.; Stam, R.W.; Marschalek, R.; Menéndez, P. Revisiting the Biology of Infant t(4;11)/MLL-AF4+ B-Cell Acute Lymphoblastic Leukemia. Blood 2015, 126, 2676–2685. [Google Scholar] [CrossRef]
- Greaves, M.F.; Wiemels, J. Origins of Chromosome Translocations in Childhood Leukaemia. Nat. Rev. Cancer 2003, 3, 639–649. [Google Scholar] [CrossRef]
- Inaba, H.; Mullighan, C.G. Pediatric Acute Lymphoblastic Leukemia. Haematologica 2020, 105, 2524–2539. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Wilson, C.S.; Harvey, R.C.; Chen, I.M.; Murphy, M.H.; Atlas, S.R.; Bedrick, E.J.; Devidas, M.; Carroll, A.J.; Robinson, B.W.; et al. Gene Expression Profiles Predictive of Outcome and Age in Infant Acute Lymphoblastic Leukemia: A Children’s Oncology Group Study. Blood J. Am. Soc. Hematol. 2012, 119, 1872–1881. [Google Scholar] [CrossRef] [PubMed]
- Greaves, M. Infection, Immune Responses and the Aetiology of Childhood Leukaemia. Nat. Rev. Cancer 2006, 6, 193–203. [Google Scholar] [CrossRef]
- Kinlen, L. Evidence for an Infective Cause of Childhood Leukaemia: Comparison of a Scottish New Town with Nuclear Reprocessing Sites in Britain. Lancet 1988, 2, 1323–1327. [Google Scholar] [CrossRef] [PubMed]
- Onyije, F.M.; Olsson, A.; Baaken, D.; Erdmann, F.; Stanulla, M.; Wollschläger, D.; Schüz, J. Environmental Risk Factors for Childhood Acute Lymphoblastic Leukemia: An Umbrella Review. Cancers 2022, 14, 382. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.A.; Yang, J.J.; Hirsch, B.A.; Marcotte, E.L.; Spector, L.G. Is There Etiologic Heterogeneity between Subtypes of Childhood Acute Lymphoblastic Leukemia? A Review of Variation in Risk by Subtype. Cancer Epidemiol. Biomark. Prev. 2019, 28, 846–856. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Healthcare Interventions: Explanation and Elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef]
- O’Leary, M.; Krailo, M.; Anderson, J.R.; Reaman, G.H. Progress in Childhood Cancer: 50 Years of Research Collaboration, a Report from the Children’s Oncology Group. Semin. Oncol. 2008, 35, 484–493. [Google Scholar] [CrossRef]
- Metayer, C.; Milne, E.; Clavel, J.; Infante-Rivard, C.; Petridou, E.; Taylor, M.; Schüz, J.; Spector, L.G.; Dockerty, J.D.; Magnani, C.; et al. The Childhood Leukemia International Consortium. Cancer Epidemiol. 2013, 37, 336–347. [Google Scholar] [CrossRef]
- Pombo-De-Oliveira, M.S.; Koifman, S.; Araújo, P.I.C.; Alencar, D.M.; Brandalise, S.R.; Guimarães Carvalho, E.; Coser, V.M.; Costa, I.; Córdoba, J.C.; Emerenciano, M.; et al. Infant Acute Leukemia and Maternal Exposures during Pregnancy. Cancer Epidemiol. Biomark. Prev. 2006, 15, 2336–2341. [Google Scholar] [CrossRef]
- Ross, J.A.; Potter, J.D.; Reaman, G.H.; Pendergrass, T.W.; Robison, L.L. Maternal Exposure to Potential Inhibitors of DNA Topoisomerase II and Infant Leukemia (United States): A Report from the Children’s Cancer Group. Cancer Causes Control 1996, 7, 581–590. [Google Scholar] [CrossRef]
- Spector, L.G.; Xie, Y.; Robison, L.L.; Heerema, N.A.; Hilden, J.M.; Lange, B.; Felix, C.A.; Davies, S.M.; Slavin, J.; Potter, J.D.; et al. Maternal Diet and Infant Leukemia: The DNA Topoisomerase II Inhibitor Hypothesis: A Report from the Children’s Oncology Group. Cancer Epidemiol. Biomark. Prev. 2005, 14, 651–655. [Google Scholar] [CrossRef] [PubMed]
- Milne, E.; Greenop, K.R.; Petridou, E.; Bailey, H.D.; Orsi, L.; Kang, A.Y.; Baka, M.; Bonaventure, A.; Kourti, M.; Metayer, C.; et al. Maternal Consumption of Coffee and Tea during Pregnancy and Risk of Childhood ALL: A Pooled Analysis from the Childhood Leukemia International Consortium. Cancer Causes Control 2018, 29, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Slater, M.E.; Linabery, A.M.; Spector, L.G.; Johnson, K.J.; Hilden, J.M.; Heerema, N.A.; Robison, L.L.; Ross, J.A. Maternal Exposure to Household Chemicals and Risk of Infant Leukemia: A Report from the Children’s Oncology Group. Cancer Causes Control 2011, 22, 1197–1204. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.D.; Couto, A.C.; Pombo-de-Oliveira, M.S.; Koifman, S. In Utero Pesticide Exposure and Leukemia in Brazilian Children. Environ. Health Perspect. 2013, 121, 269–275. [Google Scholar] [CrossRef]
- Bailey, H.D.; Fritschi, L.; Infante-Rivard, C.; Glass, D.C.; Miligi, L.; Dockerty, J.D.; Lightfoot, T.; Clavel, J.; Roman, E.; Spector, L.G.; et al. Parental Occupational Pesticide Exposure and the Risk of Childhood Leukemia in the Offspring: Findings from the Childhood Leukemia International Consortium. Int. J. Cancer 2014, 135, 2157–2172. [Google Scholar] [CrossRef] [PubMed]
- Bailey, H.D.; Infante-Rivard, C.; Metayer, C.; Clavel, J.; Lightfoot, T.; Kaatsch, P.; Roman, E.; Magnani, C.; Spector, L.G.; Th Petridou, E.; et al. Home Pesticide Exposures and Risk of Childhood Leukemia: Findings from the Childhood Leukemia International Consortium. Int. J. Cancer 2015, 137, 2644–2663. [Google Scholar] [CrossRef] [PubMed]
- Bailey, H.D.; Metayer, C.; Milne, E.; Petridou, E.T.; Infante-Rivard, C.; Spector, L.G.; Clavel, J.; Dockerty, J.D.; Zhang, L.; Armstrong, B.K.; et al. Home Paint Exposures and Risk of Childhood Acute Lymphoblastic Leukemia: Findings from the Childhood Leukemia International Consortium. Cancer Causes Control 2015, 26, 1257–1270. [Google Scholar] [CrossRef] [PubMed]
- Heck, J.E.; Wu, J.; Lombardi, C.; Qiu, J.; Meyers, T.J.; Wilhelm, M.; Cockburn, M.; Ritz, B. Childhood Cancer and Traffic-Related Air Pollution Exposure in Pregnancy and Early Life. Environ. Health Perspect. 2013, 121, 1385–1391. [Google Scholar] [CrossRef]
- Peckham-Gregory, E.C.; Ton, M.; Rabin, K.R.; Danysh, H.E.; Scheurer, M.E.; Lupo, P.J. Maternal Residential Proximity to Major Roadways and the Risk of Childhood Acute Leukemia: A Population-Based Case-Control Study in Texas, 1995–2011. Int. J. Environ. Res. Public Health 2019, 16, 2029. [Google Scholar] [CrossRef] [PubMed]
- Mucci, L.; Granath, F.; Cnattingius, S. Maternal Smoking and Childhood Leukemia and Lymphoma Risk among 1,440,542 Swedish Children. Cancer Epidemiol. Biomark. Prev. 2004, 13, 1528–1533. [Google Scholar] [CrossRef]
- Slater, M.E.; Linabery, A.M.; Blair, C.K.; Spector, L.G.; Heerema, N.A.; Robison, L.L.; Ross, J.A. Maternal Prenatal Cigarette, Alcohol and Illicit Drug Use and Risk of Infant Leukaemia: A Report from the Children’s Oncology Group. Paediatr. Perinat. Epidemiol. 2011, 25, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.; Couto, A.; Pombo-de-Oliveira, M.; Koifman, S. Pregnancy, Maternal Tobacco Smoking, and Early Age Leukemia in Brazil. Front. Oncol. 2012, 2, 151. [Google Scholar] [CrossRef] [PubMed]
- Milne, E.; Greenop, K.R.; Scott, R.J.; Bailey, H.D.; Attia, J.; Dalla-Pozza, L.; De Klerk, N.H.; Armstrong, B.K. Parental Prenatal Smoking and Risk of Childhood Acute Lymphoblastic Leukemia. Am. J. Epidemiol. 2012, 175, 43–53. [Google Scholar] [CrossRef]
- Ferreira, J.D.; Couto, A.C.; Emerenciano, M.; Pombo-De-Oliveira, M.S.; Koifman, S. Maternal Alcohol Consumption during Pregnancy and Early Age Leukemia Risk in Brazil. Biomed Res. Int. 2015, 2015, 732495. [Google Scholar] [CrossRef]
- Wen, W.; Shu, X.O.; Potter, J.D.; Severson, R.K.; Buckley, J.D.; Reaman, G.H.; Robison, L.L. Parental Medication Use and Risk of Childhood Acute Lymphoblastic Leukemia. Cancer 2002, 95, 1786–1794. [Google Scholar] [CrossRef]
- Couto, A.C.; Ferreira, J.D.; Pombo-De-Oliveira, M.S.; Koifman, S. Pregnancy, Maternal Exposure to Analgesic Medicines, and Leukemia in Brazilian Children below 2 Years of Age. Eur. J. Cancer Prev. 2015, 24, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi, R.; Bloigu, A.; Ögmundsdottir, H.M.; Marus, A.; Dillner, J.; DePaoli, P.; Gudnadottir, M.; Koskela, P.; Pukkala, E.; Lehtinen, T.; et al. Activation of Maternal Epstein-Barr Virus Infection and Risk of Acute Leukemia in the Offspring. Am. J. Epidemiol. 2007, 165, 134–137. [Google Scholar] [CrossRef]
- Cnattingius, S.; Zack, M.M.; Ekbom, A.; Gunnarskog, J.; Kreuger, A.; Linet, M.; Adami, H.O. Prenatal and Neonatal Risk Factors for Childhood Lymphatic Leukemia. J. Natl. Cancer Inst. 1995, 87, 908–914. [Google Scholar] [CrossRef]
- Ross, J.A.; Potter, J.D.; Shu, X.O.; Reaman, G.H.; Lampkin, B.; Robison, L.L. Evaluating the Relationships among Maternal Reproductive History, Birth Characteristics, and Infant Leukemia: A Report from the Children’s Cancer Group. Ann. Epidemiol. 1997, 7, 172–179. [Google Scholar] [CrossRef]
- Hjalgrim, L.L.; Rostgaard, K.; Hjalgrim, H.; Westergaard, T.; Thomassen, H.; Forestier, E.; Gustafsson, G.; Kristinsson, J.; Melbye, M.; Schmiegelow, K. Birth Weight and Risk for Childhood Leukemia in Denmark, Sweden, Norway, and Iceland. J. Natl. Cancer Inst. 2004, 96, 1549–1556. [Google Scholar] [CrossRef]
- Peters, A.M.; Blair, C.K.; Verneris, M.R.; Neglia, J.P.; Robison, L.L.; Spector, L.G.; Reaman, G.H.; Felix, C.A.; Ross, J.A. Maternal Hemoglobin Concentration during Pregnancy and Risk of Infant Leukaemia: A Children’s Oncology Group Study. Br. J. Cancer 2006, 95, 1274–1276. [Google Scholar] [CrossRef] [PubMed]
- Spector, L.G.; Davies, S.M.; Robison, L.L.; Hilden, J.M.; Roesler, M.; Ross, J.A. Birth Characteristics, Maternal Reproductive History, and the Risk of Infant Leukemia: A Report from the Children’s Oncology Group. Cancer Epidemiol. Biomark. Prev. 2007, 16, 128–134. [Google Scholar] [CrossRef]
- Puumala, S.E.; Spector, L.G.; Wall, M.M.; Robison, L.L.; Heerema, N.A.; Roesler, M.A.; Ross, J.A. Infant Leukemia and Parental Infertility or Its Treatment: A Children’s Oncology Group report. Hum. Reprod. 2010, 25, 1561–1568. [Google Scholar] [CrossRef]
- Johnson, K.J.; Roesler, M.A.; Linabery, A.M.; Hilden, J.M.; Davies, S.M.; Ross, J.A. Infant Leukemia and Congenital Abnormalities: A Children’s Oncology Group Study. Pediatr. Blood Cancer 2010, 55, 95–99. [Google Scholar] [CrossRef]
- Bjørge, T.; Sørensen, H.T.; Grotmol, T.; Engeland, A.; Stephansson, O.; Gissler, M.; Tretli, S.; Troisi, R. Fetal Growth and Childhood Cancer: A Population-Based Study. Pediatrics 2013, 132, e1265–e1275. [Google Scholar] [CrossRef]
- Roman, E.; Lightfoot, T.; Smith, A.G.; Forman, M.R.; Linet, M.S.; Robison, L.; Simpson, J.; Kaatsch, P.; Grell, K.; Frederiksen, K.; et al. Childhood Acute Lymphoblastic Leukaemia and Birthweight: Insights from a Pooled Analysis of Case-Control Data from Germany, the United Kingdom and the United States. Eur. J. Cancer 2013, 49, 1437–1447. [Google Scholar] [CrossRef]
- Milne, E.; Greenop, K.R.; Metayer, C.; Schüz, J.; Petridou, E.; Pombo-De-Oliveira, M.S.; Infante-Rivard, C.; Roman, E.; Dockerty, J.D.; Spector, L.G.; et al. Fetal Growth and Childhood Acute Lymphoblastic Leukemia: Findings from the Childhood Leukemia International Consortium. Int. J. Cancer 2013, 133, 2968–2979. [Google Scholar] [CrossRef]
- Marcotte, E.L.; Druley, T.E.; Johnson, K.J.; Richardson, M.; von Behren, J.; Mueller, B.A.; Carozza, S.; McLaughlin, C.; Chow, E.J.; Reynolds, P.; et al. Parental Age and Risk of Infant Leukaemia: A Pooled Analysis. Paediatr. Perinat. Epidemiol. 2017, 31, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Petridou, E.T.; Georgakis, M.K.; Erdmann, F.; Ma, X.; Heck, J.E.; Auvinen, A.; Mueller, B.A.; Spector, L.G.; Roman, E.; Metayer, C.; et al. Advanced Parental Age as Risk Factor for Childhood Acute Lymphoblastic Leukemia: Results from Studies of the Childhood Leukemia International Consortium. Eur. J. Epidemiol. 2018, 33, 965–976. [Google Scholar] [CrossRef]
- Marcotte, E.L.; Thomopoulos, T.P.; Infante-Rivard, C.; Clavel, J.; Petridou, E.T.; Schüz, J.; Ezzat, S.; Dockerty, J.D.; Metayer, C.; Magnani, C.; et al. Caesarean Delivery and Risk of Childhood Leukaemia: A Pooled Analysis from the Childhood Leukemia International Consortium (CLIC). Lancet Haematol. 2016, 3, e176–e185. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Wiemels, J.L.; Metayer, C.; Morimoto, L.; Francis, S.S.; Kadan-Lottick, N.; Dewan, A.T.; Zhang, Y.; Ma, X. Cesarean Section and Risk of Childhood Acute Lymphoblastic Leukemia in a Population-Based, Record-Linkage Study in California. Am. J. Epidemiol. 2017, 185, 96–105. [Google Scholar] [CrossRef]
- Marcotte, E.L.; Richardson, M.R.; Roesler, M.A.; Spector, L.G. Cesarean Delivery and Risk of Infant Leukemia: A Report from the Children’s Oncology Group. Cancer Epidemiol. Biomark. Prev. 2018, 27, 473–478. [Google Scholar] [CrossRef]
- Ross, J.A.; Potter, J.D.; Robison, L.L. Infant Leukemia, Topoisomerase II Inhibitors, and the MLL Gene. J. Natl. Cancer Inst. 1994, 86, 1678–1680. [Google Scholar] [CrossRef] [PubMed]
- Zahm, S.H.; Ward, M.H. Pesticides and Childhood Cancer. Environ. Health Perspect. 1998, 106 (Suppl. 3), 893–908. [Google Scholar] [CrossRef] [PubMed]
- Karalexi, M.A.; Tagkas, C.F.; Markozannes, G.; Tseretopoulou, X.; Hernández, A.F.; Schüz, J.; Halldorsson, T.I.; Psaltopoulou, T.; Petridou, E.T.; Tzoulaki, I.; et al. Exposure to Pesticides and Childhood Leukemia Risk: A Systematic Review and Meta-Analysis. Environ. Pollut. 2021, 285, 113376. [Google Scholar] [CrossRef]
- Alexander, F.E.; Patheal, S.L.; Biondi, A.; Brandalise, S.; Cabrera, M.E.; Chan, L.C.; Chen, Z.; Cimino, G.; Cordoba, J.C.; Gu, L.J.; et al. Transplacental Chemical Exposure and Risk of Infant Leukemia with MLL Gene Fusion. Cancer Res. 2001, 61, 2542–2546. [Google Scholar] [PubMed]
- Borkhardt, A.; Wilda, M.; Fuchs, U.; Gortner, L.; Reiss, I. Congenital Leukaemia after Heavy Abuse of Permethrin during Pregnancy. Arch. Dis. Child. Fetal Neonatal Ed. 2003, 88, F436–F437. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research and Cancer. Outdoor Air Pollution; World Health Organization: Geneva, Switzerland, 2016; Volume 109. [Google Scholar]
- Filippini, T.; Hatch, E.E.; Rothman, K.J.; Heck, J.E.; Park, A.S.; Crippa, A.; Orsini, N.; Vinceti, M. Association between Outdoor Air Pollution and Childhood Leukemia: A Systematic Review and Dose-Response Meta-Analysis. Environ. Health Perspect. 2019, 127, 46002. [Google Scholar] [CrossRef] [PubMed]
- De La Chica, R.A.; Ribas, I.; Giraldo, J.; Egozcue, J.; Fuster, C. Chromosomal Instability in Amniocytes from Fetuses of Mothers Who Smoke. JAMA 2005, 293, 1212–1222. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Wang, M.; Zhang, J.; Zhang, R.; Liu, X.; Zheng, Z.; Yang, L.; Gutti, R.K. Tobacco Smoke Exposure and the Risk of Childhood Acute Lymphoblastic Leukemia and Acute Myeloid Leukemia: A Meta-Analysis. Medicine 2019, 98, e16454. [Google Scholar] [CrossRef]
- Greaves, M.F. Speculations on the Cause of Childhood Acute Lymphoblastic Leukemia. Leukemia 1988, 2, 120–125. [Google Scholar] [PubMed]
- Hwee, J.; Tait, C.; Sung, L.; Kwong, J.C.; Sutradhar, R.; Pole, J.D. A Systematic Review and Meta-Analysis of the Association between Childhood Infections and the Risk of Childhood Acute Lymphoblastic Leukaemia. Br. J. Cancer 2018, 118, 127–137. [Google Scholar] [CrossRef] [PubMed]
- He, J.R.; Ramakrishnan, R.; Hirst, J.E.; Bonaventure, A.; Francis, S.S.; Paltiel, O.; Håberg, S.E.; Lemeshow, S.; Olsen, S.; Tikellis, G.; et al. Maternal Infection in Pregnancy and Childhood Leukemia: A Systematic Review and Meta-Analysis. J. Pediatr. 2020, 217, 98–109.e8. [Google Scholar] [CrossRef] [PubMed]
- He, J.R.; Yu, Y.; Fang, F.; Gissler, M.; Magnus, P.; László, K.D.; Ward, M.H.; Paltiel, O.; Tikellis, G.; Maule, M.M.; et al. Evaluation of Maternal Infection During Pregnancy and Childhood Leukemia Among Offspring in Denmark. JAMA Netw. Open 2023, 6, e230133. [Google Scholar] [CrossRef]
- Caughey, R.W.; Michels, K.B. Birth Weight and Childhood Leukemia: A Meta-Analysis and Review of the Current Evidence. Int. J. Cancer 2009, 124, 2658–2670. [Google Scholar] [CrossRef] [PubMed]
- Skalkidou, A.; Petridou, E.; Papathoma, E.; Salvanos, H.; Chrousos, G.; Trichopoulos, D. Birth Size and Neonatal Levels of Major Components of the IGF System: Implications for Later Risk of Cancer. J. Pediatr. Endocrinol. Metab. 2002, 15, 1479–1486. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.L.; Gao, Y.Y.; He, W.B.; Gan, T.; Shan, H.Q.; Han, X.M. Cesarean Section and Risk of Childhood Leukemia: A Systematic Review and Meta-Analysis. World J. Pediatr. 2020, 16, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Steliarova-Foucher, E.; Colombet, M.; Ries, L.A.G.; Moreno, F.; Dolya, A.; Bray, F.; Hesseling, P.; Shin, H.Y.; Stiller, C.A.; Bouzbid, S.; et al. International Incidence of Childhood Cancer, 2001–2010: A Population-Based Registry Study. Lancet Oncol. 2017, 18, 719–731. [Google Scholar] [CrossRef] [PubMed]
- Meyer, C.; Larghero, P.; Almeida Lopes, B.; Burmeister, T.; Gröger, D.; Sutton, R.; Venn, N.C.; Cazzaniga, G.; Corral Abascal, L.; Tsaur, G.; et al. The KMT2A Recombinome of Acute Leukemias in 2023. Leukemia 2023, 37, 988–1005. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.; Pieters, R.; Biondi, A. How I Treat Infant Leukemia. Blood 2019, 133, 205–214. [Google Scholar] [CrossRef]
- Lin, S.; Luo, R.T.; Ptasinska, A.; Kerry, J.; Assi, S.A.; Wunderlich, M.; Imamura, T.; Kaberlein, J.J.; Rayes, A.; Althoff, M.J.; et al. Instructive Role of MLL-Fusion Proteins Revealed by a Model of t(4;11) Pro-B Acute Lymphoblastic Leukemia. Cancer Cell 2016, 30, 737–749. [Google Scholar] [CrossRef] [PubMed]
- Doblas, A.A.; Bueno, C.; Rogers, R.B.; Roy, A.; Schneider, P.; Bardini, M.; Ballerini, P.; Cazzaniga, G.; Moreno, T.; Revilla, C.; et al. Unraveling the Cellular Origin and Clinical Prognostic Markers of Infant B-Cell Acute Lymphoblastic Leukemia Using Genome-Wide Analysis. Haematologica 2019, 104, 1176–1188. [Google Scholar] [CrossRef] [PubMed]
- Rice, S.; Jackson, T.; Crump, N.T.; Fordham, N.; Elliott, N.; O’Byrne, S.; Fanego, M.D.M.L.; Addy, D.; Crabb, T.; Dryden, C.; et al. A Human Fetal Liver-Derived Infant MLL-AF4 Acute Lymphoblastic Leukemia Model Reveals a Distinct Fetal Gene Expression Program. Nat. Commun. 2021, 12, 6905. [Google Scholar] [CrossRef] [PubMed]
- Andersson, A.K.; Ma, J.; Wang, J.; Chen, X.; Gedman, A.L.; Dang, J.; Nakitandwe, J.; Holmfeldt, L.; Parker, M.; Easton, J.; et al. The Landscape of Somatic Mutations in Infant MLL-Rearranged Acute Lymphoblastic Leukemias. Nat. Genet. 2015, 47, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Wiemels, J.L.; Smith, R.N.; Taylor, G.M.; Eden, O.B.; Alexander, F.E.; Greaves, M.F. Methylenetetrahydrofolate Reductase (MTHFR) Polymorphisms and Risk of Molecularly Defined Subtypes of Childhood Acute Leukemia. Proc. Natl. Acad. Sci. USA 2001, 98, 4004–4009. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.T.; Wang, Y.; Skibola, C.F.; Slater, D.J.; Lo Nigro, L.; Nowell, P.C.; Lange, B.J.; Felix, C.A. Low NAD(P)H:Quinone Oxidoreductase Activity Is Associated with Increased Risk of Leukemia with MLL Translocations in Infants and Children. Blood J. Am. Soc. Hematol. 2002, 100, 4590–4593. [Google Scholar] [CrossRef] [PubMed]
- Valentine, M.C.; Linabery, A.M.; Chasnoff, S.; Hughes, A.E.O.; Mallaney, C.; Sanchez, N.; Giacalone, J.; Heerema, N.A.; Hilden, J.M.; Spector, L.G.; et al. Excess Congenital Non-Synonymous Variation in Leukemia-Associated Genes in MLL-Infant Leukemia: A Children’s Oncology Group Report. Leukemia 2014, 28, 1235–1241. [Google Scholar] [CrossRef]
- Ross, J.A.; Linabery, A.M.; Blommer, C.N.; Langer, E.K.; Spector, L.G.; Hilden, J.M.; Heerema, N.A.; Radloff, G.A.; Tower, R.L.; Davies, S.M. Genetic Variants Modify Susceptibility to Leukemia in Infants: A Children’s Oncology Group Report. Pediatr. Blood Cancer 2013, 60, 31–34. [Google Scholar] [CrossRef]
- Lange, S.; Shield, K.; Koren, G.; Rehm, J.; Popova, S. A Comparison of the Prevalence of Prenatal Alcohol Exposure Obtained via Maternal Self-Reports versus Meconium Testing: A Systematic Literature Review and Meta-Analysis. BMC Pregnancy Childbirth 2014, 14, 127. [Google Scholar] [CrossRef] [PubMed]
Author, Year, Country | Study Design, Setting (Study Name) | N Cases/Controls (KMT2A/MLL Status) | Exposure | Exposure Assessment | Findings (OR, 95% CI) (*) |
---|---|---|---|---|---|
Dietary factors | |||||
Ross et al. [15], 1996, North America | Case-control; hospital-based (COG group) | 54/84 | Maternal diet (potential inhibitors of DNA topoisomerase II) | Telephone interviews | Combined variable of potential dietary topoisomerase II inhibitors: low: reference; medium: 1.3 (0.4; 4.2); high: 0.5 (0.2; 1.4). Intake of fish: <1 m: reference; 1–3 week: 0.3 (0.1; 0.8); ≥4 week: 0.2 (0.1; 0.6); (p for trend = 0.01). Intake of milk: <daily: reference; daily: 0.3 (0.1; 0.9); no statistical differences related to intake of ice cream, margarine, butter, yogurt, cheese, eggs, beans, fresh vegetables, canned vegetables, fruit, poultry, cured meats, regular meats, soy, soft drinks, regular coffee, decaffeinated coffee, black tea, green tea, cocoa, beer, wine, or spirits. |
Spector et al. [16], 2005, North America | Case-control; hospital-based (COG group) | 240/255 (KMT2A/MLL status determined) | Maternal diet | Telephone interview using structured computer- assisted questionnaire and medical records, and food frequency questionnaire, self-reported | DNAt2 food index in MLL+; Q1: reference; Q2: 0.5 (0.3; 1.1); Q3: 0.7 (0.4; 1.4); Q4: 0.5 (0.2; 1.1); (p for trend = 0.19) DNAt2 food index in MLL-: Q1: reference; Q2: 0.7 (0.3; 1.9); Q3: 0.9 (0.4; 2.5); Q4: 1.0 (0.4; 2.8); (p for trend = 0.83) DNAt2 food index overall: Q1: reference; Q2: 0.5 (0.3; 1.0); Q3: 0.7 (0.4; 1.3); Q4: 0.7 (0.4; 1.2); (p for trend = 0.29) VF+ index in MLL+: Q1: reference; Q2: 0.6 (0.3; 1.1); Q3: 0.2 (0.1; 0.5); Q4: 0.5 (0.2; 0.9); (p for trend = 0.01) VF+ index in MLL-; Q1: reference; Q2: 1.2 (0.4; 3.3); Q3: 1.1 (0.4; 3.0); Q4: 1.0 (0.4; 2.9); (p for trend = 0.96) VF+ index overall: Q1: reference; Q2: 0.7 (0.4; 1.2); Q3: 0.5 (0.3; 0.9); Q4: 0.7 (0.4; 1.2); (p for trend = 0.09). |
Milne et al. [17], 2018, North America, Europe, and Australasia | Pooled analysis; 8 case-control studies; multiple sources (CLIC) | 93/484 (KMT2A/MLL status determined) | Maternal coffee and tea consumption | Food frequency questionnaire | Coffee consumption: none: reference; any: 0.99 (0.53; 1.88); >0–2 cups/day: 1.01 (0.53; 1.91); >2 cups/day: 0.48 (0.12; 1.90); (p for trend = 0.49). Tea consumption: none: reference; any: 0.57 (0.30; 1.08); >0–2 cups/day: 0.48 (0.22; 1.04); >2 cups/day: 1.57 (0.32; 7.75); (p for trend = 0.23). |
Pesticides and other toxic chemicals | |||||
Slater et al. [18], 2011, North America | Case-control; hospital-based (COG group) | 264/324 (KMT2A/MLL status determined) | Maternal exposure to nine household chemicals (insecticides, moth control, rodenticides, flea or tick control, herbicides, insect repellents, professional pest exterminations, paints/stains/lacquers, and petroleum products) | Structured, computer-assisted telephone interviews | No associations overall among ALL and any exposure to chemicals. Petroleum products (any exposure): (yes vs. no): ALL MLL-: 2.21 (1.04; 4.67); ALL MLL+: 1.30 (0.68; 2.49). Petroleum products (exposure during pregnancy): (yes vs. no): ALL MLL-: 2.39 (1.12; 5.11); ALL MLL+: 1.23 (0.62; 2.43). |
Ferreira et al. [19], 2013, Brazil | Case-control study; multicentric hospital-based (multi-institutional study of infant leukaemia) | 88/254 | Maternal pesticide exposure | Face-to-face interview using a standardized questionnaire | By time window: (yes vs. no): any: 2.10 (1.14; 3.86); preconception (3 months before pregnancy); 2.40 (1.20; 4.81); 1st trimester: 1.86 (0.94; 3.72); 2nd trimester: 1.75 (0.87; 3.55); 3rd trimester: 1.88 (0.93; 3.79). By specific components: (yes vs. no): Prallethrin: 1.52 (0.15; 15.32); Permethrin: 2.47 (1.17; 5.25); Imiprothrin: 2.61 (1.06; 6.93); Esbiothrin: 3.03 (1.13; 8.09); Tetramethrin: 1.56 (0.65; 3.72); D-Phenothrin: 4.16 (0.85; 20.29); D-Allethrin: 1.56 (0.65; 3.72); solvents: 2.17 (1.06; 4.43). |
Bailey et al. [20], 2014, North America, Europe, and Australasia | Pooled analysis; 12 case-control studies; multiple sources (CLIC) | 958/2272 | Parental occupational pesticide exposure | Self-reported work; jobs assessed for pesticide exposure; pesticide structured questionnaire | Maternal exposure during pregnancy: no or minimal likelihood of exposure: reference; high likelihood of pesticide exposure: 1.20 (0.50; 2.88). Paternal exposure around conception: no or minimal likelihood of exposure: reference; high likelihood of pesticide exposure: 1.18 (0.77; 1.79). |
Bailey et al. [21], 2015, North America, Europe, and Australasia | Pooled analysis; 12 case-control studies; multiple sources (CLIC) | 867/2149 (KMT2A/MLL status determined) | Maternal home pesticide exposure | Telephone, self-administered, or face-to-face interview; structured questionnaires | 1–3 months before conception: (yes vs. no): 1.44 (1.05; 1.97); during pregnancy: (yes vs. no): 1.87 (1.48; 2.37); after birth: (yes vs. no): 1.22 (0.91; 1.62). |
Bailey et al. [22], 2015, North America, Europe, and Australasia | Pooled analysis; 8 case-control studies; multiple sources (CLIC) | 485/738 (KMT2A/MLL status determined) | Maternal home paint exposure | Structured questionnaire | 1–3 months before conception: (yes vs. no): 1.63 (0.94; 2.85); within the year before conception: (yes vs. no): 0.52 (0.32; 0.62); during pregnancy: (yes vs. no): 1.29 (0.99; 1.68); after birth: (yes vs. no): 1.53 (0.93; 2.52). |
Outdoor air pollution | |||||
Heck et al. [23], 2013, EEUU (California) | Case-control; population-based | 81/not available | Traffic-related air pollution | Local traffic exposures for each trimester of pregnancy at the address indicated in the birth certificate | Per 1 IQR increase in carbon monoxide: 1.14 (0.99; 1.31). |
Peckham-Gregory et al. [24], 2019, EEUU | Case-control; population based | 105/4838 | Residential proximity to major roadways | Geocoded street address of the maternal residence at time of delivery and Texas roadway network (geographic data) | Distance: (continuous); 1.00 (0.97; 1.04). Proximity to major roadway: >500 m: reference; ≤500 m: 0.79 (0.51; 1.24). Roadway density: low: reference; medium: 0.80 (0.49; 1.31); high: 0.79 (0.48; 1.30). |
Smoking, alcohol, and other drugs | |||||
Mucci et al. [25], 2004, Sweden | Cohort study; population-based | Not available | Maternal smoking | Medical birth registry | Maternal smoking (HR, 95% CI): no: reference; yes: 0.56 (0.31; 1.01); 1–9 cigarettes: 0.57 (0.28; 1.15); 10 cigarettes: 0.55 (0.22; 1.37); (p for trend = 0.071). |
Slater et al. [26], 2011, North America | Case-control; hospital-based (COG group) | 264/324 (KMT2A/MLL status determined) | Maternal smoking, alcohol, and illicit drug use | Computer-assisted telephone interviews with structured questionnaire | Cigarette use: any: 0.97 (0.62; 1.53); before pregnancy: 0.99 (0.63; 1.56); during pregnancy: 0.87 (0.54; 1.40). Alcohol use: any: 0.86 (0.61; 1.22); before pregnancy: 0.85 (0.60; 1.20): during pregnancy: 0.75 (0.49; 1.17); Illicit drug use: any: 0.84 (0.47; 1.51). Reference groups included never and ever consumers not reporting use during the relevant time periods. Similar results were obtained when only never consumers were used. |
Ferreira et al. [27], 2012, Brazil | Case-control study; multicentric hospital-based (multi-institutional study of infant leukaemia) | 88/255 | Maternal smoking | Face-to-face interview using standardized questionnaire | Maternal smoking: (yes vs. no): 0.65 (0.31; 1.38). |
Milne et al. [28], 2012, Australia | Case-control study; population-based | 31/66 | Parental smoking | Self-administered questionnaire | Paternal smoking: none: reference; 1–14 cigarettes per day: 1.94 (0.38; 9.82); ≥15 cigarettes per day: 5.73 (1.49; 22.09). Maternal smoking: not associated with risk of ALL; results did not vary according to child’s age. |
Ferreira et al. [29], 2015, Brazil | Case-control study; multicentric hospital-based (multi-institutional study on infant leukaemia) | 88/255 | Maternal alcohol consumption | Face-to-face interview using standardized questionnaire | Any beverages: (yes vs. no): 1.29 (0.73; 2.27); preconception (3 previous months): (yes vs. no): 1.56 (0.88; 2.79); during pregnancy: (yes vs. no): 1.49 (0.77; 2.89). |
Medication use | |||||
Wen et al. [30], 2002, North America and Australia | Case-control; hospital-based (COG group) | 64/81 | Parental medication use | Telephone interview using structured questionnaire; self-reported | Mothers (99% CI): (yes vs. no): vitamins: 0.9 (0.1; 7.1); iron supplements: 1.1 (0.3; 3.9); antihistamines or allergy remedies: 4.3 (0.6; 32.1); mind-altering drugs: 6.4 (0.3; 127.0). Fathers (99% CI): (yes vs. no): mind-altering drugs: 3.0 (0.7;12.3). |
Couto et al. [31], 2015, Brazil | Case-control study; multicentric hospital-based (multi-institutional study of infant leukaemia) | 84/269 (KMT2A/MLL status determined) | Maternal use of analgesic medicines | Face-to-face interview using standardized questionnaire | Any: no: reference; Acetaminophen: 0.69 (0.27; 1.74); Dipyrone: 2.23 (1.19; 4.20); both: 0.87 (0.29; 2.65). Preconception (3 previous months): no: reference; Acetaminophen: 0.65 (0.19; 2.23); Dipyrone: 2.90 (1.58; 5.35); both: 0.49 (0.12; 2.02). 1st trimester: no: reference; Acetaminophen: 0.25 (0.10; 0.95); Dipyrone: 1.99 (1.09; 3.60); both: 0.53 (0.13; 2.15). 2nd trimester: no: reference; Acetaminophen: 0.29 (0.07; 1.13); Dipyrone: 2.01 (1.11; 3.64); both: 0.65 (0.18; 2.40). 3rd trimester: no: reference; Acetaminophen: 0.50 (0.19; 1.32); Dipyrone: 1.95 (1.01; 3.77); both: 0.65 (0.17; 2.54). Breastfeeding: no: reference; Acetaminophen: 0.51 (0.14; 1.82); Dipyrone: 2.92 (1.46; 5.86); both: 0.52 (0.09; 3.14). Similar results provided also for MLL+ cases (n = 43) except: 1st trimester: no: reference; Acetaminophen: 0.45 (0.09; 2.36). |
Infections | |||||
Tedeschi et al. [32], 2009, Iceland and Finland | Nested case-control study; population-based | ~25/71 | Maternal EBV infection | Maternal IgG antibodies to EBV, early antigen (EA), and EBV transactivator Zebra protein, assessed during first trimester | EA IgG: (yes vs. no): 1.4 (0.6; 3.4); Zebra IgG: (yes vs. no): 1.7 (0.4; 8.1). |
Parental and perinatal features | |||||
Cnattingius et al. [33], 1995, Sweden | Nested case-control; population-based | 97/485 | Infant birth weight and complications during neonatal period; maternal age at delivery, parity, history of infertility, previous abortions, smoking, and complications during pregnancy and delivery | Medical birth registry | Maternal characteristics (unadjusted model): 35: 0.8 (0.4; 1.8). 4: 0.6 (0.2; 1.9). Infertility: (yes vs. no): 0.0 (0.0; 8.6). Spontaneous abortions: (yes vs. no): 2.1 (0.9; 4.8). Maternal diseases during pregnancy: (yes vs. no): endocrine diseases: 1.0 (0.1; 8.6); diabetes: 1.3 (0.1; 11.2); diseases in blood-forming organs: 2.5 (0.5; 13.6); renal disease: 2.5 (0.2; 27.6); hypertensive disease: 1.4 (0.6; 3.2). Daily smoking in early pregnancy: (yes vs. no): 1.0 (0.4; 2.1). Infant characteristics (unadjusted model): ≥4500: 2.8 (1.01; 7.6). Neonatal characteristics and procedures: (yes vs. no): physiologic jaundice: 0.9 (0.3; 2.5); phototherapy: 0.9 (0.2; 4.1); intrauterine asphyxia: 1.4 (0.5; 3.7); postpartum asphyxia: 0.6 (0.2; 2.2); multiple birth: 0.0 (0.0; 2.0); supplementary oxygen: 1.8 (0.6;5.1); Down’s syndrome: 15.0 (1.6; 144.2). Adjusted model: Maternal diseases during pregnancy: (yes vs. no): diabetes: 0.0 (0.0; 8.6); diseases in blood-forming organs: 0.0 (0.0; 17.4); hypertensive disease: 0.7 (0.1; 3.4). Infant: (yes vs. no): birth weight < 4500 g: 3.2 (0.5; 19.7); multiple birth: 0.0 (0.0; 3.2); postpartum asphyxia: 0.0 (0.0; 4.1); supplementary oxygen: 1.6 (0.2; 15.2). |
Ross et al. [34], 1997, North America | Case-control; hospital-based (COG group) | 181/468 | Birth characteristics and maternal reproductive history | Telephone interviews | Birth weight (g): ≤3000: reference; 3001–3500: 0.99 (0.55; 1.79); 3501–4000: 1.07 (0.58; 1.98); >4000: 2.51 (1.17; 5.41). Birth order: 1st-born: reference; 2nd–3rd-born: 1.09 (0.73; 1.62); ≥4th-born: 0.85 (0.38; 1.89). Previous stillbirth: (yes vs. no): 0.85 (0.23; 3.11). Previous miscarriage: (yes vs. no): 1.33 (0.82; 2.15). Previous abortion: (yes vs. no): 1.09 (0.62; 1.89). Total foetal loss: 0: reference; 1: 1.22 (0.79; 1.90); ≥2: 0.86 (0.45; 1.64). Total prior foetal loss: 0: reference; 1: 1.34 (0.85; 2.12); ≥2: 1.03 (0.52; 2.05). N° of live births: (continuous): 0.92 (0.78; 1.08). |
Hjalgrim et al. [35], 2004, Denmark, Sweden, Norway, Iceland | Case-control; population-based | 57/281 | Birth weight | Medical birth registries | Birth weight (g): <2500: 2.51 (0.43; 14.59); 2500–2999: 0.42 (0.12; 1.52); 3000–3499: 0.73 (0.35; 1.55); 3500–3999: reference; 4000–4499: 1.26 (0.54; 2.94); 4500: 2.20 (0.65; 7.50). Per 1-kg increase: 1.62 (0.89; 2.96). |
Peters et al. [36], 2006, North America | Case-control; hospital-based (COG group) | 115/not available (KMT2A/MLL status determined) | Maternal anaemia during pregnancy | Medical records indicating haemoglobin concentration (<11 g/dL) | Overall ALL: (yes vs. no): 1.14 (0.65; 2.01); ALL MLL+: (yes vs. no): 0.98 (0.50; 1.91); ALL MLL-: (yes vs. no): 1.33 (0.55; 3.24). |
Spector et al. [37], 2007, North America | Case-control; hospital-based (COG group) | 149/255 (KMT2A/MLL status determined) | Birth characteristics and maternal reproductive history | Structured computer-assisted telephone interviews | Increasing birth order: ALL: 0.56 (0.32; 0.98); ALL MLL+: 0.50 (0.25; 1.01). No associations between ALL and birth weight, maternal history of foetal loss, maternal age, gestational age, and body mass index. |
Puumala et al. [38], 2010, North America | Case-control; hospital-based (COG group) | 264/324 (KMT2A/MLL status determined) | Parental infertility-related factors or treatment | Telephone interview with structured questionnaire Self-reported | Latent class infertility: (yes vs. no): 1.27 (0.79; 2.05). Prior foetal loss: no: reference; 1: 1.13 (0.71; 1.79); 2: 1.76 (0.87; 3.59). Maternal age: (per 1 year increase): 0.98 (0.94; 1.02). Use of ovarian stimulating drugs: (yes vs. no): 1.42 (0.64; 3.15). Time to index pregnancy: not trying (*): 1.32 (0.88; 1.96); 1 year: 1.32 (0.76; 2.30). (*) when restricted to MLL(-): 2.50 (1.36; 4.61) No differences in MLL status from any other exposures. |
Johnson et al. [39], 2010, North America | Case-control; hospital-based (COG group) | 264/324 (KMT2A/MLL status determined) | Congenital abnormalities | Telephone interview with structured questionnaire; self-reported | Any congenital abnormality: (yes vs. no): 1.4 (0.8; 2.3); large or multiple birthmarks: (yes vs. no): 1.5 (0.8; 3.0); urogenital systema abnormality: (yes vs. no): 0.8 (0.2; 2.6); other congenital abnormalities: (yes vs. no): 1.5 (0.7; 3.3); no differences by sex. |
Bjørge et al. [40], 2013, Denmark, Finland, Norway, and Sweden | Nested case-control study; population-based | Not available | Birth weight | Obtained from birth registries | Risk of ALL was elevated in children with birth weight > 4000 g in all age groups. |
Roman et al. [41], 2013, Germany, UK, and EEUU | Pooled analysis; 3 case-control studies | 2090/5107 | Birth weight | Face-to-face interview | According to centile: <10: 0.7 (0.6; 0.9); 10–19: 1.0 (0.8; 1.2); 20–79: reference; 80–89: 1.0 (0.8; 1.2); ≥90: 1.2 (1.0; 1.4). Per 1 kg increase: 1.2 (1.1; 1.3). |
Milne et al. [42], 2013, North America, Europe, and Australasia | Pooled analysis; 12 case-control studies; multiple sources (CLIC) | 636/1447 (LGA) 179/268 (POBW) | Foetal growth | Questionnaire and medical records | Large for gestational age (LGA): (yes vs. no): 1.04 (0.75; 1.44). Proportion of optimal birth weight (POBW): (yes vs. no): 1.09 (0.87; 1.37). |
Marcotte et al. [43], 2017, EEUU | Case-control; population-based | 219/45,392 | Parental age | Birth record information | Maternal age; ≤19 years: 0.51 (0.24; 1.09); 20–24 years: 0.77 (0.47; 1.24); 25–29 years: reference; 30–34 years: 1.39 (0.90; 2.13); 35–39 years: 1.35 (0.73; 2.49); 40 + years: 1.07 (0.31; 3.76). Paternal age: ≤19 years: 3.69 (1.62; 8.41); 20–24 years: 1.47 (0.88; 2.45); 25–29 years: reference; 30–34 years: 0.98 (0.63; 1.52); 35–39 years: 0.70 (0.39; 1.27); 40+ years: 1.04 (0.52; 2.07). Similar results with imputed parental age. |
Petridou et al. [44], 2018, North America, Europe, and Australasia | Pooled analysis; 11 case-control and 5 nested case-control studies; multiple sources (CLIC) | 272/860 | Parental age | Birth/health registry data | Paternal age: (per 5-year increment): 1.09 (0.92; 1.29); heterogeneity: I2:0%, p = 0.53. Maternal age: (per 5-year increment): 0.98 (0.81; 1.18); heterogeneity: I2:0%, p = 0.53. |
Caesarean section | |||||
Marcotte et al. [45], 2016, North America, Europe, and Australasia | Pooled analysis; 13 case-control studies; multiple sources (CLIC) | 1000/4143 | Caesarean delivery | Questionnaire and medical records | Caesarean delivery: (yes vs. no): 1.14 (0.79; 1.64); prelabour caesarean delivery: (yes vs. no): 2.62 (0.96; 7.19). |
Wang et al. [46], 2017, EEUU (California) | Case-control; population-based | 592/2216 | Caesarean section | Birth records | Mode of delivery: vaginal: reference; caesarean section: 0.94 (0.78; 1.14). Subset with detail of mode of delivery: vaginal: reference; caesarean section overall: 1.21 (0.88; 1.67); emergency caesarean section: 1.24 (0.69; 2.25); elective caesarean section: 1.20 (0.84; 1.71). |
Marcotte et al. [47], 2018, North America | Case-control; hospital-based (COG group) | 264/324 (KMT2A/MLL status determined) | Caesarean delivery | Structured, computer-assisted telephone interviews; medical records | Caesarean delivery (CD) (interview): vaginal: reference; any indication: 1.52 (1.02; 2.25); emergency CD: 1.99 (1.10; 3.59); prelabour CD: 1.41 (0.80; 2.51). Caesarean delivery (medical records): vaginal: reference; any indication: 1.89 (1.14; 3.15); emergency CD: 1.80 (0.93; 3.51); prelabour CD: 2.04 (1.00; 4.15). Duration of labour: >6–10 h: reference; 0–3 h: 1.14 (0.53; 2.44); >3–6 h: 1.05 (0.52; 2.12); >10 h: 1.46 (0.76; 2.80). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanvisens, A.; Bueno, C.; Calvete, O.; Solé, F.; Marcos-Gragera, R.; Solans, M. Prenatal and Perinatal Factors Associated with Infant Acute Lymphoblastic Leukaemia: A Scoping Review. Cancers 2025, 17, 370. https://doi.org/10.3390/cancers17030370
Sanvisens A, Bueno C, Calvete O, Solé F, Marcos-Gragera R, Solans M. Prenatal and Perinatal Factors Associated with Infant Acute Lymphoblastic Leukaemia: A Scoping Review. Cancers. 2025; 17(3):370. https://doi.org/10.3390/cancers17030370
Chicago/Turabian StyleSanvisens, Arantza, Clara Bueno, Oriol Calvete, Francesc Solé, Rafael Marcos-Gragera, and Marta Solans. 2025. "Prenatal and Perinatal Factors Associated with Infant Acute Lymphoblastic Leukaemia: A Scoping Review" Cancers 17, no. 3: 370. https://doi.org/10.3390/cancers17030370
APA StyleSanvisens, A., Bueno, C., Calvete, O., Solé, F., Marcos-Gragera, R., & Solans, M. (2025). Prenatal and Perinatal Factors Associated with Infant Acute Lymphoblastic Leukaemia: A Scoping Review. Cancers, 17(3), 370. https://doi.org/10.3390/cancers17030370