Next Article in Journal
The Challenge of Managing Neuropathic Pain in Children and Adolescents with Cancer
Previous Article in Journal
Identifying Optimal Prostate Biopsy Strategy for the Detection Rate of Clinically Significant Prostate Cancer: A Systematic Review and Meta-Analysis of Randomised Controlled Trials (RCTs) in Biopsy-Naïve Population
Previous Article in Special Issue
Osimertinib as Second- and ≥Third-Line Treatment in Advanced and Recurrence EGFR-Mutant NSCLC Patients Harboring Acquired T790M Mutation
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Optimizing Osimertinib for NSCLC: Targeting Resistance and Exploring Combination Therapeutics

1
Department of Medicine, National Taiwan University College of Medicine, Taipei 100233, Taiwan
2
Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei 100233, Taiwan
*
Author to whom correspondence should be addressed.
Cancers 2025, 17(3), 459; https://doi.org/10.3390/cancers17030459
Submission received: 25 December 2024 / Revised: 24 January 2025 / Accepted: 27 January 2025 / Published: 29 January 2025
(This article belongs to the Special Issue Targeted Therapies for EGFR in Non-Small Cell Lung Cancer)

Simple Summary

Osimertinib has revolutionized EGFR-mutant NSCLC therapy by specifically targeting the T790M mutation, yet acquired resistance remains inevitable. Mechanisms include tertiary EGFR mutations such as C797S, bypass pathway activation (MET, HER2, HER3), and histologic transformations. Emerging combination strategies that integrate osimertinib with chemotherapy, angiogenesis inhibitors, MET-targeting agents, immunotherapies, and other molecularly tailored drugs show the potential to circumvent resistance and prolong clinical benefits. Real-time molecular monitoring, including liquid biopsy and single-cell analyses, is crucial for the early detection of resistant clones and guiding therapeutic adjustments. While ongoing clinical trials will clarify optimal combinations and sequencing, a personalized approach that incorporates biomarker-driven patient selection and adaptive treatment paradigms remains essential. By harnessing diverse strategies against parallel signaling pathways and immune evasion, these regimens aim to extend survival and preserve quality of life. Continued collaboration among researchers, clinicians, and patients will accelerate the translation of these advances into practice.

Abstract

Non-small-cell lung cancer (NSCLC) is a leading cause of cancer-related deaths worldwide, with epidermal growth factor receptor (EGFR) mutations present in a substantial proportion of patients. Third-generation EGFR tyrosine kinase inhibitors (EGFR TKI), exemplified by osimertinib, have dramatically improved outcomes by effectively targeting the T790M mutation—a primary driver of acquired resistance to earlier-generation EGFR TKI. Despite these successes, resistance to third-generation EGFR TKIs inevitably emerges. Mechanisms include on-target mutations such as C797S, activation of alternative pathways like MET amplification, histologic transformations, and intricate tumor microenvironment (TME) alterations. These resistance pathways are compounded by challenges in tolerability, adverse events, and tumor heterogeneity. In light of these hurdles, this review examines the evolving landscape of combination therapies designed to enhance or prolong the effectiveness of third-generation EGFR TKIs. We explore key strategies that pair osimertinib with radiotherapy, anti-angiogenic agents, immune checkpoint inhibitors, and other molecularly targeted drugs, and we discuss the biological rationale, preclinical evidence, and clinical trial data supporting these approaches. Emphasis is placed on how these combinations may circumvent diverse resistance mechanisms, improve survival, and maintain a favorable safety profile. By integrating the latest findings, this review aims to guide clinicians and researchers toward more individualized and durable treatment options, ultimately enhancing both survival and quality of life for patients with EGFR-mutated NSCLC.

1. Background

Lung cancer is the second-most common cancer worldwide and the leading cause of death among all cancer types [1,2], with non-small-cell lung cancer (NSCLC) accounting for 80–90% of cases. Around 60% of patients are diagnosed with advanced or metastatic disease, historically treated with platinum-based chemotherapy as the primary standard [3,4]. However, understanding the molecular underpinnings of NSCLC led to the development of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), dramatically improving treatment outcomes compared to chemotherapy [4,5,6,7,8,9]. First- and second-generation EGFR TKIs (e.g., gefitinib, erlotinib, afatinib, dacomitinib) offered significant benefits, but were hindered by acquired resistance—most commonly the T790M mutation—within about one year [10,11,12,13,14,15,16,17]. Third-generation TKIs such as osimertinib were designed to overcome T790M-mediated resistance, irreversibly binding to mutant EGFR and blocking downstream signaling [18,19,20,21,22,23,24,25,26,27].
Clinical trials have confirmed the central role of osimertinib in treating EGFR-mutant NSCLC. In the AURA studies, it prolonged progression-free survival (PFS) and achieved high response rates in patients with T790M-positive disease [19,28,29,30]. AURA3 compared osimertinib to platinum–pemetrexed chemotherapy, demonstrating superior PFS (10.1 vs. 4.4 months) and overall response rate (ORR) (71% vs. 31%), with strong activity against brain metastases [31,32,33,34,35,36,37]. Although early overall survival (OS) data were similar, subsequent analyses that accounted for high crossover favored osimertinib [34,35,37]. The FLAURA trial established osimertinib as a first-line therapy for EGFR-mutant advanced NSCLC [24,38,39,40,41,42,43], revealing significant improvements in PFS (18.9 vs. 10.2 months) and OS (38.6 vs. 31.8 months) compared to first-generation TKIs (gefitinib/erlotinib) [24]. Real-world data in 56 patients supported these findings, though 55% were ineligible under FLAURA criteria [44]. The median time to treatment discontinuation was longer for FLAURA-eligible patients (31.1 vs. 12.2 months) [44]. Re-biopsy findings indicated on- and off-target resistance mechanisms, emphasizing the need for diverse post-progression strategies [44].
In the adjuvant setting, the LAURA trial demonstrated significantly longer significantly longer PFS than placebo in patients with unresectable stage III EGFR-mutant NSCLC [45]. The percentage of patients who were alive and progression-free at 12 months was 74% vs. 22% with placebo [45]. On the other hand, the ADAURA trial evaluated osimertinib in resected stage IB–IIIA EGFR-mutant NSCLC, demonstrating a substantial disease-free survival advantage (22.1 vs. 14.9 months) [46]. The final results of the ADAURA trial confirmed a five-year OS rate of 85% for stage II–IIIA patients on osimertinib versus 73% on placebo [47]. Importantly, a severe COVID-19-related pneumonia occurred post-data cutoff, but was deemed unrelated to osimertinib [46]. The patient fully recovered. In a retrospective study conducted during the COVID-19 pandemic, the delayed diagnosis caused by COVID-19 was identified as a key factor leading to the suboptimal PFS (18.0 months) of osimertinib treatment [48]. In contrast, another study, leveraging its inhibitory effect on EGFR, proposed osimertinib as a potential therapeutic agent for COVID-19 [49]. To recap, these findings position osimertinib as a cornerstone in EGFR-mutant NSCLC management—first-line, T790M-positive, and adjuvant. Ongoing research into emerging resistance mechanisms and broader, more inclusive clinical trials will be crucial to refine and extend the benefits of osimertinib across diverse patient populations [50,51,52,53,54].

2. The Mechanisms of NSCLC Osimertinib Resistance

Despite these promising outcomes, resistance to osimertinib remains a critical issue, presenting new challenges for managing NSCLC [27,55,56,57,58]. Although osimertinib prolongs PFS and has robust intracranial activity that greatly benefits CNS-metastatic patients [42,47,59,60,61,62], its cost-effectiveness in first- or second-line therapy is a concern in many countries [58,63,64,65]. Furthermore, adverse effects such as hyponatremia, as well as severe side effects associated with structurally similar drugs like furmonertinib and rezivertinib, complicate its clinical use [66,67,68]. Although osimertinib offers durable disease control for many, progression inevitably occurs in most patients, making it essential to understand the resistance mechanisms that emerge [69,70,71].

3. On-Target (EGFR-Dependent) Mechanisms and Corresponding Therapeutic Strategies

3.1. Tertiary Mutations at C797

Resistance to third-generation EGFR TKI, including osimertinib, often arises from tertiary mutations in the EGFR gene. One of the most prevalent mutation sites is C797 (Table 1), located at the ATP-binding site and encoded by exon 20 [57,72,73,74,75]. Mutations at this site, such as the predominant C797S [76,77,78] or the rarer C797G [79], disrupt osimertinib’s mechanism of covalent binding to EGFR. Consequently, tumors harboring C797S frequently show reduced sensitivity to osimertinib, though first- or second-generation TKIs may retain efficacy if C797S and T790M are present in a trans (rather than cis) configuration [74,76,80,81,82,83,84]. Moreover, studies have shown that the C797S mutation can also induce resistance to other third-generation EGFR TKI, such as olmutinib, lazertinib, and abivertinib [72,85,86,87].
Circulating tumor DNA (ctDNA) analyses have been pivotal in delineating resistance mechanisms [77,88,89,90,91,92,93,94,95]. In the AURA3 trial, 49% of patients lost the T790M mutation at progression, indicating a shift toward alternative pathways [35,36,37]. Among T790M-positive individuals on osimertinib, 63% no longer had detectable T790M upon progression, commonly coinciding with histologic transformations, KRAS mutations, or gene fusions [65]. T790M “loss” often heralded shorter treatment durations (6.1 months vs. 15.2 months) and poorer survival outcomes, with the shorter PFS having a median of 2.6 months [22,23,65]. Importantly, T790M is generally absent when osimertinib is used as first-line therapy, hinting that T790M-driven resistance may become less relevant as osimertinib is deployed earlier [74]. However, in second-line settings, C797S remains a predominant EGFR-dependent resistance mechanism. Clinical trials like AURA3 and FLAURA reported C797 mutations in 15% and 7% of cases, respectively [32,40], while real-world studies cited rates between 11% and 29% [50,78,96,97,98].

3.2. Other EGFR Mutations

While the C797S mutation is a major focus, other tertiary EGFR mutations also play a role in resistance (Table 1). G796 mutations (G796R, G796S, G796H, G796D), similarly to those at C797, disrupt the binding of TKIs to the EGFR kinase domain [39,98,99,100,101,102]. Additionally, the L792 residue, located near C797 and T790, is frequently mutated (L792H, L792Y, and L792F) in osimertinib-resistant cases, with L792H being particularly common and a potent driver of resistance [99]. L792 mutations tend to occur in cis with T790M, but in trans with C797S, offering important insights for clinicians who are assessing T790M- and C797S-related resistance mechanisms [100,103]. Though many of these findings are based on computational models and in vitro studies [104,105,106], further investigation is needed to confirm these effects. In addition to C797 and L792 mutations, several rare EGFR mutations—including L718, G724, and G796—have been implicated in osimertinib resistance [106,107,108,109]. The L718 residue, positioned in a peripheral region of the ATP-binding site encoded by exon 18, undergoes mutations (such as L718Q and L718V, while L718Q mutation remains sensitive to quinazoline-based inhibitors, such as afatinib and gefitinib) that impedes its interaction with the phenyl ring of osimertinib, contributing to resistance [106,107]. Patients with EGFR mutations that combine L858R, T790M, and L718 are typically resistant to first- and second-generation TKIs, whereas those with combined L858R and L718 mutations often respond to afatinib [39,106,107,110].
Similarly, the G724S mutation, commonly observed in second-line osimertinib-treated cases, alters the glycine-rich loop in EGFR, hindering covalent bonding with osimertinib [108,111]. In vitro studies have shown that cells with the G724S mutation respond to afatinib, especially when T790M is absent [39,111,112]. One study further noted that the G724S mutation induces resistance in cases with exon 19 deletion mutations, while cancers with L858R/G724S mutations remain sensitive to osimertinib [112]. Additional rare mutations, including G719, S768, and other G796 variants, have also been associated with osimertinib resistance [39,59,113,114]. These mutations reduce osimertinib-binding efficacy. Lastly, dual T790M–M766Q mutations render cells resistant to osimertinib, although these cells retain sensitivity to HER2 and EGFR dual inhibitors, such as neratinib and poziotinib [115].
Table 1. On-target mechanisms of osimertinib resistance and therapeutic strategies in EGFR-mutant NSCLC.
Table 1. On-target mechanisms of osimertinib resistance and therapeutic strategies in EGFR-mutant NSCLC.
Mechanism CategoryApproximate PrevalenceTherapeutic StrategiesReferences
Tertiary mutations at C797 (e.g., C797S, C797G)11–29% (real-world);
~15% (AURA3);
~7% (FLAURA)
  • First/second-generation TKIs if T790M and C797S are trans-mutated
  • Fourth-generation EGFR TKIs, combination therapies under investigation
[32,40,50,57,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,96,97,98]
Other EGFR mutations
L792 (L792H/Y/F), L718 (L718Q/V), G724S, G796 (G796R/S/H/D)
Rare (varies by cohort, typically <5%)
  • Switching to afatinib for certain L718Q or G724S cases
  • Combination EGFR-targeted therapies (e.g., dual EGFR–HER2 inhibitors)
[39,59,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115]
Exon 20 insertions
(EGFR20ins)
10–12% of EGFR-driven NSCLC (all lines)
  • Limited sensitivity with early-generation TKIs
  • Novel EGFR inhibitors under development (e.g., mobocertinib, amivantamab)
[116,117,118,119,120]

3.3. Exon 20 Insertions

Beyond these well-characterized EGFR mutations, recent attention has turned to EGFR exon 20 insertion (EGFR20ins)-positive NSCLC, which accounts for 10% to 12% of EGFR-addicted tumors [116,117,118]. Historically, EGFR20ins variants have shown limited sensitivity to early-generation EGFR TKIs, in part because they share an ATP-binding pocket resembling wild-type EGFR [119,120]. Meanwhile, evidence suggests that uncommon EGFR exon 19 deletions such as L747_A750>P can also exhibit reduced sensitivity to osimertinib compared to the common E746_A750del, resulting in shorter PFS for patients harboring this variant [121].

4. Off-Target (EGFR-Independent) Resistance Mechanisms and Corresponding Therapeutic Strategies

In addition to mutations that reduce affinity for EGFR inhibitors, tumor cells can develop resistance through mechanisms (Table 2) such as histologic transformation or activating other receptor tyrosine kinases (RTKs) and alternative downstream pathways (Figure 1).

4.1. MET Amplification

MET amplification is a well-established mechanism of resistance to EGFR TKI, including third-generation agents such as osimertinib, accounting for 3% to 19% of resistance cases [32,40,96,122,123,124,125,126,127]. By activating ErbB3 phosphorylation independently of EGFR, MET amplification sustains downstream PI3K/AKT signaling and cell survival in the presence of EGFR inhibitors [128,129]. Additional findings indicate that high levels of death receptor 4 in MET-amplified cells impede apoptosis, contributing to osimertinib resistance [130]. A GOPC-ROS1 rearrangement has also been linked to MET-driven resistance, but remains sensitive to the MET inhibitor crizotinib [131].
MET encodes the c-Met receptor tyrosine kinase, which binds hepatocyte growth factor (HGF) secreted by mesenchymal cells. Ligand binding triggers PI3K, JAK/STAT, and MAPK signaling pathways, involving miR-21 and driving processes like cell morphogenesis and mitosis [132,133,134,135]. Through amplification, MET can bypass EGFR blockade, directly activating downstream effectors [133,135,136]. Importantly, MET amplification arises as either focal amplification or chromosome 7 polysomy [137,138]. Focal amplification, often propelled by breakage–fusion–bridge cycles, typically carries oncogenic potential, whereas polysomy, involving multiple copies of chromosome 7, may not drive tumor progression [139,140,141,142,143]. Distinguishing these events requires a MET gene copy number threshold (≥5) or a MET-to-CEP7 ratio ≥ 2, as determined by fluorescence in situ hybridization (FISH) [139,140,141,142,143].
Although next-generation sequencing (NGS) can detect MET amplification, it does not always quantify chromosome 7 copy numbers. Consequently, FISH remains the preferred method when NGS data are ambiguous [142,144]. MET amplification is present in 5–24% of progression events after osimertinib, appearing more frequently when osimertinib is used first-line. By contrast, C797S mutations predominate when osimertinib is given second-line [72,74,145]. In second-line settings, MET amplification often coexists with other genomic alterations (e.g., T790M loss, C797S, or amplifications in CDK6 and BRAF) [104,146]. Preclinical studies indicate that combining a MET inhibitor with afatinib can overcome resistance in MET-amplified EGFR-mutant cell lines [147].
It is also essential to distinguish MET amplification from MET exon 14 (METex14)-skipping mutations, which occur in 3% to 4% of lung adenocarcinomas. These mutations reduce MET protein turnover and can induce resistance to first-generation EGFR TKIs like erlotinib, but are not frequently implicated in osimertinib resistance [148,149]. HGF overexpression, associated with MET, further promotes resistance by stimulating MET activity independently of amplification [150]. Cancer-associated fibroblasts (CAFs) in osimertinib-resistant models secrete elevated levels of HGF, potentially driving tumor survival [135,136]. TGF-β–regulated CAFs with high HGF levels appear critical to the osimertinib response, though further studies are needed to fully clarify HGF’s role in third-generation EGFR-TKI resistance [136].

4.2. HER2 Amplification and HER3 Upregulation

HER2 and HER3 have emerged as crucial drivers of resistance in EGFR-mutant NSCLC, particularly in the setting of third-generation EGFR TKIs such as osimertinib. Although HER2 amplification occurs in roughly 1% of NSCLC cases, its incidence increases post-osimertinib: data from trials like AURA and FLAURA confirm HER2 amplification rates of about 5% in second-line and 2% in first-line resistance, often in the absence of T790M mutations [32,40]. HER2 point mutations—including exon 20 insertions—and the HER2D16 splice variant further contribute to resistance by altering the kinase domain or bypassing EGFR inhibition [119,120,151]. While combining pan-HER inhibitors with osimertinib can counter some HER2-driven resistance, clinical efficacy remains limited and necessitates further exploration [151,152].
Attempts to overcome HER2-mediated resistance via targeted therapy have yielded mixed outcomes. The TRAEMOS trial, which combined osimertinib with trastuzumab emtansine (T-DM1) in patients showing HER2 overexpression post-osimertinib, revealed manageable adverse events such as fatigue, diarrhea, and nausea, but only a 4% ORR and a median PFS of 2.8 months [153]. These modest results suggest that while EGFR/HER2 co-targeting holds theoretical appeal, additional research is required to refine these strategies [152]. HER3, although lacking intrinsic kinase activity, plays a pivotal role in resistance by dimerizing with other ErbB receptors—particularly HER2—to robustly activate the PI3K/AKT pathway [154,155,156]. Upregulated HER3 can be found in osimertinib-resistant cells at levels several times higher than in sensitive cells, reinforcing its importance as a resistance mediator [157,158]. Intriguingly, osimertinib itself may induce IRE1α-dependent HER3 upregulation, driving both resistance and immune activation via macrophage recruitment and cGAS-STING signaling [159].
Against this backdrop, novel HER3-targeting strategies show promise. Patritumab deruxtecan (HER3-DXd), an antibody–drug conjugate linking a HER3-directed monoclonal antibody to a topoisomerase I inhibitor, exerts dual actions: inhibiting the PI3K/AKT pathway while delivering a cytotoxic payload [128,160,161,162,163]. In the phase II HERTHENA-Lung01 trial, HER3-DXd produced an ORR of 29.8% and a median PFS of 5.5 months in patients who had progressed on EGFR TKIs and platinum-based chemotherapy, regardless of HER3 expression levels or specific resistance mechanisms [164,165]. Notably, it achieved a 33.3% ORR in non-irradiated brain metastases, addressing a critical clinical need [165]. These encouraging data supported the launch of the phase III HERTHENA-Lung02 trial comparing HER3-DXd to platinum-based chemotherapy in patients resistant to third-generation EGFR TKIs [166]. Moreover, early-phase findings have demonstrated both an acceptable safety profile and substantial antitumor activity, positioning HER3-DXd as a promising candidate for patients who have exhausted conventional therapies [164,165,166].

4.3. Abnormalities in Cell Proliferation and Apoptosis-Related Factors

Resistance to osimertinib in EGFR-mutant NSCLC arises from diverse processes regulating cell proliferation, apoptosis, and cell cycle control. One significant driver is FGFR1 amplification, which enhances tumor growth and complicates therapy [167,168]. Dual targeting of FGFR and AKT has shown promise in FGFR1-overexpressing cells, although challenges persist under hypoxic conditions and SHISA3 inactivation, both of which further upregulate FGFR1 [167,168,169,170]. Another important mechanism involves IGF1R activation driven by insulin-like growth factor 2 and forkhead box A1 overexpression [171,172]. In addition, non-coding RNAs, such as hsa_circ_0005576 and hsa_circ_PPAPDC1A, reinforce IGF1R signaling in NSCLC cells via miR-512-5p/IGF1R and miR-30a-3p/IGF1R, respectively [173,174]. These findings provide a rationale for evaluating IGF1R inhibitors alongside osimertinib in clinical settings.
AXL, a receptor belonging to the TAM (TYRO3, AXL, and MERTK) family, is another key contributor to drug resistance in EGFR-mutant NSCLC [175,176,177]. Analyses have correlated high AXL expression with osimertinib resistance, influenced by epigenetic factors and p53 status [15,178,179]. Preclinical evidence shows that inhibiting AXL (e.g., using anlotinib) in combination with osimertinib can delay or counteract resistance [175,180,181]. Further approaches involve antibody–drug conjugates targeting AXL or dual AXL–MET inhibitors, both of which have displayed significant efficacy in preclinical models and are moving toward clinical trials [182,183]. A multifaceted therapy that blocks multiple pathways—such as osimertinib plus an AXL inhibitor (ONO-7475) and an FGFR inhibitor (BGJ398)—has demonstrated marked antitumor effects in high-AXL-expressing, EGFR-mutant NSCLC cells [168,170,184]. This triple combination significantly amplified apoptosis by boosting BIM levels and reduced cell viability compared to dual therapy. In xenograft models, triple inhibition strongly suppressed tumor regrowth, suggesting that initial blockade of FGFR1 may be pivotal for preventing resistance [170].
Apoptotic regulation via the BCL-2 family is also essential for EGFR-TKI success [185]. BIM, a pro-apoptotic protein, is a crucial mediator of cell death: a deletion polymorphism affecting BIM—common in about 21% of East Asians—has been linked to worse PFS and OS in patients receiving osimertinib [186]. Histone deacetylase inhibitors (e.g., vorinostat and panobinostat) may restore BIM function and help overcome polymorphism-related resistance [187,188]. Another strategy involves navitoclax, a BCL-2/BCL-xL inhibitor tested in combination with osimertinib in a phase IB trial (ETCTN 9903) [189]. This combination exhibited a 100% objective response rate and a median PFS of 16.8 months, with manageable side effects such as lymphopenia, fatigue, and thrombocytopenia [189]. Early thrombocytopenia confirmed navitoclax’s target engagement and highlighted BCL-2/BCL-xL blockade as a viable means of enhancing osimertinib’s pro-apoptotic effects [189].
Finally, cell cycle dysregulation plays a prominent role in osimertinib resistance. Amplifications in genes encoding cyclins D1, D2, E1, and CDK4/6, along with CDKN2A deletions, frequently occur in relapsing patients and correlate with shorter PFS [190]. Phosphorylation of retinoblastoma protein (Rb) via CDK4/6 is critical for G1-to-S phase progression, thereby sustaining proliferation in resistant cells [191,192,193]. Polo-like kinase 1 (PLK1)—a regulator of G2/M transition—has emerged as another potential target, with PLK1 inhibitors demonstrating synergy with osimertinib [194]. Preclinical models show that combining osimertinib with CDK4/6 inhibitors (abemaciclib or palbociclib) impedes Rb phosphorylation, arrests the cell cycle in G1, and curbs tumor growth [195,196]. A phase II study (NCT04545710) is underway to further assess the safety and effectiveness of this approach.

4.4. Abnormal Activation of Downstream Proliferative Signaling Pathways

Mutations in genes within downstream signaling pathways, particularly those involving PI3K/AKT and RAS/RAF/MEK/ERK, are pivotal in driving EGFR-TKI resistance independently of EGFR itself [197,198]. PIK3CA, KRAS, and BRAF alterations frequently emerge in osimertinib-resistant NSCLC, making them important targets for precision therapy. Liquid biopsy has proven valuable for monitoring these resistance mutations in real time, reflecting the heterogeneous genomic landscape across multiple tumor sites [199]. Within the PI3K/AKT/mTOR axis, PIK3CA mutations such as E454K and E542K enhance kinase activity, bolstering tumor cell proliferation and survival [200]. Loss of the tumor suppressor PTEN, which negatively regulates PI3K/AKT signaling, also contributes to resistance: various studies link PTEN downregulation to enhanced pathway activation [201,202]. Mechanistically, PTEN loss can be triggered by neurofibromin 2b-mediated proteasomal degradation via GSK-3β, underscoring the complexity of this regulatory network [203]. Blocking processes that degrade PTEN or pharmacologically restoring its function could reinforce EGFR-TKI sensitivity [92,202].
Parallel resistance mechanisms involve the RAS/RAF/MEK/ERK (MAPK) pathway, which governs cell growth and differentiation [168,204,205,206]. Emerging data suggest that the downregulation of hsa_circ_0004339 in NSCLC promotes MAPK pathway activation, fostering aggressive tumor behaviors [207]. Clinically, mutations and amplifications in NRAS and KRAS have been detected in preclinical EGFR-mutant NSCLC models treated with osimertinib [104,208], and the FLAURA and AURA3 trials identified NRAS and KRAS mutations in up to 3% and 1% of progression cases, respectively [40,50,96,209]. Novel agents targeting KRAS G12C, including sotorasib and adagrasib, have shown promise in advanced NSCLC. Sotorasib has already been approved by the Food and Drug Administration (FDA) for this indication [210,211]. Additionally, BRAF mutations—most notably V600E—drive resistance and tumor progression in some patients [212]. Targeted strategies using dabrafenib (a BRAF V600E inhibitor) and trametinib (an MEK inhibitor) combined with osimertinib have yielded encouraging outcomes, with one study reporting an objective response rate of 61.5% and a median PFS of 13.5 months in patients harboring dual EGFR and BRAF V600E alterations [213]. Other BRAF mutations, such as G469A, may regain sensitivity to osimertinib upon MEK inhibition [214]. In vitro and in vivo data also support combining osimertinib with BRAF inhibitors (e.g., encorafenib, vemurafenib) or trametinib to circumvent resistance [215,216,217,218].
MEK, a vital MAPK component, has drawn attention through inhibitors like trametinib, selumetinib, and binimetinib—some of which have received FDA approval [208,219,220]. Resistance to osimertinib can arise from MEK/ERK-driven reductions in BIM or increases in MCL-1, highlighting the benefit of the dual blockade [221,222]. Indeed, combining osimertinib with trametinib has shown efficacy in overcoming KRAS G12V-mediated resistance, including in leptomeningeal metastasis models [113,223,224]. Nanoformulations co-delivering osimertinib and selumetinib have also demonstrated the capacity to surmount acquired resistance [225,226]. Nonetheless, secondary pathway activation (e.g., Hedgehog) and variable baseline ERK phosphorylation may limit the durability of MEK-targeted strategies [206,227,228]. The TATTON study affirmed the feasibility of osimertinib paired with selumetinib, testing different dosing schedules to optimize safety and efficacy [229].

4.5. Histologic Transformation and Epithelial-to-Mesenchymal Transition (EMT)

Histologic transformation is increasingly recognized as an underappreciated mechanism of resistance to osimertinib in EGFR-mutant NSCLC [230,231,232,233,234]. While liquid biopsies facilitate diagnosis and disease monitoring, they often fail to capture these pivotal shifts in tumor histology [230]. Numerous case reports document transformations from adenocarcinoma to small-cell lung cancer (SCLC), squamous cell carcinoma, large-cell neuroendocrine carcinoma, or sarcomatoid carcinoma [85,91,235,236]. Approximately 2% to 15% of patients on first-line osimertinib exhibit such changes, retaining the original EGFR-sensitizing mutations [237]. One study noted that 15% of patients receiving first-line osimertinib and 14% of those on later-line regimens underwent histologic transformation, underscoring the necessity of tissue biopsy for accurate assessment [122]. However, frequent biopsies are invasive and impractical given tumor heterogeneity, highlighting an urgent need for molecular markers to distinguish transformation events [78,237]. Research implicates the dysregulation of PI3K/AKT/mTOR and NOTCH pathways in driving shifts from adenocarcinoma to SCLC or squamous cell carcinoma, making them potential therapeutic targets [231,238].
Genetic profiling reveals that SCLC transformation commonly involves RB1 and TP53 loss [239,240]. Patients harboring baseline EGFR, RB1, and TP53 mutations, which are present in about 5% of EGFR-mutant NSCLC, face a higher risk of transformation and poorer outcomes [91,234,239,240]. The presence of RB1 and TP53 alterations alone can justify tissue biopsy—even if liquid biopsy is feasible—to confirm the new histology [240]. Interestingly, inhibiting enhancer of zeste homologue 1/2 (encoded by EZH1/2) can curb the development of squamous features, resensitizing resistant squamous-like tumors to osimertinib [241]. Identifying early subclones that drive resistance before clinical progression is key for tailoring combination treatments [234]. However, no specific guidelines exist for managing EGFR-mutant NSCLC with histologic transformation, and standard chemotherapy regimens based on the new histology often yield limited benefits [239]. Emerging approaches, such as combining the PARP inhibitor niraparib with the anti–PD-L1 agent durvalumab (NCT04538378), are under investigation for SCLC-transformed EGFR-mutant NSCLC.
Epithelial-to-mesenchymal transition (EMT) is a key mechanism underlying drug resistance, as it enables epithelial cancer cells to acquire mesenchymal features that promote migration, invasion, and therapy evasion [242,243]. This shift is driven by EMT-inducing transcription factors (EMT-TFs)—including the ZEB, Snail, Slug, and Twist families—that downregulate epithelial markers (e.g., E-cadherin) and upregulate mesenchymal markers (e.g., vimentin) [244,245,246,247,248]. Furthermore, exosomal transfer of miR-210-3p and miR-17-5p from osimertinib-resistant cells to sensitive cells facilitates EMT, highlighting the importance of the tumor microenvironment (TME) in drug resistance [249,250]. These findings suggest that targeting EMT-TFs, which contribute to resistance when overexpressed, may offer promising therapeutic strategies [251].
Overexpression of ID1, a transcription factor, has also been implicated in osimertinib resistance via downregulation of E-cadherin and upregulation of vimentin [252]. Furthermore, mounting data indicate that standard treatments often fail to eliminate EMT-committed cells [209,210]. Targeting TGFβ signaling, which promotes EMT, has shown promise for overcoming osimertinib resistance, as TGFβ2 upregulation can activate SMAD2 and trigger mesenchymal features in resistant cells [243,253,254]. Inhibiting NF-κB—another pathway critical for resistant cell survival—also exerts cytotoxic effects [253]. Taken together, these findings underscore the multifaceted nature of treatment resistance—spanning histologic transformation, EMT, and intercellular communication—and highlight the need for innovative, multi-pronged strategies to improve outcomes for patients with EGFR-mutant NSCLC.
Table 2. Off-target mechanisms of osimertinib resistance and therapeutic strategies in EGFR-mutant NSCLC.
Table 2. Off-target mechanisms of osimertinib resistance and therapeutic strategies in EGFR-mutant NSCLC.
Mechanism Category Approximate PrevalenceTherapeutic StrategiesReferences
MET amplification Up to 8–19% of resistance cases; more frequent in first-line osimertinib
  • MET inhibitors (crizotinib, capmatinib) ± EGFR TKIs
  • Combination therapy (e.g., afatinib + MET inhibitor)
[32,40,72,74,96,104,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150]
HER2 amplification and HER3 upregulationHER2 amplification/mutation~2–5% in post-osimertinib setting (higher in second-line)
  • Anti-HER2 mAbs (e.g., trastuzumab) or ADCs (T-DM1) in combination with osimertinib
  • Pan-HER inhibitors under evaluation
[32,40,119,120,151,152,153]
HER3 upregulationFrequently seen in resistant tumors; exact incidence unclear
  • HER3-targeted ADCs (e.g., patritumab deruxtecan)
  • Combinations with EGFR TKIs
[128,154,155,156,157,158,159,160,161,162,163,164,165,166]
Alterations in proliferation and apoptosisFGFR1 amplificationRare; exact rates vary
  • GFR inhibitors ± osimertinib or AKT blockade
  • Triple blockade (EGFR + AXL + FGFR) in preclinical models
[167,168,169,170]
IGF1R activationRare; data mostly preclinical
  • IGF1R inhibitors in combination
  • With osimertinib
[171,172,173,174]
AXL overexpressionFrequently upregulated in resistant clones
  • AXL inhibitors (e.g., anlotinib) ± osimertinib
  • Dual or triple targeting (AXL/MET/FGFR)
[15,168,170,175,176,177,178,179,180,181,182,183,184]
BCL-2 family dysregulationBIM deletion polymorphism in ~21% of East Asians
  • HDAC inhibitors to restore BIM
  • Navitoclax (BCL-2/BCL-xL inhibitor) + osimertinib
[185,186,187,188,189]
Cell cycle pathway alterationsCommon in relapse; often correlated with shorter PFS
  • CDK4/6 inhibitors (abemaciclib, palbociclib) + osimertinib
  • PLK1 inhibitors combined with EGFR TKIs
[190,191,192,193,194,195,196]
Abnormal activation of downstream proliferative signaling pathwaysPI3K/AKT/mTOR-drivenMutations in PIK3CA in ~2–5%; PTEN loss also reported
  • PI3K or mTOR inhibitors ± osimertinib
  • Restoring or stabilizing the PTEN function
[92,197,198,199,200,201,202]
RAS/RAF/MEK/ERK (MAPK)-drivenKRAS/NRAS/BRAF mutations in ~1–3% post-osimertinib
  • Targeted therapies (sotorasib, adagrasib for KRAS G12C)
  • MEK inhibitors (trametinib, selumetinib) in combination with osimertinib
[40,50,96,104,113,168,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229]
Histologic transformation and epithelial-to-mesenchymal transition (EMT)Histologic transformation2–15% of resistance cases vary with line of therapy
  • Biopsy confirmation needed
  • Standard chemo- or immunotherapy based on new histology
[78,85,91,230,231,232,233,234,235,236,237,238,239,240,241]
Epithelial-to-mesenchymal transition (EMT)Common in resistant tumors, the exact incidence varies
  • TGFβ pathway blockade, NF-κB inhibition
  • Targeting EMT transcription factors
[242,243,244,245,246,247,248,249,250,251,252,253,254]
ADC, antibody–drug conjugate; FGFR, fibroblast growth factor receptor; HDAC, histone deacetylase; IGF1R, insulin-like growth factor 1 receptor; mAb, monoclonal antibody; mTOR, mechanistic target of rapamycin; PI3K, phosphatidylinositol 3-kinase; PTEN, phosphatase and tensin homologue; T-DM1, trastuzumab emtansine.

5. Osimertinib-Based Combination Therapies: Exploring Synergistic Approaches

As aforementioned, osimertinib has shown remarkable efficacy as a third-generation EGFR-TKI in the treatment of EGFR-mutant NSCLC. Its integration into therapeutic regimens highlights its potential to enhance clinical outcomes when combined with other treatment modalities. However, the inevitable development of resistance to osimertinib remains a critical clinical challenge, necessitating innovative strategies to overcome this limitation. Consequently, various combination approaches (Table 3) have been investigated with the dual objectives of achieving additive or synergistic therapeutic effects and delaying the emergence of resistance, with the ultimate aim of optimizing patient outcomes in the context of EGFR-mutant NSCLC.

5.1. Chemotherapy

Preclinical work suggests that adding pemetrexed or cisplatin to osimertinib can help forestall drug resistance in NSCLC, though this approach may increase tissue fibrosis [255]. One mechanism involves ATP-binding cassette subfamily B member 1 (ABCB1, also known as P-glycoprotein), which promotes chemoresistance by expelling intracellular drugs. Notably, osimertinib has been shown in vitro to reverse ABCB1-mediated resistance to agents such as paclitaxel, colchicine, and vincristine, suggesting that EGFR-TKI–chemotherapy combinations could be beneficial [256]. Beyond standard chemotherapy, a T7 peptide–modified nanocarrier co-delivering osimertinib and doxorubicin demonstrated promising blood–brain barrier penetration in preclinical models, leading to enhanced efficacy against brain metastases [257]. While these findings point to potential advantages in delaying resistance and achieving prolonged disease control—especially in patients with CNS involvement—more phase III evidence is required to establish combination therapy as a standard treatment.
Following osimertinib’s approval as first-line therapy, efforts have intensified to incorporate it into combination regimens. Clinically, adding platinum–pemetrexed to osimertinib is safe and appears to control central nervous system (CNS) metastases [28], although initial studies did not show a significant PFS benefit over osimertinib monotherapy (15.8 vs. 14.6 months; p = 0.83) [258]. The phase III COMPEL trial (NCT04765059) is examining platinum–pemetrexed plus osimertinib in patients with non-CNS progression after an initial osimertinib response [259], and the phase II EPONA trial in Japan is focusing on this combination for individuals with EGFR-mutant, brain-metastatic NSCLC [260]. Both aim to determine whether such strategies can further extend PFS and OS. Early-phase results are encouraging: the phase II OPAL trial reported an ORR of 90.9% and a median PFS of 31.0 months for first-line osimertinib combined with platinum–pemetrexed [261]. FLAURA2 (NCT04035486), a larger phase III study, has provided preliminary safety data indicating no unexpected toxicities among 30 participants treated with the combination—mirroring the tolerable safety profile seen in OPAL [41]. Its final phase III data demonstrated a significant PFS benefit (HR 0.62; 95% CI 0.49–0.79; p < 0.001) compared with osimertinib monotherapy, alongside a higher 24-month progression-free rate (57% vs. 41%). The ORR increased slightly (80% vs. 76%), though adverse events rose as well, largely attributable to chemotherapy [41,262].
An alternative approach explored by the JCOG1404/WJOG8214L trial (UMIN000020242) involved intermittent platinum-doublet chemotherapy after initial EGFR-TKI therapy [263]. Patients were randomized to continuous EGFR-TKI monotherapy or an intermittent regimen of gefitinib or osimertinib followed by cisplatin–pemetrexed. Although median OS was similar in both arms (48.0 months), PFS was superior with intermittent chemotherapy (HR 0.762; p = 0.0003), suggesting that delaying resistance may be feasible, even without a survival advantage [263]. ctDNA analysis has emerged as an important predictive tool in EGFR-mutant NSCLC. In retrospective assessments of AURA3 and FLAURA, patients lacking detectable baseline EGFR mutations in ctDNA had notably prolonged PFS (HR 0.48 and 0.54, respectively), and those who achieved early plasma EGFR mutation clearance by week 3 of treatment showed extended PFS [37].

5.2. VEGF Inhibitor-Based Therapy

Combining EGFR TKIs with VEGF pathway inhibitors is promising for EGFR-mutant NSCLC, as EGFR activation promotes VEGF expression via overlapping signaling pathways [264]. Early trials using erlotinib plus bevacizumab (e.g., JO25567, NEJ026, ARTemis/CTONG1509) demonstrated significantly improved progression-free survival, although overall survival gains were less consistent [265,266,267]. Extending this strategy to third-generation TKIs, particularly osimertinib, yielded encouraging, yet variable results. Early-phase research indicated that osimertinib plus bevacizumab could delay resistance, with a phase I/II study reporting a 12-month PFS rate of 76% and an 80% ORR [268,269]. Nonetheless, larger randomized trials provided conflicting findings. The Japanese phase II WJOG9717L trial did not detect a significant PFS benefit (22.1 vs. 20.2 months; HR, 0.862) for osimertinib plus bevacizumab in patients with sensitizing EGFR mutations [270]. Similarly, the European phase II BOOSTER trial found no PFS advantage (15.4 vs. 12.3 months; HR 0.96) for T790M-positive patients, with higher rates of grade ≥ 3 adverse events such as hypertension and proteinuria [271]. Despite these mixed outcomes, the phase II FLAIR study is ongoing, evaluating osimertinib plus bevacizumab in patients harboring L858R mutations, with results anticipated in 2025 [272].
By contrast, combining EGFR TKIs with ramucirumab, a VEGF receptor-2-targeting monoclonal antibody, has been more promising. The phase III RELAY trial demonstrated significantly improved PFS when erlotinib was combined with ramucirumab (19.4 vs. 12.4 months; HR, 0.59; p < 0.0001) [273]. In the phase II RAMOSE trial, osimertinib plus ramucirumab likewise showed a notable PFS extension over osimertinib monotherapy (24.8 vs. 15.6 months; HR, 0.55), with a 12-month PFS rate of 76.7% versus 61.9% [274]. Toxicities remained manageable, and the discrepancy in efficacy between bevacizumab and ramucirumab combinations may reflect differences in drug mechanisms and toxicity profiles [274].
Overcoming resistance to osimertinib remains a key objective, and targeting the tumor vasculature in the tumor microenvironment (TME) with anti-angiogenic agents (e.g., anlotinib, a multi-target TKI that targets VEGFR, FGFR, PDGFR, and c-kit) offers a potential solution [275]. A retrospective analysis of 111 patients found that adding anti-angiogenic therapy to osimertinib significantly improved PFS (9.84 months) and OS (16.79 months) compared with chemotherapy alone or chemotherapy plus immune checkpoint inhibitors [276]. Preclinical models showed augmented infiltration of CD4+ and PD-1+/CD8+ T cells and reduced tumor-associated macrophages secreting IL-1β and CCL18 when VEGFR inhibition was introduced [276,277]. Single-cell RNA sequencing (scRNA-seq) further corroborated these immunomodulatory effects, identifying enhanced cytotoxic T-cell populations and fewer TAM-associated markers [276]. These results highlight the role of anti-angiogenesis therapies in promoting the antitumor immune response. Clinically, high VEGFR2 or VEGF-C expression has been correlated with diminished osimertinib sensitivity, underscoring the rationale for VEGF pathway blockade to improve outcomes [278].

5.3. Radiotherapy

Radiotherapy (RT) was extensively employed alongside first-generation EGFR TKIs (e.g., gefitinib, erlotinib) [279], but its role with third-generation EGFR TKIs, particularly osimertinib, is still evolving. Although roughly 41.25% of EGFR-mutant NSCLC recurs at the primary site and these tumors have a heightened propensity for brain metastases [280], many questions remain regarding optimal RT timing, dosing, techniques, and toxicity when combined with osimertinib [280,281]. Early clinical data suggest concurrent thoracic RT and osimertinib could increase rates of radiation pneumonitis, pointing to the need for cautious dose management [281,282]. Preclinical findings indicate that osimertinib boosts radiosensitivity, reinforcing the rationale for its use in combination with RT, provided proper dose guidelines are established [283].
Brain metastases pose a serious threat in EGFR-mutant NSCLC, with CNS-related mortality rates exceeding those observed in EGFR wild-type NSCLC (44.8% vs. 8.3%) [284]. While earlier-generation TKIs exhibit limited blood–brain barrier (BBB) penetration, RT or chemotherapy may transiently disrupt the BBB to enhance drug delivery. In contrast, osimertinib already has superior BBB permeability and robust intracranial efficacy [284], making its combination with cranial RT an appealing strategy to manage CNS progression. Retrospective analyses provide support: one study demonstrated improved OS for patients receiving osimertinib plus cranial RT (53 vs. 40 months, p = 0.014) [64]. Another investigation suggested that delaying RT until needed does not compromise outcomes (no significant differences in PFS or OS) and may reduce radiation-induced side effects [285].
Multiple trials are exploring the benefit of consolidative or local RT with osimertinib. In the single-arm NCT04764214 study, patients with metastatic EGFR-mutant NSCLC received stereotactic radiotherapy (SRT) following an initial response to osimertinib, achieving a median PFS of 29.9 months and manageable toxicity [286]. The phase II NORTHSTAR trial investigated local consolidative therapy—including RT or surgery—after osimertinib induction, finding no notable increase in serious adverse events [287]. Similarly, the NCT03595644 study reported that patients with residual oligometastatic disease who underwent stereotactic body radiation therapy (SBRT) after maximal tumor response to osimertinib experienced no disease progression over 18 months, with only mild toxicities [288]. Another phase II trial (NCT03667820) combining SBRT and continuous osimertinib reported a median PFS of 32.6 months and an OS of 45.7 months, surpassing historical outcomes for osimertinib monotherapy—which commonly deteriorates before two years [289].

5.4. MET-Inhibitor Based Therapy

As aforementioned, MET dysregulation is a major driver of acquired resistance to EGFR TKIs in NSCLC, prompting the development of diverse MET inhibitors. These agents include small-molecule inhibitors (e.g., savolitinib, crizotinib, cabozantinib, capmatinib, and tepotinib), MET receptor monoclonal antibodies (e.g., onartuzumab), and antibodies against the MET ligand HGF (e.g., ficlatuzumab and rilotumumab). Preclinical data suggest that combining osimertinib with crizotinib or capmatinib can overcome MET-mediated osimertinib resistance [290,291]. Additionally, capmatinib has been shown to inhibit MET/AKT/Snail signaling and reduce cancer-associated fibroblast (CAF) production, resensitizing lung cancer cell lines to osimertinib [150]. Case reports support these findings: for example, a patient harboring a MET Y1003N mutation achieved a partial response to combined capmatinib and osimertinib [291]. However, KRAS G12C subclones—detected in both xenograft models and patient samples—may emerge as a new mechanism of resistance when targeting EGFR or MET [108,249]. Other agents, including HQP8361, dictamnine, and the natural compound berberine, have likewise shown promise in countering MET-driven osimertinib resistance by inhibiting MET signaling and inducing tumor cell apoptosis [292,293,294].
Amivantamab (JNJ-61186372), a bispecific EGFR/MET antibody, is another important therapeutic option. Approved by the FDA for patients with EGFR exon 20 insertions [295], amivantamab also offers activity in tumors partially responsive to osimertinib [296]. In the CHRYSALIS study, it achieved a confirmed ORR of 40% and a median PFS of 8.3 months [297]. Sustainable responses have been reported in triple-mutant EGFR (L858R/T790M/G796S) tumors [298], and combining amivantamab with lazertinib has demonstrated synergistic efficacy [299,300,301]. Nevertheless, residual Src-family kinase activity can induce amivantamab resistance, highlighting the complexity of overcoming advanced disease [302]. The phase III MARIPOSA-2 study strengthens the case for amivantamab: in EGFR-mutated advanced NSCLC after progression on osimertinib, both amivantamab monotherapy and amivantamab–lazertinib significantly prolonged PFS compared to chemotherapy (6.3 and 8.3 vs. 4.2 months; p < 0.001) [303]. Another innovative approach, SHR-A1403—an antibody–drug conjugate linking an MET antibody to a microtubule-disrupting agent—has also shown potential against MET-overexpressing, osimertinib-resistant tumors [304].
Another key trial investigating these dual-target approaches is the multi-arm phase Ib TATTON study, which is evaluating osimertinib in combination with savolitinib, selumetinib (MEK1/2 inhibitor), and durvalumab (anti-PD-L1 antibody) in T790M-positive EGFR-mutant NSCLC [305,306]. Based on early results, a recommended regimen of osimertinib plus savolitinib demonstrated favorable safety and clinical outcomes for patients with MET-driven resistance [306]. Ongoing investigations include a phase II trial evaluating osimertinib plus savolitinib (NCT03778229) [307] and another testing osimertinib with tepotinib (NCT03940703) [308]. Canadian expert panels have further advocated MET inhibitors for MET-amplified, EGFR-mutant NSCLC, regardless of the treatment line [309]. Looking ahead, first-line strategies combining third-generation TKIs with MET inhibitors may offer even greater benefits in EGFR-mutant, MET-amplified NSCLC [299]. Anticipated results from several ongoing phase III trials—examining amivantamab with lazertinib or osimertinib—are expected to solidify dual EGFR/MET blockade as a standard option for advanced disease [310,311].

5.5. Immunotherapy

Combining PD-1/PD-L1 inhibitors (e.g., pembrolizumab, durvalumab, nivolumab) with osimertinib has drawn considerable attention as a strategy to overcome acquired resistance in EGFR-mutant NSCLC [312,313]. While immune checkpoint inhibitors (ICIs) have transformed cancer care, their efficacy in EGFR-mutant NSCLC progressing on EGFR TKIs is generally limited [314]. Consequently, there is growing interest in using ICIs after resistance to EGFR TKIs emerges [315,316]. One rationale is that osimertinib can augment CD8+ T-cell infiltration, potentially amplifying antitumor immunity [317,318]. However, trials such as TATTON showed an elevated risk of severe immune-related adverse events (irAEs), including interstitial lung disease (ILD), leading to early termination [229]. Similarly, the CAURAL trial was halted due to ILD [319]. Other notable toxicities—such as severe hepatotoxicity, colitis, and Stevens–Johnson syndrome—have been observed in patients receiving combined osimertinib–ICI therapies, a phenomenon less frequently reported with other EGFR TKIs plus immunotherapy [320,321].
Recent mechanistic studies offer insights into these outcomes. Elevated NADPH oxidase 4 (NOX4) appears to drive tumorigenesis and EGFR-TKI resistance via an IL-8–PD-L1 axis. Silencing NOX4 can resensitize resistant cells to both gefitinib and osimertinib [322]. Additionally, NOX4 overexpression increases YY1, which upregulates IL-8 and PD-L1, fostering immune escape [322]. Clinically, high NOX4 and IL-8 correlate with poorer responses to anti-PD-L1 therapy, while dual inhibition of NOX4 (with GKT137831) and EGFR has shown enhanced tumor suppression in mouse xenograft models [322]. Another study implicates macrophages in toxicity through IL-6/JAK/STAT3 signaling: although osimertinib reduces EGFR phosphorylation in macrophages, it paradoxically increases total EGFR and activates proinflammatory cytokine release [323]. Combining ruxolitinib, a JAK inhibitor, with osimertinib mitigates this inflammatory response and liver injury, highlighting a potential strategy to lower irAEs [323].
Timing also seems crucial. Patients receiving an ICI within three months prior to osimertinib faced a 24% risk of severe irAEs, often appearing around three weeks into treatment [324]. By contrast, those switching from other EGFR TKIs before adding an ICI had fewer serious adverse events [324]. Tumor PD-L1 expression likewise influences treatment outcomes: patients with PD-L1 ≥ 50% experience shorter PFS (about 9.7 months vs. 26.5 months in those below 50%), and higher PD-L1 expression has been linked to worse PFS and OS [325,326,327,328,329,330]. Case studies illustrate both efficacy and toxicity. One patient with EGFR exon 19 deletion/T790M achieved six months of PFS on osimertinib plus pembrolizumab [331], whereas others developed Stevens–Johnson syndrome shortly after starting osimertinib post-ICI, although a long hiatus allowed for eventual retreatment [321].
Beyond single-agent immunotherapy, combining PD-1 inhibitors with platinum-based chemotherapy has demonstrated durable responses in patients harboring T790M–cis-C797S double mutations [332], suggesting a role for immunotherapy in specific genomic settings. Hyperprogressive disease remains a concern in up to 21% of patients receiving ICIs [333,334]. Novel approaches include the use of IL-12, which reduced immunosuppression and restored osimertinib sensitivity in resistant preclinical models [335]. Moreover, certain “inflamed” EGFR-mutant tumors—characterized by dense CD8+ T-cell infiltration and few FOXP3+ Treg cells—may respond profoundly to ICIs, indicating that immune profiling at the point of resistance could guide therapy selection [336].

6. Conclusions

Osimertinib has substantially improved outcomes for patients with EGFR-mutant NSCLC across first-line, subsequent-line, and adjuvant settings. However, acquired resistance—driven by tertiary EGFR mutations, activation of bypass pathways (e.g., MET and HER2/HER3), and histologic transformation—continues to present a major challenge. Growing evidence suggests that combination strategies incorporating chemotherapy, VEGFR inhibitors, radiotherapy, MET inhibitors, and immunotherapies may address these resistance mechanisms, but they also carry increased risks of toxicity and necessitate robust biomarkers for appropriate patient selection. Future success in mitigating resistance will hinge on real-time molecular profiling techniques, such as liquid biopsy and single-cell analyses, to detect emerging resistant clones before clinical progression. Ongoing clinical trials of novel osimertinib-based regimens, though not yet formally published, are anticipated to offer critical guidance on refining these approaches. Ultimately, a personalized treatment paradigm that aligns regimens with each tumor’s evolving molecular landscape—and expands clinical trial designs to encompass real-world diversity—could not only delay or overcome resistance but also improve survival and quality of life for patients with EGFR-mutant NSCLC.

Author Contributions

Conceptualization, Y.-Y.L. and H.-P.H.; writing—original draft preparation, Y.-Y.L.; data curation and validation, C.-L.T.; writing—review and editing, C.-L.T. and H.-P.H.; supervision, H.-P.H. All authors have read and agreed to the published version of the manuscript.

Funding

The authors acknowledge the grants from National Science and Technology Council in Taiwan (grants NSTC-110-2320-B-002-060 and NSTC-111-2320-B-002-050-MY3).

Conflicts of Interest

The authors claim no conflicts of interest.

Abbreviations

AKTprotein kinase B
AXLanexelekto
ABCB1ATP-binding cassette subfamily B member 1
BRAFB-Raf proto-oncogene, serine/threonine kinase
BCL-2B-cell lymphoma 2
BIMBcl-2 Interacting Mediator of Cell Death
C797Scysteine 797 to serine (mutation in EGFR)
CDK4/6cyclin-dependent kinases 4 and 6
CEP7chromosome enumeration probe 7
CNScentral nervous system
CTNNB1catenin beta 1
CAFscancer-associated fibroblasts
cGAS–STINGcyclic GMP-AMP synthase–stimulator of interferon genes
c-METmesenchymal–epithelial transition factor
EGFRepidermal growth factor receptor
EMTepithelial–mesenchymal transition
ERKextracellular signal-regulated kinase
EMT-TFsepithelial–mesenchymal transition transcription factors
FGFR1fibroblast growth factor receptor 1
FOXPforkhead box P
GSK-3βglycogen synthase kinase 3 beta
HER2human epidermal growth factor receptor 2
HER3human epidermal growth factor receptor 3
HGFhepatocyte growth factor
HER3-DXdHER3-directed DXd conjugate
IGF1Rinsulin-like growth factor 1 receptor
IL-6interleukin 6
IL-12interleukin 12
JAKJanus kinase
KRASKirsten rat sarcoma viral oncogene homologue
L792Hleucine 792 to histidine (mutation in EGFR)
MAPKmitogen-activated protein kinase
MERTKproto-oncogene tyrosine-protein kinase MER
METmesenchymal–epithelial transition factor
MCL1myeloid cell leukemia 1
NSCLCnon-small-cell lung cancer
NRASneuroblastoma RAS viral oncogene homologue
NOXNADPH oxidase
NF-κBnuclear factor kappa-light-chain-enhancer of activated B cells
ORRoverall response rate
OSoverall survival
PD-L1programmed death-ligand 1
PFSprogression-free survival
PI3Kphosphoinositide 3-kinase
PLK1polo-like kinase 1
PTENphosphatase and tensin homologue
PARPpoly(ADP-ribose) polymerase
PD-1programmed cell death protein 1
RAFrapidly accelerated fibrosarcoma
RASrat sarcoma viral oncogene
RB1retinoblastoma 1
RTKreceptor tyrosine kinase
RTradiation therapy
SMAD2mothers against decapentaplegic homologue 2
STATsignal transducer and activator of transcription
STAT3signal transducer and activator of transcription 3
T790Mthreonine 790 to methionine (mutation in EGFR)
TGFβtransforming growth factor beta
TMEtumor microenvironment
TKItyrosine kinase inhibitor
TAMtumor-associated macrophage
TARO3tyrosine-protein kinase receptor 3
T-DM1trastuzumab emtansine
VEGFvascular endothelial growth factor
VEGFRvascular endothelial growth factor receptor
ZEBzinc finger E-box binding homeobox

References

  1. Planchard, D.; Popat, S.; Kerr, K.; Novello, S.; Smit, E.F.; Faivre-Finn, C.; Mok, T.S.; Reck, M.; Van Schil, P.E.; Hellmann, M.D.; et al. Metastatic Non-Small Cell Lung Cancer: Esmo Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2018, 29 (Suppl. S4), iv192–iv237. [Google Scholar] [CrossRef] [PubMed]
  2. Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer Statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef]
  3. Kauffmann-Guerrero, D.; Kahnert, K.; Huber, R.M. Treatment Sequencing for Anaplastic Lymphoma Kinase-Rearranged Non-Small-Cell Lung Cancer. Drugs 2021, 81, 87–100. [Google Scholar] [CrossRef]
  4. Wang, Y.T.; Yang, P.C.; Zhang, J.Y.; Sun, J.F. Synthetic Routes and Clinical Application of Representative Small-Molecule Egfr Inhibitors for Cancer Therapy. Molecules 2024, 29, 1448. [Google Scholar] [CrossRef]
  5. Dong, R.F.; Zhu, M.L.; Liu, M.M.; Xu, Y.T.; Yuan, L.L.; Bian, J.; Xia, Y.Z.; Kong, L.Y. Egfr Mutation Mediates Resistance to Egfr Tyrosine Kinase Inhibitors in Nsclc: From Molecular Mechanisms to Clinical Research. Pharmacol. Res. 2021, 167, 105583. [Google Scholar] [CrossRef] [PubMed]
  6. Zhang, H.; Zhang, Y.; Zhu, Y.; Dong, T.; Liu, Z. Understanding the Treatment Response and Resistance to Targeted Therapies in Non-Small Cell Lung Cancer: Clinical Insights and Perspectives. Front. Oncol. 2024, 14, 1387345. [Google Scholar] [CrossRef]
  7. Melosky, B.; Vincent, M.D.; McGuire, A.L.; Brade, A.M.; Chu, Q.; Cheema, P.; Martins, I.; Spicer, J.D.; Snow, S.; Juergens, R.A. Modern Era Systemic Therapies: Expanding Concepts of Cure in Early and Locally Advanced Non-Small Cell Lung Cancer. Int. J. Cancer 2024, 155, 963–978. [Google Scholar] [CrossRef] [PubMed]
  8. Kuang, L.; Wang, P.; Zhou, L.; Li, Y. Strategies and Influencing Factors for the Treatment of Advanced Non-Small Cell Lung Cancer Based on Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors: A Narrative Review. Transl. Cancer Res. 2024, 13, 5123–5140. [Google Scholar] [CrossRef]
  9. Ciardiello, F.; Hirsch, F.R.; Pirker, R.; Felip, E.; Valencia, C.; Smit, E.F. The Role of Anti-Egfr Therapies in Egfr-Tki-Resistant Advanced Non-Small Cell Lung Cancer. Cancer Treat. Rev. 2024, 122, 102664. [Google Scholar] [CrossRef]
  10. Ward, R.A.; Anderton, M.J.; Ashton, S.; Bethel, P.A.; Box, M.; Butterworth, S.; Colclough, N.; Chorley, C.G.; Chuaqui, C.; Cross, D.A.; et al. Structure- and Reactivity-Based Development of Covalent Inhibitors of the Activating and Gatekeeper Mutant Forms of the Epidermal Growth Factor Receptor (Egfr). J. Med. Chem. 2013, 56, 7025–7048. [Google Scholar] [CrossRef]
  11. Yu, H.A.; Arcila, M.E.; Rekhtman, N.; Sima, C.S.; Zakowski, M.F.; Pao, W.; Kris, M.G.; Miller, V.A.; Ladanyi, M.; Riely, G.J. Analysis of Tumor Specimens at the Time of Acquired Resistance to Egfr-Tki Therapy in 155 Patients with Egfr-Mutant Lung Cancers. Clin. Cancer Res. 2013, 19, 2240–2247. [Google Scholar] [CrossRef] [PubMed]
  12. Finlay, M.R.; Anderton, M.; Ashton, S.; Ballard, P.; Bethel, P.A.; Box, M.R.; Bradbury, R.H.; Brown, S.J.; Butterworth, S.; Campbell, A.; et al. Discovery of a Potent and Selective Egfr Inhibitor (Azd9291) of Both Sensitizing and T790m Resistance Mutations That Spares the Wild Type Form of the Receptor. J. Med. Chem. 2014, 57, 8249–8267. [Google Scholar] [CrossRef]
  13. Wu, S.G.; Liu, Y.N.; Tsai, M.F.; Chang, Y.L.; Yu, C.J.; Yang, P.C.; Yang, J.C.; Wen, Y.F.; Shih, J.Y. The Mechanism of Acquired Resistance to Irreversible Egfr Tyrosine Kinase Inhibitor-Afatinib in Lung Adenocarcinoma Patients. Oncotarget 2016, 7, 12404–12413. [Google Scholar] [CrossRef]
  14. Mu, Y.; Hao, X.; Xing, P.; Hu, X.; Wang, Y.; Li, T.; Zhang, J.; Xu, Z.; Li, J. Acquired Resistance to Osimertinib in Patients with Non-Small-Cell Lung Cancer: Mechanisms and Clinical Outcomes. J. Cancer Res. Clin. Oncol. 2020, 146, 2427–2433. [Google Scholar] [CrossRef] [PubMed]
  15. Kashima, Y.; Shibahara, D.; Suzuki, A.; Muto, K.; Kobayashi, I.S.; Plotnick, D.; Udagawa, H.; Izumi, H.; Shibata, Y.; Tanaka, K.; et al. Single-Cell Analyses Reveal Diverse Mechanisms of Resistance to Egfr Tyrosine Kinase Inhibitors in Lung Cancer. Cancer Res. 2021, 81, 4835–4848. [Google Scholar] [CrossRef]
  16. Șandor, A.; Ionuț, I.; Marc, G.; Oniga, I.; Eniu, D.; Oniga, O. Structure-Activity Relationship Studies Based on Quinazoline Derivatives as Egfr Kinase Inhibitors (2017-Present). Pharmaceuticals 2023, 16, 534. [Google Scholar] [CrossRef] [PubMed]
  17. Laface, C.; Maselli, F.M.; Santoro, A.N.; Iaia, M.L.; Ambrogio, F.; Laterza, M.; Guarini, C.; De Santis, P.; Perrone, M.; Fedele, P. The Resistance to Egfr-Tkis in Non-Small Cell Lung Cancer: From Molecular Mechanisms to Clinical Application of New Therapeutic Strategies. Pharmaceutics 2023, 15, 1604. [Google Scholar] [CrossRef]
  18. Cross, D.A.; Ashton, S.E.; Ghiorghiu, S.; Eberlein, C.; Nebhan, C.A.; Spitzler, P.J.; Orme, J.P.; Finlay, M.R.; Ward, R.A.; Mellor, M.J.; et al. Azd9291, an Irreversible Egfr Tki, Overcomes T790m-Mediated Resistance to Egfr Inhibitors in Lung Cancer. Cancer Discov. 2014, 4, 1046–1061. [Google Scholar] [CrossRef] [PubMed]
  19. Jänne, P.A.; Yang, J.C.; Kim, D.W.; Planchard, D.; Ohe, Y.; Ramalingam, S.S.; Ahn, M.J.; Kim, S.W.; Su, W.C.; Horn, L.; et al. Azd9291 in Egfr Inhibitor-Resistant Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 372, 1689–1699. [Google Scholar] [CrossRef] [PubMed]
  20. Remon, J.; Planchard, D. Azd9291 in Egfr-Mutant Advanced Non-Small-Cell Lung Cancer Patients. Future Oncol. 2015, 11, 3069–3081. [Google Scholar] [CrossRef] [PubMed]
  21. Remon, J.; Steuer, C.E.; Ramalingam, S.S.; Felip, E. Osimertinib and Other Third-Generation Egfr Tki in Egfr-Mutant Nsclc Patients. Ann. Oncol. 2018, 29, i20–i27. [Google Scholar] [CrossRef]
  22. Bollinger, M.K.; Agnew, A.S.; Mascara, G.P. Osimertinib: A Third-Generation Tyrosine Kinase Inhibitor for Treatment of Epidermal Growth Factor Receptor-Mutated Non-Small Cell Lung Cancer with the Acquired Thr790met Mutation. J. Oncol. Pharm. Pract. 2018, 24, 379–388. [Google Scholar] [CrossRef]
  23. Lin, C.C.; Shih, J.Y.; Yu, C.J.; Ho, C.C.; Liao, W.Y.; Lee, J.H.; Tsai, T.H.; Su, K.Y.; Hsieh, M.S.; Chang, Y.L.; et al. Outcomes in Patients with Non-Small-Cell Lung Cancer and Acquired Thr790met Mutation Treated with Osimertinib: A Genomic Study. Lancet Respir. Med. 2018, 6, 107–116. [Google Scholar] [CrossRef] [PubMed]
  24. Soria, J.C.; Ohe, Y.; Vansteenkiste, J.; Reungwetwattana, T.; Chewaskulyong, B.; Lee, K.H.; Dechaphunkul, A.; Imamura, F.; Nogami, N.; Kurata, T.; et al. Osimertinib in Untreated Egfr-Mutated Advanced Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 113–125. [Google Scholar] [CrossRef] [PubMed]
  25. Wu, Y.L.; Tsuboi, M.; He, J.; John, T.; Grohe, C.; Majem, M.; Goldman, J.W.; Laktionov, K.; Kim, S.W.; Kato, T.; et al. Osimertinib in Resected Egfr-Mutated Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2020, 383, 1711–1723. [Google Scholar] [CrossRef]
  26. Vaid, A.K.; Gupta, A.; Momi, G. Overall Survival in Stage iv Egfr Mutation-Positive Nsclc: Comparing First-, Second- and Third-Generation Egfr-Tkis (Review). Int. J. Oncol. 2021, 58, 171–184. [Google Scholar] [CrossRef]
  27. Bertoli, E.; De Carlo, E.; Del Conte, A.; Stanzione, B.; Revelant, A.; Fassetta, K.; Spina, M.; Bearz, A. Acquired Resistance to Osimertinib in Egfr-Mutated Non-Small Cell Lung Cancer: How Do We Overcome It? Int. J. Mol. Sci. 2022, 23, 6936. [Google Scholar] [CrossRef] [PubMed]
  28. Ramalingam, S.S.; Yang, J.C.; Lee, C.K.; Kurata, T.; Kim, D.W.; John, T.; Nogami, N.; Ohe, Y.; Mann, H.; Rukazenkov, Y.; et al. Osimertinib as First-Line Treatment of Egfr Mutation-Positive Advanced Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2018, 36, 841–849. [Google Scholar] [CrossRef]
  29. Goss, G.; Tsai, C.M.; Shepherd, F.A.; Bazhenova, L.; Lee, J.S.; Chang, G.C.; Crino, L.; Satouchi, M.; Chu, Q.; Hida, T.; et al. Osimertinib for Pretreated Egfr Thr790met-Positive Advanced Non-Small-Cell Lung Cancer (Aura2): A Multicentre, Open-Label, Single-Arm, Phase 2 Study. Lancet Oncol. 2016, 17, 1643–1652. [Google Scholar] [CrossRef] [PubMed]
  30. Jänne, P.A.; Ahn, M.J.; Kim, D.W.; Kim, S.W.; Planchard, D.; Ramalingam, S.S.; Frewer, P.; Cantarini, M.; Ghiorghiu, S.; Yang, J.H. A Phase I Study of Azd9291 in Patients with Egfr-Tki-Resistant Advanced Nsclc—Updated Progression Free Survival and Duration of Response Data. Ann. Oncol. 2015, 26, i57. [Google Scholar]
  31. Mok, T.S.; Wu, Y.L.; Ahn, M.J.; Garassino, M.C.; Kim, H.R.; Ramalingam, S.S.; Shepherd, F.A.; He, Y.; Akamatsu, H.; Theelen, W.S.; et al. Osimertinib or Platinum-Pemetrexed in Egfr T790m-Positive Lung Cancer. N. Engl. J. Med. 2017, 376, 629–640. [Google Scholar] [CrossRef] [PubMed]
  32. Papadimitrakopoulou, V.A.; Wu, Y.L.; Han, J.Y.; Ahn, M.J.; Ramalingam, S.S.; John, T.; Okamoto, I.; Yang, J.C.H.; Bulusu, K.C.; Laus, G.; et al. Analysis of Resistance Mechanisms to Osimertinib in Patients with Egfr T790m Advanced Nsclc from the Aura3 Study. Ann. Oncol. 2018, 29, viii741. [Google Scholar] [CrossRef]
  33. Wu, Y.L.; Ahn, M.J.; Garassino, M.C.; Han, J.Y.; Katakami, N.; Kim, H.R.; Hodge, R.; Kaur, P.; Brown, A.P.; Ghiorghiu, D.; et al. Cns Efficacy of Osimertinib in Patients with T790m-Positive Advanced Non-Small-Cell Lung Cancer: Data from a Randomized Phase Iii Trial (Aura3). J. Clin. Oncol. 2018, 36, 2702–2709. [Google Scholar] [CrossRef]
  34. Papadimitrakopoulou, V.A.; Mok, T.S.; Han, J.Y.; Ahn, M.J.; Delmonte, A.; Ramalingam, S.S.; Kim, S.W.; Shepherd, F.A.; Laskin, J.; He, Y.; et al. Osimertinib Versus Platinum-Pemetrexed for Patients with Egfr T790m Advanced Nsclc and Progression on a Prior Egfr-Tyrosine Kinase Inhibitor: Aura3 Overall Survival Analysis. Ann. Oncol. 2020, 31, 1536–1544. [Google Scholar] [CrossRef]
  35. Chmielecki, J.; Mok, T.; Wu, Y.L.; Han, J.Y.; Ahn, M.J.; Ramalingam, S.S.; John, T.; Okamoto, I.; Yang, J.C.; Shepherd, F.A.; et al. Analysis of Acquired Resistance Mechanisms to Osimertinib in Patients with Egfr-Mutated Advanced Non-Small Cell Lung Cancer from the Aura3 Trial. Nat. Commun. 2023, 14, 1071. [Google Scholar] [CrossRef] [PubMed]
  36. Papadimitrakopoulou, V.A.; Han, J.Y.; Ahn, M.J.; Ramalingam, S.S.; Delmonte, A.; Hsia, T.C.; Laskin, J.; Kim, S.W.; He, Y.; Tsai, C.M.; et al. Epidermal Growth Factor Receptor Mutation Analysis in Tissue and Plasma from the Aura3 Trial: Osimertinib Versus Platinum-Pemetrexed for T790m Mutation-Positive Advanced Non-Small Cell Lung Cancer. Cancer 2020, 126, 373–380. [Google Scholar] [CrossRef]
  37. Gray, J.E.; Ahn, M.J.; Oxnard, G.R.; Shepherd, F.A.; Imamura, F.; Cheng, Y.; Okamoto, I.; Cho, B.C.; Lin, M.C.; Wu, Y.L.; et al. Early Clearance of Plasma Epidermal Growth Factor Receptor Mutations as a Predictor of Outcome on Osimertinib in Advanced Non-Small Cell Lung Cancer, Exploratory Analysis from Aura3 and Flaura. Clin. Cancer Res. 2023, 29, 3340–3351. [Google Scholar] [CrossRef] [PubMed]
  38. Reungwetwattana, T.; Nakagawa, K.; Cho, B.C.; Cobo, M.; Cho, E.K.; Bertolini, A.; Bohnet, S.; Zhou, C.; Lee, K.H.; Nogami, N.; et al. Cns Response to Osimertinib Versus Standard Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Patients with Untreated Egfr-Mutated Advanced Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2018, 36, 3290–3297. [Google Scholar] [CrossRef] [PubMed]
  39. Nishino, M.; Suda, K.; Kobayashi, Y.; Ohara, S.; Fujino, T.; Koga, T.; Chiba, M.; Shimoji, M.; Tomizawa, K.; Takemoto, T.; et al. Effects of Secondary Egfr Mutations on Resistance against Upfront Osimertinib in Cells with Egfr-Activating Mutations in Vitro. Lung Cancer 2018, 126, 149–155. [Google Scholar] [CrossRef]
  40. Ramalingam, S.S.; Cheng, Y.; Zhou, C.; Ohe, Y.; Imamura, F.; Cho, B.C.; Lin, M.C.; Majem, M.; Shah, R.; Rukazenkov, Y.; et al. Mechanisms of Acquired Resistance to First-Line Osimertinib: Preliminary Data from the Phase Iii Flaura Study. Ann. Oncol. 2018, 29, viii740. [Google Scholar] [CrossRef]
  41. Planchard, D.; Feng, P.H.; Karaseva, N.; Kim, S.W.; Kim, T.M.; Lee, C.K.; Poltoratskiy, A.; Yanagitani, N.; Marshall, R.; Huang, X.; et al. Osimertinib Plus Platinum-Pemetrexed in Newly Diagnosed Epidermal Growth Factor Receptor Mutation-Positive Advanced/Metastatic Non-Small-Cell Lung Cancer: Safety Run-in Results from the Flaura2 Study. ESMO Open 2021, 6, 100271. [Google Scholar] [CrossRef] [PubMed]
  42. Jänne, P.A.; Planchard, D.; Kobayashi, K.; Cheng, Y.; Lee, C.K.; Valdiviezo, N.; Laktionov, K.; Yang, T.Y.; Yu, Y.; Kato, T.; et al. Cns Efficacy of Osimertinib with or without Chemotherapy in Epidermal Growth Factor Receptor-Mutated Advanced Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2024, 42, 808–820. [Google Scholar] [CrossRef] [PubMed]
  43. Asahina, H.; Tanaka, K.; Morita, S.; Maemondo, M.; Seike, M.; Okamoto, I.; Oizumi, S.; Kagamu, H.; Takahashi, K.; Kikuchi, T.; et al. A Phase Ii Study of Osimertinib Combined with Platinum Plus Pemetrexed in Patients with Egfr-Mutated Advanced Non-Small-Cell Lung Cancer: The Opal Study (Nej032c/Logik1801). Clin. Lung Cancer 2021, 22, 147–151. [Google Scholar] [CrossRef] [PubMed]
  44. Viray, H.; Piper-Vallillo, A.J.; Widick, P.; Academia, E.; Shea, M.; Rangachari, D.; VanderLaan, P.A.; Kobayashi, S.S.; Costa, D.B. A Real-World Study of Patient Characteristics and Clinical Outcomes in Egfr Mutated Lung Cancer Treated with First-Line Osimertinib: Expanding the Flaura Trial Results into Routine Clinical Practice. Cancers 2024, 16, 1079. [Google Scholar] [CrossRef]
  45. Lu, S.; Kato, T.; Dong, X.; Ahn, M.J.; Quang, L.V.; Soparattanapaisarn, N.; Inoue, T.; Wang, C.L.; Huang, M.; Yang, J.C.; et al. Osimertinib after Chemoradiotherapy in Stage Iii Egfr-Mutated Nsclc. N. Engl. J. Med. 2024, 391, 585–597. [Google Scholar] [CrossRef]
  46. Herbst, R.S.; Wu, Y.L.; John, T.; Grohe, C.; Majem, M.; Wang, J.; Kato, T.; Goldman, J.W.; Laktionov, K.; Kim, S.W.; et al. Adjuvant Osimertinib for Resected Egfr-Mutated Stage Ib-Iiia Non-Small-Cell Lung Cancer: Updated Results from the Phase Iii Randomized Adaura Trial. J. Clin. Oncol. 2023, 41, 1830–1840. [Google Scholar] [CrossRef] [PubMed]
  47. Tsuboi, M.; Herbst, R.S.; John, T.; Kato, T.; Majem, M.; Grohé, C.; Wang, J.; Goldman, J.W.; Lu, S.; Su, W.C.; et al. Overall Survival with Osimertinib in Resected Egfr-Mutated Nsclc. N. Engl. J. Med. 2023, 389, 137–147. [Google Scholar] [CrossRef] [PubMed]
  48. Lakkunarajah, S.; Truong, P.T.; Bone, J.N.; Hughesman, C.; Yip, S.; Alex, D.; Hart, J.; Pollock, P.; Egli, S.; Clarkson, M.; et al. First-Line Osimertinib for Patients with Egfr-Mutated Advanced Non-Small Cell Lung Cancer: Efficacy and Safety During the Covid-19 Pandemic. Transl. Lung Cancer Res. 2023, 12, 1454–1465. [Google Scholar] [CrossRef] [PubMed]
  49. Han, Y.; Kim, S.; Park, T.; Hwang, H.; Park, S.; Kim, J.; Pyun, J.C.; Lee, M. Reduction of Severe Acute Respiratory Syndrome Coronavirus 2 (Sars-Cov-2) Variant Infection by Blocking the Epidermal Growth Factor Receptor (Egfr) Pathway. Microbiol. Spectr. 2024, 12, e0158324. [Google Scholar] [CrossRef]
  50. Enrico, D.H.; Lacroix, L.; Rouleau, E.; Scoazec, J.Y.; Loriot, Y.; Tselikas, L.; Jovelet, C.; Planchard, D.; Gazzah, A.; Mezquita, L.; et al. 1526p—Multiple Synchronous Mechanisms May Contribute to Osimertinib Resistance in Non-Small Cell Lung Cancer (Nsclc) Patients: Insights of the Match-R Study. Ann. Oncol. 2019, 30, v627. [Google Scholar] [CrossRef]
  51. Xie, L.; Nagpal, S.; Wakelee, H.A.; Li, G.; Soltys, S.G.; Neal, J.W. Osimertinib for Egfr-Mutant Lung Cancer with Brain Metastases: Results from a Single-Center Retrospective Study. Oncologist 2019, 24, 836–843. [Google Scholar] [CrossRef] [PubMed]
  52. Marrett, E.; Kwong, W.J.; Xie, J.; Manceur, A.M.; Sendhil, S.R.; Wu, E.; Ionescu-Ittu, R.; Subramanian, J. Treatment Patterns and Adverse Event-Related Hospitalization among Patients with Epidermal Growth Factor Receptor (Egfr)-Mutated Metastatic Non-Small Cell Lung Cancer after Treatment with Egfr Tyrosine Kinase Inhibitor and Platinum-Based Chemotherapy Regimens. Drugs Real. World Outcomes 2023, 10, 531–544. [Google Scholar]
  53. Watanabe, K.; Saito, R.; Miyauchi, E.; Nagashima, H.; Nakamura, A.; Sugawara, S.; Tanaka, N.; Terasaki, H.; Fukuhara, T.; Maemondo, M. Monitoring of Plasma Egfr Mutations During Osimertinib Treatment for Nsclc Patients with Acquired T790m Mutation. Cancers 2023, 15, 4231. [Google Scholar] [CrossRef]
  54. Watanabe, K.; Hosomi, Y.; Naoki, K.; Nakahara, Y.; Tsukita, Y.; Matsumoto, H.; Yoh, K.; Fujisaka, Y.; Takahashi, S.; Takata, S.; et al. The Whole Picture of First-Line Osimertinib for Egfr Mutation-Positive Advanced Nsclc: Real-World Efficacy, Safety, Progression Pattern, and Posttreatment Therapy (Reiwa Study). JTO Clin. Res. Rep. 2024, 5, 100720. [Google Scholar] [CrossRef] [PubMed]
  55. Uy, N.F.; Tratt, M.; Eaton, K.D.; Santana-Davila, R.; Baik, C.S. Osimertinib Rechallenge in Advanced Egfr Non-Small Cell Lung Cancer Patients. J. Clin. Oncol. 2023, 41, e21196. [Google Scholar] [CrossRef]
  56. Wang, R.H.; Chang, C.J.; Chen, C.H.; Liu, K.K.; Chao, J.I. Osimertinib Induces the Opposite Effect of Proliferation and Migration in the Drug Resistance of Egfr-T790m Non-Small Cell Lung Cancer Cells. Anticancer. Agents Med. Chem. 2023, 23, 1309–1319. [Google Scholar] [CrossRef]
  57. Chamorro, D.F.; Cardona, A.F.; Rodríguez, J.; Ruiz-Patiño, A.; Arrieta, O.; Moreno-Pérez, D.A.; Rojas, L.; Zatarain-Barrón, Z.L.; Ardila, D.V.; Viola, L.; et al. Genomic Landscape of Primary Resistance to Osimertinib among Hispanic Patients with Egfr-Mutant Non-Small Cell Lung Cancer (Nsclc): Results of an Observational Longitudinal Cohort Study. Target. Oncol. 2023, 18, 425–440. [Google Scholar] [CrossRef] [PubMed]
  58. Ma, J.; Huang, L.; Han, C. Expert Consensus on the Use of Third-Generation Egfr-Tkis in Egfr-Mutated Advanced Non-Small Cell Lung Cancer with Various T790m Mutations Post-Resistance to First-/Second-Generation Egfr-Tkis. Ther. Adv. Med. Oncol. 2024, 16, 17588359241289648. [Google Scholar] [CrossRef]
  59. Floc’h, N.; Lim, S.; Bickerton, S.; Ahmed, A.; Orme, J.; Urosevic, J.; Martin, M.J.; Cross, D.A.E.; Cho, B.C.; Smith, P.D. Osimertinib, an Irreversible Next-Generation Egfr Tyrosine Kinase Inhibitor, Exerts Antitumor Activity in Various Preclinical Nsclc Models Harboring the Uncommon Egfr Mutations G719x or L861q or S768i. Mol. Cancer Ther. 2020, 19, 2298–2307. [Google Scholar] [CrossRef]
  60. Rybarczyk-Kasiuchnicz, A.; Ramlau, R.; Stencel, K. Treatment of Brain Metastases of Non-Small Cell Lung Carcinoma. Int. J. Mol. Sci. 2021, 22, 593. [Google Scholar] [CrossRef] [PubMed]
  61. Wu, Y.L.; Tsuboi, M.; John, T.; Grohe, C.; Majem, M.; Goldman, J.W.; Laktionov, K.; Kim, S.W.; Kato, T.; Vu, H.V.; et al. A Plain Language Summary of Results from the Adaura Study: Osimertinib after Surgery for Patients Who Have Early-Stage Egfr-Mutated Non-Small Cell Lung Cancer. Future Oncol. 2021, 17, 4827–4835. [Google Scholar] [CrossRef]
  62. Zhou, Q.; Zhang, H.L.; Jiang, L.Y.; Shi, Y.K.; Chen, Y.; Yu, J.M.; Zhou, C.C.; He, Y.; Hu, Y.P.; Liang, Z.A.; et al. Real-World Evidence of Osimertinib in Chinese Patients with Egfr T790m-Positive Non-Small Cell Lung Cancer: A Subgroup Analysis from Astris Study. J. Cancer Res. Clin. Oncol. 2023, 149, 10771–10780. [Google Scholar] [CrossRef]
  63. Ohara, S.; Suda, K.; Mitsudomi, T. Cell Line Models for Acquired Resistance to First-Line Osimertinib in Lung Cancers-Applications and Limitations. Cells 2021, 10, 354. [Google Scholar] [CrossRef] [PubMed]
  64. Li, C.; Nie, W.; Guo, J.; Xiong, A.; Zhong, H.; Chu, T.; Zhong, R.; Xu, J.; Lu, J.; Zheng, X.; et al. Osimertinib Alone as Second-Line Treatment for Brain Metastases (Bm) Control May Be More Limited Than for Non-Bm in Advanced Nsclc Patients with an Acquired Egfr T790m Mutation. Respir. Res. 2021, 22, 145. [Google Scholar] [CrossRef] [PubMed]
  65. Oxnard, G.R.; Hu, Y.; Mileham, K.F.; Husain, H.; Costa, D.B.; Tracy, P.; Feeney, N.; Sholl, L.M.; Dahlberg, S.E.; Redig, A.J.; et al. Assessment of Resistance Mechanisms and Clinical Implications in Patients with Egfr T790m-Positive Lung Cancer and Acquired Resistance to Osimertinib. JAMA Oncol. 2018, 4, 1527–1534. [Google Scholar] [CrossRef] [PubMed]
  66. Nagasaka, M.; Zhu, V.W.; Lim, S.M.; Greco, M.; Wu, F.; Ou, S.I. Beyond Osimertinib: The Development of Third-Generation Egfr Tyrosine Kinase Inhibitors for Advanced Egfr+ Nsclc. J. Thorac. Oncol. 2021, 16, 740–763. [Google Scholar] [CrossRef] [PubMed]
  67. Wu, Y.; Chen, L.; Chen, J.; Xue, H.; He, Q.; Zhong, D.; Diao, X. Covalent Binding Mechanism of Furmonertinib and Osimertinib with Human Serum Albumin. Drug Metab. Dispos. 2023, 51, 8–16. [Google Scholar] [CrossRef]
  68. Skribek, M.; Bozoky, B.; Tsakonas, G. Osimertinib-Induced Syndrome of Inappropriate Secretion of Antidiuretic Hormone in Oncogene-Addicted Lung Adenocarcinoma: A Case Report. Lung Cancer 2022, 166, 132–134. [Google Scholar] [CrossRef]
  69. Takeyasu, Y.; Yoshida, T.; Masuda, K.; Matsumoto, Y.; Shinno, Y.; Okuma, Y.; Goto, Y.; Horinouchi, H.; Yamamoto, N.; Ohe, Y. Distinct Progression and Efficacy of First-Line Osimertinib Treatment According to Mutation Subtypes in Metastatic Nsclc Harboring Egfr Mutations. JTO Clin. Res. Rep. 2024, 5, 100636. [Google Scholar] [CrossRef]
  70. Attili, I.; Corvaja, C.; Spitaleri, G.; Aliaga, P.T.; Del Signore, E.; Passaro, A.; de Marinis, F. Post-Progression Analysis of Egfr-Mutant Nsclc Following Osimertinib Therapy in Real-World Settings. Cancers 2024, 16, 2589. [Google Scholar] [CrossRef]
  71. Gibson, A.J.W.; Dean, M.L.; Litt, I.; Box, A.; Cheung, W.Y.; Navani, V. Real-World Analysis of Post-Progression Treatment Patterns and Outcomes for Egfr Mutation-Positive Patients Treated with First-Line Osimertinib. Curr. Oncol. 2024, 31, 2427–2440. [Google Scholar] [CrossRef] [PubMed]
  72. Lee, J.; Kim, H.S.; Lee, B.; Kim, H.K.; Sun, J.M.; Ahn, J.S.; Ahn, M.J.; Park, K.; Lee, S.H. Genomic Landscape of Acquired Resistance to Third-Generation Egfr Tyrosine Kinase Inhibitors in Egfr T790m-Mutant Non-Small Cell Lung Cancer. Cancer 2020, 126, 2704–2712. [Google Scholar] [CrossRef] [PubMed]
  73. Jia, Y.; Yun, C.H.; Park, E.; Ercan, D.; Manuia, M.; Juarez, J.; Xu, C.; Rhee, K.; Chen, T.; Zhang, H.; et al. Overcoming Egfr(T790m) and Egfr(C797s) Resistance with Mutant-Selective Allosteric Inhibitors. Nature 2016, 534, 129–132. [Google Scholar] [CrossRef] [PubMed]
  74. Niederst, M.J.; Hu, H.; Mulvey, H.E.; Lockerman, E.L.; Garcia, A.R.; Piotrowska, Z.; Sequist, L.V.; Engelman, J.A. The Allelic Context of the C797s Mutation Acquired Upon Treatment with Third-Generation Egfr Inhibitors Impacts Sensitivity to Subsequent Treatment Strategies. Clin. Cancer Res. 2015, 21, 3924–3933. [Google Scholar] [CrossRef]
  75. Wang, Z.; Yang, J.J.; Huang, J.; Ye, J.Y.; Zhang, X.C.; Tu, H.Y.; Han-Zhang, H.; Wu, Y.L. Lung Adenocarcinoma Harboring Egfr T790m and In trans C797s Responds to Combination Therapy of First- and Third-Generation Egfr Tkis and Shifts Allelic Configuration at Resistance. J. Thorac. Oncol. 2017, 12, 1723–1727. [Google Scholar] [CrossRef] [PubMed]
  76. Wang, S.; Tsui, S.T.; Liu, C.; Song, Y.; Liu, D. Egfr C797s Mutation Mediates Resistance to Third-Generation Inhibitors in T790m-Positive Non-Small Cell Lung Cancer. J. Hematol. Oncol. 2016, 9, 59. [Google Scholar] [CrossRef] [PubMed]
  77. Bordi, P.; Del Re, M.; Minari, R.; Rofi, E.; Buti, S.; Restante, G.; Squadrilli, A.; Crucitta, S.; Casartelli, C.; Gnetti, L.; et al. From the Beginning to Resistance: Study of Plasma Monitoring and Resistance Mechanisms in a Cohort of Patients Treated with Osimertinib for Advanced T790m-Positive Nsclc. Lung Cancer 2019, 131, 78–85. [Google Scholar] [CrossRef] [PubMed]
  78. Akli, A.; Girard, N.; Fallet, V.; Rousseau-Bussac, G.; Gounant, V.; Friard, S.; Trédaniel, J.; Dujon, C.; Wislez, M.; Duchemann, B.; et al. Histomolecular Resistance Mechanisms to First-Line Osimertinib in Egfr-Mutated Advanced Non-Small Cell Lung Cancer: A Multicentric Retrospective French Study. Target. Oncol. 2022, 17, 675–682. [Google Scholar] [CrossRef] [PubMed]
  79. Nie, K.; Jiang, H.; Zhang, C.; Geng, C.; Xu, X.; Zhang, L.; Zhang, H.; Zhang, Z.; Lan, K.; Ji, Y. Mutational Profiling of Non-Small-Cell Lung Cancer Resistant to Osimertinib Using Next-Generation Sequencing in Chinese Patients. Biomed. Res. Int. 2018, 2018, 9010353. [Google Scholar] [CrossRef]
  80. Ou, S.I.; Cui, J.; Schrock, A.B.; Goldberg, M.E.; Zhu, V.W.; Albacker, L.; Stephens, P.J.; Miller, V.A.; Ali, S.M. Emergence of Novel and Dominant Acquired Egfr Solvent-Front Mutations at Gly796 (G796s/R) Together with C797s/R and L792f/H Mutations in One Egfr (L858r/T790m) Nsclc Patient Who Progressed on Osimertinib. Lung Cancer 2017, 108, 228–231. [Google Scholar] [CrossRef] [PubMed]
  81. Rangachari, D.; To, C.; Shpilsky, J.E.; VanderLaan, P.A.; Kobayashi, S.S.; Mushajiang, M.; Lau, C.J.; Paweletz, C.P.; Oxnard, G.R.; Jänne, P.A.; et al. Egfr-Mutated Lung Cancers Resistant to Osimertinib through Egfr C797s Respond to First-Generation Reversible Egfr Inhibitors but Eventually Acquire Egfr T790m/C797s in Preclinical Models and Clinical Samples. J. Thorac. Oncol. 2019, 14, 1995–2002. [Google Scholar] [CrossRef] [PubMed]
  82. Lee, K.; Kim, D.; Yoon, S.; Lee, D.H.; Kim, S.W. Exploring the Resistance Mechanisms of Second-Line Osimertinib and Their Prognostic Implications Using Next-Generation Sequencing in Patients with Non-Small-Cell Lung Cancer. Eur. J. Cancer 2021, 148, 202–210. [Google Scholar] [CrossRef]
  83. Suryavanshi, M.; Jaipuria, J.; Mattoo, S.; Dhandha, S.; Khatri, M. Audit of Molecular Mechanisms of Primary and Secondary Resistance to Various Generations of Tyrosine Kinase Inhibitors in Known Epidermal Growth Factor Receptor-Mutant Non-Small Cell Lung Cancer Patients in a Tertiary Centre. Clin. Oncol. 2022, 34, e451–e462. [Google Scholar] [CrossRef]
  84. Wang, Y.; Jiang, C.; Tang, M.; Li, H.; Zhao, C.; Zhao, M.; Zhang, Y.; Li, X.; Mi, J.; Shen, H.; et al. Effective Clinical Response of Lung Adenocarcinoma Harboring Egfr 19del/T790m/in Cis-C797s Osimertinib to Osimertinib and Gefitinib Combination Therapy. Quant. Imaging Med. Surg. 2023, 13, 5362–5368. [Google Scholar] [CrossRef] [PubMed]
  85. He, J.; Huang, Z.; Han, L.; Gong, Y.; Xie, C. Mechanisms and Management of 3rd-Generation Egfr-Tki Resistance in Advanced Non-Small Cell Lung Cancer (Review). Int. J. Oncol. 2021, 59, 90. [Google Scholar] [CrossRef]
  86. Park, S.; Ku, B.M.; Jung, H.A.; Sun, J.M.; Ahn, J.S.; Lee, S.H.; Park, K.; Ahn, M.J. Egfr C797s as a Resistance Mechanism of Lazertinib in Non-Small Cell Lung Cancer with Egfr T790m Mutation. Cancer Res. Treat. 2020, 52, 1288–1290. [Google Scholar] [CrossRef]
  87. Zhang, Y.C.; Chen, Z.H.; Zhang, X.C.; Xu, C.R.; Yan, H.H.; Xie, Z.; Chuai, S.K.; Ye, J.Y.; Han-Zhang, H.; Zhang, Z.; et al. Analysis of Resistance Mechanisms to Abivertinib, a Third-Generation Egfr Tyrosine Kinase Inhibitor, in Patients with Egfr T790m-Positive Non-Small Cell Lung Cancer from a Phase I Trial. EBioMedicine 2019, 43, 180–187. [Google Scholar] [CrossRef] [PubMed]
  88. Thress, K.S.; Brant, R.; Carr, T.H.; Dearden, S.; Jenkins, S.; Brown, H.; Hammett, T.; Cantarini, M.; Barrett, J.C. Egfr Mutation Detection in Ctdna from Nsclc Patient Plasma: A Cross-Platform Comparison of Leading Technologies to Support the Clinical Development of Azd9291. Lung Cancer 2015, 90, 509–515. [Google Scholar] [CrossRef] [PubMed]
  89. Chabon, J.J.; Simmons, A.D.; Lovejoy, A.F.; Esfahani, M.S.; Newman, A.M.; Haringsma, H.J.; Kurtz, D.M.; Stehr, H.; Scherer, F.; Karlovich, C.A.; et al. Circulating Tumour DNA Profiling Reveals Heterogeneity of Egfr Inhibitor Resistance Mechanisms in Lung Cancer Patients. Nat. Commun. 2016, 7, 11815. [Google Scholar] [CrossRef] [PubMed]
  90. Ding, P.N.; Becker, T.; Bray, V.; Chua, W.; Ma, Y.; Xu, B.; Lynch, D.; de Souza, P.; Roberts, T. Plasma Next Generation Sequencing and Droplet Digital Pcr-Based Detection of Epidermal Growth Factor Receptor (Egfr) Mutations in Patients with Advanced Lung Cancer Treated with Subsequent-Line Osimertinib. Thorac. Cancer 2019, 10, 1879–1884. [Google Scholar] [CrossRef]
  91. Vendrell, J.A.; Quantin, X.; Serre, I.; Solassol, J. Combination of Tissue and Liquid Biopsy Molecular Profiling to Detect Transformation to Small Cell Lung Carcinoma During Osimertinib Treatment. Ther. Adv. Med. Oncol. 2020, 12, 1758835920974192. [Google Scholar] [CrossRef] [PubMed]
  92. Kim, C.; Xi, L.; Cultraro, C.M.; Wei, F.; Jones, G.; Cheng, J.; Shafiei, A.; Pham, T.H.; Roper, N.; Akoth, E.; et al. Longitudinal Circulating Tumor DNA Analysis in Blood and Saliva for Prediction of Response to Osimertinib and Disease Progression in Egfr-Mutant Lung Adenocarcinoma. Cancers 2021, 13, 3342. [Google Scholar] [CrossRef] [PubMed]
  93. Fang, Q.; Wan, X.; D’Aiello, A.; Sun, H.; Gu, W.; Li, Y.; Zhou, C.; Xie, B.; Deng, Q.; Cheng, H.; et al. Temporal Genomic Heterogeneity Guiding Individualized Therapy in Recurrent Non-Small Cell Lung Cancer. Front. Oncol. 2023, 13, 1116809. [Google Scholar] [CrossRef] [PubMed]
  94. da Silva, T.F.; de Azevedo, J.C., Jr.; Teixeira, E.B.; Casseb, S.M.M.; Moreira, F.C.; de Assumpção, P.P.; Santos, S.E.B.D.; Calcagno, D.Q. From Haystack to High Precision: Advanced Sequencing Methods to Unraveling Circulating Tumor DNA Mutations. Front. Mol. Biosci. 2024, 11, 1423470. [Google Scholar] [CrossRef]
  95. Ntzifa, A.; Marras, T.; Kallergi, G.; Kotsakis, A.; Georgoulias, V.; Lianidou, E. Comprehensive Liquid Biopsy Analysis for Monitoring Nsclc Patients under Second-Line Osimertinib Treatment. Front. Oncol. 2024, 14, 1435537. [Google Scholar] [CrossRef] [PubMed]
  96. Mehlman, C.; Cadranel, J.; Rousseau-Bussac, G.; Lacave, R.; Pujals, A.; Girard, N.; Callens, C.; Gounant, V.; Théou-Anton, N.; Friard, S.; et al. Resistance Mechanisms to Osimertinib in Egfr-Mutated Advanced Non-Small-Cell Lung Cancer: A Multicentric Retrospective French Study. Lung Cancer 2019, 137, 149–156. [Google Scholar] [CrossRef] [PubMed]
  97. Nie, N.; Li, J.; Zhang, J.; Dai, J.; Liu, Z.; Ding, Z.; Wang, Y.; Zhu, M.; Hu, C.; Han, R.; et al. First-Line Osimertinib in Patients with Egfr-Mutated Non-Small Cell Lung Cancer: Effectiveness, Resistance Mechanisms, and Prognosis of Different Subsequent Treatments. Clin. Med. Insights Oncol. 2022, 16, 11795549221134735. [Google Scholar] [CrossRef]
  98. Yang, Z.; Yang, N.; Ou, Q.; Xiang, Y.; Jiang, T.; Wu, X.; Bao, H.; Tong, X.; Wang, X.; Shao, Y.W.; et al. Investigating Novel Resistance Mechanisms to Third-Generation Egfr Tyrosine Kinase Inhibitor Osimertinib in Non-Small Cell Lung Cancer Patients. Clin. Cancer Res. 2018, 24, 3097–3107. [Google Scholar] [CrossRef] [PubMed]
  99. Wang, Y.; Tian, P.; Xia, L.; Li, L.; Han, R.; Zhu, M.; Lizaso, A.; Qin, T.; Li, M.; Yu, B.; et al. The Clinical Efficacy of Combinatorial Therapy of Egfr-Tki and Crizotinib in Overcoming Met Amplification-Mediated Resistance from Prior Egfr-Tki Therapy. Lung Cancer 2020, 146, 165–173. [Google Scholar] [CrossRef] [PubMed]
  100. Rotow, J.K.; Lee, J.K.; Madison, R.W.; Oxnard, G.R.; Jänne, P.A.; Schrock, A.B. Real-World Genomic Profile of Egfr Second-Site Mutations and Other Osimertinib Resistance Mechanisms and Clinical Landscape of Nsclc Post-Osimertinib. J. Thorac. Oncol. 2024, 19, 227–239. [Google Scholar] [CrossRef] [PubMed]
  101. Zheng, D.; Hu, M.; Bai, Y.; Zhu, X.; Lu, X.; Wu, C.; Wang, J.; Liu, L.; Wang, Z.; Ni, J.; et al. Egfr G796d Mutation Mediates Resistance to Osimertinib. Oncotarget 2017, 8, 49671–49679. [Google Scholar] [CrossRef]
  102. Li, Y.; Mao, T.; Wang, J.; Zheng, H.; Hu, Z.; Cao, P.; Yang, S.; Zhu, L.; Guo, S.; Zhao, X.; et al. Toward the Next Generation Egfr Inhibitors: An Overview of Osimertinib Resistance Mediated by Egfr Mutations in Non-Small Cell Lung Cancer. Cell Commun. Signal. 2023, 21, 71. [Google Scholar] [CrossRef]
  103. Chen, K.; Zhou, F.; Shen, W.; Jiang, T.; Wu, X.; Tong, X.; Shao, Y.W.; Qin, S.; Zhou, C. Novel Mutations on Egfr Leu792 Potentially Correlate to Acquired Resistance to Osimertinib In advanced Nsclc. J. Thorac. Oncol. 2017, 12, e65–e68. [Google Scholar] [CrossRef]
  104. Xiao, X.; Xu, R.; Lu, J.; Xin, B.; Wang, C.; Zhu, K.; Zhang, H.; Chen, X. The Potential Role of Next-Generation Sequencing in Identifying Met Amplification and Disclosing Resistance Mechanisms in Nsclc Patients with Osimertinib Resistance. Front. Oncol. 2024, 14, 1470827. [Google Scholar] [CrossRef]
  105. Fukuda, S.; Suda, K.; Hamada, A.; Oiki, H.; Ohara, S.; Ito, M.; Soh, J.; Mitsudomi, T.; Tsutani, Y. Potential Utility of a 4th-Generation Egfr-Tki and Exploration of Resistance Mechanisms-an in Vitro Study. Biomedicines 2024, 12, 1412. [Google Scholar] [CrossRef]
  106. Song, Z.; Ren, G.; Wang, X.; Du, H.; Sun, Y.; Hu, L. Durable Clinical Benefit from Afatinib in a Lung Adenocarcinoma Patient with Acquired Egfr L718v Mutation-Mediated Resistance Towards Osimertinib: A Case Report and Literature Review. Ann. Palliat. Med. 2022, 11, 1126–1134. [Google Scholar] [CrossRef] [PubMed]
  107. Callegari, D.; Ranaghan, K.E.; Woods, C.J.; Minari, R.; Tiseo, M.; Mor, M.; Mulholland, A.J.; Lodola, A. L718q Mutant Egfr Escapes Covalent Inhibition by Stabilizing a Non-Reactive Conformation of the Lung Cancer Drug Osimertinib. Chem. Sci. 2018, 9, 2740–2749. [Google Scholar] [CrossRef] [PubMed]
  108. Fang, W.; Huang, Y.; Gan, J.; Zheng, Q.; Zhang, L. Emergence of Egfr G724s after Progression on Osimertinib Responded to Afatinib Monotherapy. J. Thorac. Oncol. 2020, 15, e36–e37. [Google Scholar] [CrossRef] [PubMed]
  109. Minari, R.; Leonetti, A.; Gnetti, L.; Zielli, T.; Ventura, L.; Bottarelli, L.; Lagrasta, C.; La Monica, S.; Petronini, P.G.; Alfieri, R.; et al. Afatinib Therapy in Case of Egfr G724s Emergence as Resistance Mechanism to Osimertinib. Anticancer Drugs 2021, 32, 758–762. [Google Scholar] [CrossRef] [PubMed]
  110. Ercan, D.; Choi, H.G.; Yun, C.H.; Capelletti, M.; Xie, T.; Eck, M.J.; Gray, N.S.; Jänne, P.A. Egfr Mutations and Resistance to Irreversible Pyrimidine-Based Egfr Inhibitors. Clin. Cancer Res. 2015, 21, 3913–3923. [Google Scholar] [CrossRef] [PubMed]
  111. Zhang, Y.; He, B.; Zhou, D.; Li, M.; Hu, C. Newly Emergent Acquired Egfr Exon 18 G724s Mutation after Resistance of a T790m Specific Egfr Inhibitor Osimertinib in Non-Small-Cell Lung Cancer: A Case Report. Onco Targets Ther. 2019, 12, 51–56. [Google Scholar] [CrossRef]
  112. Brown, B.P.; Zhang, Y.K.; Westover, D.; Yan, Y.; Qiao, H.; Huang, V.; Du, Z.; Smith, J.A.; Ross, J.S.; Miller, V.A.; et al. On-Target Resistance to the Mutant-Selective Egfr Inhibitor Osimertinib Can Develop in an Allele-Specific Manner Dependent on the Original Egfr-Activating Mutation. Clin. Cancer Res. 2019, 25, 3341–3351. [Google Scholar] [CrossRef] [PubMed]
  113. Li, G.; Fang, M.; Zhou, Y.; Liu, X.; Tian, P.; Mei, F. Afatinib Overcoming Resistance to Icotinib and Osimertinib in Nsclc with Leptomeningeal Metastasis in Patients with Acquired Egfr L858r/T790m or L858r/S768i Mutations: Two Case Reports. Heliyon 2023, 9, e20690. [Google Scholar] [CrossRef]
  114. Schrock, A.B.; Zhu, V.W.; Hsieh, W.S.; Madison, R.; Creelan, B.; Silberberg, J.; Costin, D.; Bharne, A.; Bonta, I.; Bosemani, T.; et al. Receptor Tyrosine Kinase Fusions and Braf Kinase Fusions Are Rare but Actionable Resistance Mechanisms to Egfr Tyrosine Kinase Inhibitors. J. Thorac. Oncol. 2018, 13, 1312–1323. [Google Scholar] [CrossRef] [PubMed]
  115. Castellano, G.M.; Aisner, J.; Burley, S.K.; Vallat, B.; Yu, H.A.; Pine, S.R.; Ganesan, S. A Novel Acquired Exon 20 Egfr M766q Mutation in Lung Adenocarcinoma Mediates Osimertinib Resistance but Is Sensitive to Neratinib and Poziotinib. J. Thorac. Oncol. 2019, 14, 1982–1988. [Google Scholar] [CrossRef] [PubMed]
  116. Robichaux, J.P.; Le, X.; Vijayan, R.S.K.; Hicks, J.K.; Heeke, S.; Elamin, Y.Y.; Lin, H.Y.; Udagawa, H.; Skoulidis, F.; Tran, H.; et al. Structure-Based Classification Predicts Drug Response in Egfr-Mutant Nsclc. Nature 2021, 597, 732–737. [Google Scholar] [CrossRef]
  117. Vyse, S.; Huang, P.H. Targeting Egfr Exon 20 Insertion Mutations in Non-Small Cell Lung Cancer. Signal Transduct. Target. Ther. 2019, 4, 5. [Google Scholar] [CrossRef] [PubMed]
  118. Riess, J.W.; Gandara, D.R.; Frampton, G.M.; Madison, R.; Peled, N.; Bufill, J.A.; Dy, G.K.; Ou, S.I.; Stephens, P.J.; McPherson, J.D.; et al. Diverse Egfr Exon 20 Insertions and Co-Occurring Molecular Alterations Identified by Comprehensive Genomic Profiling of Nsclc. J. Thorac. Oncol. 2018, 13, 1560–1568. [Google Scholar] [CrossRef] [PubMed]
  119. Meador, C.B.; Sequist, L.V.; Piotrowska, Z. Targeting Egfr Exon 20 Insertions in Non-Small Cell Lung Cancer: Recent Advances and Clinical Updates. Cancer Discov. 2021, 11, 2145–2157. [Google Scholar] [CrossRef]
  120. Friedlaender, A.; Subbiah, V.; Russo, A.; Banna, G.L.; Malapelle, U.; Rolfo, C.; Addeo, A. Egfr and Her2 Exon 20 Insertions in Solid Tumours: From Biology to Treatment. Nat. Rev. Clin. Oncol. 2022, 19, 51–69. [Google Scholar] [CrossRef] [PubMed]
  121. Grant, M.J.; Aredo, J.V.; Starrett, J.H.; Stockhammer, P.; van Alderwerelt van Rosenburgh, I.K.; Wurtz, A.; Piper-Valillo, A.J.; Piotrowska, Z.; Falcon, C.; Yu, H.A.; et al. Efficacy of Osimertinib in Patients with Lung Cancer Positive for Uncommon Egfr Exon 19 Deletion Mutations. Clin. Cancer Res. 2023, 29, 2123–2130. [Google Scholar] [CrossRef] [PubMed]
  122. Schoenfeld, A.J.; Chan, J.M.; Kubota, D.; Sato, H.; Rizvi, H.; Daneshbod, Y.; Chang, J.C.; Paik, P.K.; Offin, M.; Arcila, M.E.; et al. Tumor Analyses Reveal Squamous Transformation and Off-Target Alterations as Early Resistance Mechanisms to First-Line Osimertinib in Egfr-Mutant Lung Cancer. Clin. Cancer Res. 2020, 26, 2654–2663. [Google Scholar] [CrossRef]
  123. Le, X.; Puri, S.; Negrao, M.V.; Nilsson, M.B.; Robichaux, J.; Boyle, T.; Hicks, J.K.; Lovinger, K.L.; Roarty, E.; Rinsurongkawong, W.; et al. Landscape of Egfr-Dependent and -Independent Resistance Mechanisms to Osimertinib and Continuation Therapy Beyond Progression in Egfr-Mutant Nsclc. Clin. Cancer Res. 2018, 24, 6195–6203. [Google Scholar] [CrossRef] [PubMed]
  124. Yu, H.A.; Kerr, K.; Rolfo, C.D.; Fang, J.; Finocchiaro, G.; Wong, K.-H.; Veillon, R.; Kato, T.; Yang, J.C.-H.; Nadal, E.; et al. Detection of Met Amplification (Metamp) in Patients with Egfr Mutant (M) Nsclc after First-Line (1l) Osimertinib. J. Clin. Oncol. 2023, 41, 9074. [Google Scholar] [CrossRef]
  125. Chmielecki, J.; Gray, J.E.; Cheng, Y.; Ohe, Y.; Imamura, F.; Cho, B.C.; Lin, M.C.; Majem, M.; Shah, R.; Rukazenkov, Y.; et al. Candidate Mechanisms of Acquired Resistance to First-Line Osimertinib in Egfr-Mutated Advanced Non-Small Cell Lung Cancer. Nat. Commun. 2023, 14, 1070. [Google Scholar] [CrossRef] [PubMed]
  126. Choudhury, N.J.; Marra, A.; Sui, J.S.Y.; Flynn, J.; Yang, S.R.; Falcon, C.J.; Selenica, P.; Schoenfeld, A.J.; Rekhtman, N.; Gomez, D.; et al. Molecular Biomarkers of Disease Outcomes and Mechanisms of Acquired Resistance to First-Line Osimertinib in Advanced Egfr-Mutant Lung Cancers. J. Thorac. Oncol. 2023, 18, 463–475. [Google Scholar] [CrossRef]
  127. Cardona, A.F.; Ruiz-Patiño, A.; Recondo, G.; Martín, C.; Raez, L.; Samtani, S.; Minata, J.N.; Blaquier, J.B.; Enrico, D.; Burotto, M.; et al. Mechanisms of Resistance to First-Line Osimertinib in Hispanic Patients with Egfr Mutant Non-Small Cell Lung Cancer (Freston-Clicap). Clin. Lung Cancer 2022, 23, 522–531. [Google Scholar] [CrossRef] [PubMed]
  128. Yonesaka, K.; Tanizaki, J.; Maenishi, O.; Haratani, K.; Kawakami, H.; Tanaka, K.; Hayashi, H.; Sakai, K.; Chiba, Y.; Tsuya, A.; et al. Her3 Augmentation Via Blockade of Egfr/Akt Signaling Enhances Anticancer Activity of Her3-Targeting Patritumab Deruxtecan in Egfr-Mutated Non-Small Cell Lung Cancer. Clin. Cancer Res. 2022, 28, 390–403. [Google Scholar] [CrossRef] [PubMed]
  129. Yonesaka, K.; Takegawa, N.; Watanabe, S.; Haratani, K.; Kawakami, H.; Sakai, K.; Chiba, Y.; Maeda, N.; Kagari, T.; Hirotani, K.; et al. An Her3-Targeting Antibody-Drug Conjugate Incorporating a DNA Topoisomerase I Inhibitor U3-1402 Conquers Egfr Tyrosine Kinase Inhibitor-Resistant Nsclc. Oncogene 2019, 38, 1398–1409. [Google Scholar] [CrossRef] [PubMed]
  130. Zhang, S.; Chen, Z.; Shi, P.; Fan, S.; He, Y.; Wang, Q.; Li, Y.; Ramalingam, S.S.; Owonikoko, T.K.; Sun, S.Y. Downregulation of Death Receptor 4 Is Tightly Associated with Positive Response of Egfr Mutant Lung Cancer to Egfr-Targeted Therapy and Improved Prognosis. Theranostics 2021, 11, 3964–3980. [Google Scholar] [CrossRef]
  131. Zeng, L.; Yang, N.; Zhang, Y. Gopc-Ros1 Rearrangement as an Acquired Resistance Mechanism to Osimertinib and Responding to Crizotinib Combined Treatments in Lung Adenocarcinoma. J. Thorac. Oncol. 2018, 13, e114–e116. [Google Scholar] [CrossRef]
  132. Yano, S.; Wang, W.; Li, Q.; Matsumoto, K.; Sakurama, H.; Nakamura, T.; Ogino, H.; Kakiuchi, S.; Hanibuchi, M.; Nishioka, Y.; et al. Hepatocyte Growth Factor Induces Gefitinib Resistance of Lung Adenocarcinoma with Epidermal Growth Factor Receptor-Activating Mutations. Cancer Res. 2008, 68, 9479–9487. [Google Scholar] [CrossRef]
  133. Kim, J.; Lee, T.S.; Lee, M.H.; Cho, I.R.; Ryu, J.K.; Kim, Y.T.; Lee, S.H.; Paik, W.H. Pancreatic Cancer Treatment Targeting the Hgf/C-Met Pathway: The Mek Inhibitor Trametinib. Cancers 2024, 16, 1056. [Google Scholar] [CrossRef]
  134. Turke, A.B.; Zejnullahu, K.; Wu, Y.L.; Song, Y.; Dias-Santagata, D.; Lifshits, E.; Toschi, L.; Rogers, A.; Mok, T.; Sequist, L.; et al. Preexistence and Clonal Selection of Met Amplification in Egfr Mutant Nsclc. Cancer Cell 2010, 17, 77–88. [Google Scholar] [CrossRef] [PubMed]
  135. Huang, W.C.; Yadav, V.K.; Cheng, W.H.; Wang, C.H.; Hsieh, M.S.; Huang, T.Y.; Lin, S.F.; Yeh, C.T.; Kuo, K.T. The Mek/Erk/Mir-21 Signaling Is Critical in Osimertinib Resistance in Egfr-Mutant Non-Small Cell Lung Cancer Cells. Cancers 2021, 13, 6005. [Google Scholar] [CrossRef] [PubMed]
  136. Hu, H.; Piotrowska, Z.; Hare, P.J.; Chen, H.; Mulvey, H.E.; Mayfield, A.; Noeen, S.; Kattermann, K.; Greenberg, M.; Williams, A.; et al. Three Subtypes of Lung Cancer Fibroblasts Define Distinct Therapeutic Paradigms. Cancer Cell 2021, 39, 1531–1547.e10. [Google Scholar] [CrossRef]
  137. Sun, B.; Qiu, T.; Zeng, X.; Duan, J.; Bai, H.; Xu, J.; Li, J.; Li, J.; Hao, X.; Liu, Y.; et al. Detection of Met Polysomy by Next-Generation Sequencing and Its Clinical Relevance for Met Inhibitors. Cancer Res. Commun. 2023, 3, 532–539. [Google Scholar] [CrossRef] [PubMed]
  138. Coleman, N.; Hong, L.; Zhang, J.; Heymach, J.; Hong, D.; Le, X. Beyond Epidermal Growth Factor Receptor: Met Amplification as a General Resistance Driver to Targeted Therapy in Oncogene-Driven Non-Small-Cell Lung cancer. ESMO Open 2021, 6, 100319. [Google Scholar] [CrossRef] [PubMed]
  139. Noonan, S.A.; Berry, L.; Lu, X.; Gao, D.; Barón, A.E.; Chesnut, P.; Sheren, J.; Aisner, D.L.; Merrick, D.; Doebele, R.C.; et al. Identifying the Appropriate Fish Criteria for Defining Met Copy Number-Driven Lung Adenocarcinoma through Oncogene Overlap Analysis. J. Thorac. Oncol. 2016, 11, 1293–1304. [Google Scholar] [CrossRef]
  140. Sakamoto, M.; Patil, T. Met Alterations in Advanced Non-Small Cell Lung Cancer. Lung Cancer 2023, 178, 254–268. [Google Scholar] [CrossRef] [PubMed]
  141. Peng, L.-X.; Jie, G.-L.; Li, A.-N.; Liu, S.-Y.; Sun, H.; Zheng, M.-M.; Zhou, J.-Y.; Zhang, J.-T.; Zhang, X.-C.; Zhou, Q.; et al. Met Amplification Identified by Next-Generation Sequencing and Its Clinical Relevance for Met Inhibitors. Exp. Hematol. Oncol. 2021, 10, 52. [Google Scholar] [CrossRef]
  142. Xiang, C.; Lv, X.; Chen, K.; Guo, L.; Zhao, R.; Teng, H.; Ye, M.; Kuang, T.; Hou, T.; Liu, C.; et al. Unraveling the Significance of Met Focal Amplification in Lung Cancer: Integrative Ngs, Fish, and Ihc Investigation. Mod. Pathol. 2024, 37, 100451. [Google Scholar] [CrossRef] [PubMed]
  143. Yin, W.; Cheng, J.; Tang, Z.; Toruner, G.; Hu, S.; Guo, M.; Robinson, M.; Medeiros, L.J.; Tang, G. MET amplification (MET/CEP7 ratio≥ 1.8) is an independent poor prognostic marker in patients with treatment-naive non–small-cell lung cancer. Clin. Lung Cancer 2021, 22, e512–e518. [Google Scholar] [CrossRef]
  144. Guo, R.; Luo, J.; Chang, J.; Rekhtman, N.; Arcila, M.; Drilon, A. Met-Dependent Solid Tumours—Molecular Diagnosis and Targeted Therapy. Nat. Rev. Clin. Oncol. 2020, 17, 569–587. [Google Scholar] [CrossRef]
  145. Mu, Y.; Hao, X.; Yang, K.; Ma, D.; Wang, S.; Xu, Z.; Li, J.; Xing, P. Clinical Modality of Resistance and Subsequent Management of Patients with Advanced Non-Small Cell Lung Cancer Failing Treatment with Osimertinib. Target. Oncol. 2019, 14, 335–342. [Google Scholar] [CrossRef] [PubMed]
  146. Blakely, C.M.; Watkins, T.B.K.; Wu, W.; Gini, B.; Chabon, J.J.; McCoach, C.E.; McGranahan, N.; Wilson, G.A.; Birkbak, N.J.; Olivas, V.R.; et al. Evolution and Clinical Impact of Co-Occurring Genetic Alterations in Advanced-Stage Egfr-Mutant Lung Cancers. Nat. Genet. 2017, 49, 1693–1704. [Google Scholar] [CrossRef] [PubMed]
  147. Martinez-Marti, A.; Felip, E.; Matito, J.; Mereu, E.; Navarro, A.; Cedrés, S.; Pardo, N.; de Castro, A.M.; Remon, J.; Miquel, J.M.; et al. Dual Met and Erbb Inhibition Overcomes Intratumor Plasticity in Osimertinib-Resistant-Advanced Non-Small-Cell Lung Cancer (Nsclc). Ann. Oncol. 2017, 28, 2451–2457. [Google Scholar] [CrossRef]
  148. Suzawa, K.; Offin, M.; Schoenfeld, A.J.; Plodkowski, A.J.; Odintsov, I.; Lu, D.; Lockwood, W.W.; Arcila, M.E.; Rudin, C.M.; Drilon, A.; et al. Acquired Met Exon 14 Alteration Drives Secondary Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor in Egfr-Mutated Lung Cancer. JCO Precis. Oncol. 2019, 3, 1–8. [Google Scholar] [CrossRef]
  149. Wang, K.; Hsu, R. Anti-Met Antibody Therapies in Non-Small-Cell Lung Cancer: Current Progress and Future Directions. Antibodies 2024, 13, 88. [Google Scholar] [CrossRef] [PubMed]
  150. Zhu, K.; Lv, Z.; Xiong, J.; Zheng, H.; Zhang, S.; Jin, H.; Yu, L.; Li, Z.; Zhang, J.; Li, C.; et al. Met Inhibitor, Capmatinib Overcomes Osimertinib Resistance Via Suppression of Met/Akt/Snail Signaling in Non-Small Cell Lung Cancer and Decreased Generation of Cancer-Associated Fibroblasts. Aging 2021, 13, 6890–6903. [Google Scholar] [CrossRef] [PubMed]
  151. Hsu, C.C.; Liao, B.C.; Liao, W.Y.; Markovets, A.; Stetson, D.; Thress, K.; Yang, J.C. Exon 16-Skipping Her2 as a Novel Mechanism of Osimertinib Resistance in Egfr L858r/T790m-Positive Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2020, 15, 50–61. [Google Scholar] [CrossRef] [PubMed]
  152. Nagasaka, M.; Singh, V.; Baca, Y.; Sukari, A.; Kim, C.; Mamdani, H.; Spira, A.I.; Uprety, D.; Bepler, G.; Kim, E.S.; et al. The Effects of Her2 Alterations in Egfr Mutant Non-Small Cell Lung Cancer. Clin. Lung Cancer 2022, 23, 52–59. [Google Scholar] [CrossRef]
  153. Jebbink, M.; de Langen, A.J.; Monkhorst, K.; Boelens, M.C.; van den Broek, D.; van der Noort, V.; de Gooijer, C.J.; Mahn, M.; van der Wekken, A.J.; Hendriks, L.; et al. Trastuzumab-Emtansine and Osimertinib Combination Therapy to Target Her2 Bypass Track Resistance in Egfr Mutation-Positive Nsclc. JTO Clin. Res. Rep. 2023, 4, 100481. [Google Scholar] [CrossRef] [PubMed]
  154. Sergina, N.V.; Rausch, M.; Wang, D.; Blair, J.; Hann, B.; Shokat, K.M.; Moasser, M.M. Escape from Her-Family Tyrosine Kinase Inhibitor Therapy by the Kinase-Inactive Her3. Nature 2007, 445, 437–441. [Google Scholar] [CrossRef]
  155. Cheng, H.; Liu, P.; Ohlson, C.; Xu, E.; Symonds, L.; Isabella, A.; Muller, W.J.; Lin, N.U.; Krop, I.E.; Roberts, T.M.; et al. Pik3ca(H1047r)- and Her2-Initiated Mammary Tumors Escape Pi3k Dependency by Compensatory Activation of Mek-Erk Signaling. Oncogene 2016, 35, 2961–2970. [Google Scholar] [CrossRef]
  156. Lee, S.; Greenlee, E.B.; Amick, J.R.; Ligon, G.F.; Lillquist, J.S.; Natoli, E.J., Jr.; Hadari, Y.; Alvarado, D.; Schlessinger, J. Inhibition of Erbb3 by a Monoclonal Antibody That Locks the Extracellular Domain in an Inactive Configuration. Proc. Natl. Acad. Sci. USA 2015, 112, 13225–13230. [Google Scholar] [CrossRef]
  157. Romaniello, D.; Marrocco, I.; Nataraj, N.B.; Ferrer, I.; Drago-Garcia, D.; Vaknin, I.; Oren, R.; Lindzen, M.; Ghosh, S.; Kreitman, M.; et al. Targeting Her3, a Catalytically Defective Receptor Tyrosine Kinase, Prevents Resistance of Lung Cancer to a Third-Generation Egfr Kinase Inhibitor. Cancers 2020, 12, 2394. [Google Scholar] [CrossRef] [PubMed]
  158. Chen, Q.; Jia, G.; Zhang, X.; Ma, W. Targeting Her3 to Overcome Egfr Tki Resistance in Nsclc. Front. Immunol. 2023, 14, 1332057. [Google Scholar] [CrossRef] [PubMed]
  159. Vicencio, J.M.; Evans, R.; Green, R.; An, Z.; Deng, J.; Treacy, C.; Mustapha, R.; Monypenny, J.; Costoya, C.; Lawler, K.; et al. Osimertinib and Anti-Her3 Combination Therapy Engages Immune Dependent Tumor Toxicity Via Sting Activation in Trans. Cell Death Dis. 2022, 13, 274. [Google Scholar] [CrossRef]
  160. Bermúdez-Abreut, E.; Báez, G.B.; Pestano, M.M.; Attanasio, G.; Castillo, C.Y.G.; Fernández, D.R.H.; Alvarez-Arzola, R.; Alimonti, A.; Sánchez-Ramírez, B. Antitumor Activity of Pabs Generated by Immunization with a Novel Her3-Targeting Protein-Based Vaccine Candidate in Preclinical Models. Front. Oncol. 2024, 14, 1472607. [Google Scholar] [CrossRef]
  161. Larsen, M.E.; Lyu, H.; Liu, B. Her3-Targeted Therapeutic Antibodies and Antibody-Drug Conjugates in Non-Small Cell Lung Cancer Refractory to Egfr-Tyrosine Kinase Inhibitors. Chin. Med. J. Pulm. Crit. Care Med. 2023, 1, 11–17. [Google Scholar] [CrossRef] [PubMed]
  162. Wang, D.; Qian, G.; Zhang, H.; Magliocca, K.R.; Nannapaneni, S.; Amin, A.R.; Rossi, M.; Patel, M.; El-Deiry, M.; Wadsworth, J.T.; et al. Her3 Targeting Sensitizes Hnscc to Cetuximab by Reducing Her3 Activity and Her2/Her3 Dimerization: Evidence from Cell Line and Patient-Derived Xenograft Models. Clin. Cancer Res. 2017, 23, 677–686. [Google Scholar] [CrossRef] [PubMed]
  163. Lyu, H.; Han, A.; Polsdofer, E.; Liu, S.; Liu, B. Understanding the Biology of Her3 Receptor as a Therapeutic Target in Human Cancer. Acta Pharm. Sin. B 2018, 8, 503–510. [Google Scholar] [CrossRef] [PubMed]
  164. Yu, H.A.; Yang, J.C.; Hayashi, H.; Goto, Y.; Felip, E.; Reck, M.; Vigliotti, M.; Dong, Q.; Cantero, F.; Fan, P.D.; et al. Herthena-Lung01: A Phase Ii Study of Patritumab Deruxtecan (Her3-Dxd) in Previously Treated Metastatic Egfr-Mutated Nsclc. Future Oncol. 2023, 19, 1319–1329. [Google Scholar] [CrossRef]
  165. Yu, H.A.; Goto, Y.; Hayashi, H.; Felip, E.; Yang, J.C.-H.; Reck, M.; Yoh, K.; Lee, S.H.; Paz-Ares, L.; Besse, B.; et al. Herthena-Lung01, a Phase Ii Trial of Patritumab Deruxtecan (Her3-Dxd) in Epidermal Growth Factor Receptor-Mutated Non-Small-Cell Lung Cancer after Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Therapy and Platinum-Based Chemotherapy. J. Clin. Oncol. 2023, 41, 5363–5375. [Google Scholar] [CrossRef] [PubMed]
  166. Mok, T.; Jänne, P.A.; Nishio, M.; Novello, S.; Reck, M.; Steuer, C.; Wu, Y.L.; Fougeray, R.; Fan, P.D.; Meng, J.; et al. Herthena-Lung02: Phase Iii Study of Patritumab Deruxtecan in Advanced Egfr-Mutated Nsclc after a Third-Generation Egfr Tki. Future Oncol. 2024, 20, 969–980. [Google Scholar] [CrossRef]
  167. Raoof, S.; Mulford, I.J.; Frisco-Cabanos, H.; Nangia, V.; Timonina, D.; Labrot, E.; Hafeez, N.; Bilton, S.J.; Drier, Y.; Ji, F.; et al. Targeting Fgfr Overcomes Emt-Mediated Resistance in Egfr Mutant Non-Small Cell Lung Cancer. Oncogene 2019, 38, 6399–6413. [Google Scholar] [CrossRef]
  168. Lu, Y.; Liu, Y.; Oeck, S.; Zhang, G.J.; Schramm, A.; Glazer, P.M. Hypoxia Induces Resistance to Egfr Inhibitors in Lung Cancer Cells Via Upregulation of Fgfr1 and the Mapk Pathway. Cancer Res. 2020, 80, 4655–4667. [Google Scholar] [CrossRef] [PubMed]
  169. Terp, M.G.; Jacobsen, K.; Molina, M.A.; Karachaliou, N.; Beck, H.C.; Bertran-Alamillo, J.; Giménez-Capitán, A.; Cardona, A.F.; Rosell, R.; Ditzel, H.J. Combined Fgfr and Akt Pathway Inhibition Abrogates Growth of Fgfr1 Overexpressing Egfr-Tki-Resistant Nsclc Cells. NPJ Precis. Oncol. 2021, 5, 65. [Google Scholar] [CrossRef]
  170. Nakamura, R.; Yamada, T.; Tokuda, S.; Morimoto, K.; Katayama, Y.; Matsui, Y.; Hirai, S.; Ishida, M.; Kawachi, H.; Sawada, R.; et al. Triple Combination Therapy Comprising Osimertinib, an Axl Inhibitor, and an Fgfr Inhibitor Improves the Efficacy of Egfr-Mutated Non-Small Cell Lung Cancer. Cancer Lett. 2024, 598, 217124. [Google Scholar] [CrossRef] [PubMed]
  171. Manabe, T.; Yasuda, H.; Terai, H.; Kagiwada, H.; Hamamoto, J.; Ebisudani, T.; Kobayashi, K.; Masuzawa, K.; Ikemura, S.; Kawada, I.; et al. Igf2 Autocrine-Mediated Igf1r Activation Is a Clinically Relevant Mechanism of Osimertinib Resistance in Lung Cancer. Mol. Cancer Res. 2020, 18, 549–559. [Google Scholar] [CrossRef] [PubMed]
  172. Wang, R.; Yamada, T.; Kita, K.; Taniguchi, H.; Arai, S.; Fukuda, K.; Terashima, M.; Ishimura, A.; Nishiyama, A.; Tanimoto, A.; et al. Transient Igf-1r Inhibition Combined with Osimertinib Eradicates Axl-Low Expressing Egfr Mutated Lung Cancer. Nat. Commun. 2020, 11, 4607. [Google Scholar] [CrossRef]
  173. Tang, Y.F.; Liu, Z.H.; Zhang, L.Y.; Shi, S.H.; Xu, S.; Ma, J.A.; Hu, C.H.; Zou, F.W. Circ_Ppapdc1a Promotes Osimertinib Resistance by Sponging the Mir-30a-3p/ Igf1r Pathway in Non-Small Cell Lung Cancer (Nsclc). Mol. Cancer 2024, 23, 91. [Google Scholar] [CrossRef]
  174. Liu, S.; Jiang, Z.; Xiao, P.; Li, X.; Chen, Y.; Tang, H.; Chai, Y.; Liu, Y.; Zhu, Z.; Xie, Q.; et al. Hsa_Circ_0005576 Promotes Osimertinib Resistance through the Mir-512-5p/Igf1r Axis in Lung Adenocarcinoma Cells. Cancer Sci. 2022, 113, 79–90. [Google Scholar] [CrossRef] [PubMed]
  175. Taniguchi, H.; Yamada, T.; Wang, R.; Tanimura, K.; Adachi, Y.; Nishiyama, A.; Tanimoto, A.; Takeuchi, S.; Araujo, L.H.; Boroni, M.; et al. Axl Confers Intrinsic Resistance to Osimertinib and Advances the Emergence of Tolerant Cells. Nat. Commun. 2019, 10, 259. [Google Scholar] [CrossRef] [PubMed]
  176. Kim, D.; Bach, D.H.; Fan, Y.H.; Luu, T.T.; Hong, J.Y.; Park, H.J.; Lee, S.K. Axl Degradation in Combination with Egfr-Tki Can Delay and Overcome Acquired Resistance in Human Non-Small Cell Lung Cancer Cells. Cell Death Dis. 2019, 10, 361. [Google Scholar] [CrossRef] [PubMed]
  177. Zhu, C.; Wei, Y.; Wei, X. Axl Receptor Tyrosine Kinase as a Promising Anti-Cancer Approach: Functions, Molecular Mechanisms and Clinical Applications. Mol. Cancer 2019, 18, 153. [Google Scholar] [CrossRef]
  178. Jung, S.; Kim, D.H.; Choi, Y.J.; Kim, S.Y.; Park, H.; Lee, H.; Choi, C.M.; Sung, Y.H.; Lee, J.C.; Rho, J.K. Contribution of P53 in Sensitivity to Egfr Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer. Sci. Rep. 2021, 11, 19667. [Google Scholar] [CrossRef] [PubMed]
  179. Kariolis, M.S.; Miao, Y.R.; Diep, A.; Nash, S.E.; Olcina, M.M.; Jiang, D.; Jones, D.S.; Kapur, S.; Mathews, I.I.; Koong, A.C.; et al. Inhibition of the Gas6/Axl Pathway Augments the Efficacy of Chemotherapies. J. Clin. Investig. 2017, 127, 183–198. [Google Scholar] [CrossRef]
  180. Codony-Servat, J.; García-Roman, S.; Molina-Vila, M.; Bertran-Alamillo, J.; Giménez-Capitán, A.; Viteri, S.; Cardona, A.F.; D’Hondt, E.; Karachaliou, N.; Rosell, R. Anti-Epidermal Growth Factor Vaccine Antibodies Enhance the Efficacy of Tyrosine Kinase Inhibitors and Delay the Emergence of Resistance in Egfr Mutant Lung Cancer Cells. J. Thorac. Oncol. 2018, 13, 1324–1337. [Google Scholar] [CrossRef] [PubMed]
  181. Lei, T.; Xu, T.; Zhang, N.; Zou, X.; Kong, Z.; Wei, C.; Wang, Z. Anlotinib Combined with Osimertinib Reverses Acquired Osimertinib Resistance in Nsclc by Targeting the C-Met/Myc/Axl Axis. Pharmacol. Res. 2023, 188, 106668. [Google Scholar] [CrossRef] [PubMed]
  182. Tanaka, H.; Sakagami, H.; Kaneko, N.; Konagai, S.; Yamamoto, H.; Matsuya, T.; Yuri, M.; Yamanaka, Y.; Mori, M.; Takeuchi, M.; et al. Mutant-Selective Irreversible Egfr Inhibitor, Naquotinib, Inhibits Tumor Growth in Nsclc Models with Egfr-Activating Mutations, T790m Mutation, and Axl Overexpression. Mol. Cancer Ther. 2019, 18, 1366–1373. [Google Scholar] [CrossRef] [PubMed]
  183. Koopman, L.A.; Terp, M.G.; Zom, G.G.; Janmaat, M.L.; Jacobsen, K.; den Heuvel, E.G.-V.; Brandhorst, M.; Forssmann, U.; de Bree, F.; Pencheva, N.; et al. Enapotamab Vedotin, an Axl-Specific Antibody-Drug Conjugate, Shows Preclinical Antitumor Activity in Non-Small Cell Lung Cancer. JCI Insight 2019, 4, e128199. [Google Scholar] [CrossRef] [PubMed]
  184. Okura, N.; Nishioka, N.; Yamada, T.; Taniguchi, H.; Tanimura, K.; Katayama, Y.; Yoshimura, A.; Watanabe, S.; Kikuchi, T.; Shiotsu, S.; et al. Ono-7475, a Novel Axl Inhibitor, Suppresses the Adaptive Resistance to Initial Egfr-Tki Treatment in Egfr-Mutated Non-Small Cell Lung Cancer. Clin. Cancer Res. 2020, 26, 2244–2256. [Google Scholar] [CrossRef] [PubMed]
  185. Li, X.; Zhang, D.; Li, B.; Zou, B.; Wang, S.; Fan, B.; Li, W.; Yu, J.; Wang, L. Clinical Implications of Germline Bcl2l11 Deletion Polymorphism in Pretreated Advanced Nsclc Patients with Osimertinib Therapy. Lung Cancer 2021, 151, 39–43. [Google Scholar] [CrossRef] [PubMed]
  186. Li, X.; Wang, S.; Li, B.; Wang, Z.; Shang, S.; Shao, Y.; Sun, X.; Wang, L. Bim Deletion Polymorphism Confers Resistance to Osimertinib in Egfr T790m Lung Cancer: A Case Report and Literature Review. Target. Oncol. 2018, 13, 517–523. [Google Scholar] [CrossRef]
  187. Nakagawa, T.; Takeuchi, S.; Yamada, T.; Ebi, H.; Sano, T.; Nanjo, S.; Ishikawa, D.; Sato, M.; Hasegawa, Y.; Sekido, Y.; et al. Egfr-Tki Resistance Due to Bim Polymorphism Can Be Circumvented in Combination with Hdac Inhibition. Cancer Res. 2013, 73, 2428–2434. [Google Scholar] [CrossRef] [PubMed]
  188. Tanimoto, A.; Takeuchi, S.; Arai, S.; Fukuda, K.; Yamada, T.; Roca, X.; Ong, S.T.; Yano, S. Histone Deacetylase 3 Inhibition Overcomes Bim Deletion Polymorphism-Mediated Osimertinib Resistance in Egfr-Mutant Lung Cancer. Clin. Cancer Res. 2017, 23, 3139–3149. [Google Scholar] [CrossRef]
  189. Bertino, E.M.; Gentzler, R.D.; Clifford, S.; Kolesar, J.; Muzikansky, A.; Haura, E.B.; Piotrowska, Z.; Camidge, D.R.; Stinchcombe, T.E.; Hann, C.; et al. Phase Ib Study of Osimertinib in Combination with Navitoclax in Egfr-Mutant Nsclc Following Resistance to Initial Egfr Therapy (Etctn 9903). Clin Cancer Res 2021, 27, 1604–1611. [Google Scholar] [CrossRef] [PubMed]
  190. Tang, M.; Luo, W.; Zhou, Y.; Zhang, Z.; Jiang, Z. Anoikis-Related Gene Cdkn2a Predicts Prognosis and Immune Response and Mediates Proliferation and Migration in Thyroid Carcinoma. Transl. Oncol. 2024, 40, 101873. [Google Scholar] [CrossRef] [PubMed]
  191. Goel, S.; DeCristo, M.J.; McAllister, S.S.; Zhao, J.J. Cdk4/6 Inhibition in Cancer: Beyond Cell Cycle Arrest. Trends Cell Biol. 2018, 28, 911–925. [Google Scholar] [CrossRef]
  192. Zhang, M.; Kim, S.; Yang, H.W. Non-Canonical Pathway for Rb Inactivation and External Signaling Coordinate Cell-Cycle Entry without Cdk4/6 Activity. Nat. Commun. 2023, 14, 7847. [Google Scholar] [CrossRef] [PubMed]
  193. Zhou, L.; Ng, D.S.-C.; Yam, J.C.; Chen, L.J.; Tham, C.C.; Pang, C.P.; Chu, W.K. Post-Translational Modifications on the Retinoblastoma Protein. J. Biomed. Sci. 2022, 29, 33. [Google Scholar] [CrossRef]
  194. Dai, X.; Liu, X.; Ge, F.; Zhu, H.; Zheng, C.; Yan, F.; Yang, B. The Effect of Plk1 Inhibitor in Osimertinib Resistant Non-Small Cell Lung Carcinoma Cells. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2023, 52, 558–566. [Google Scholar] [CrossRef]
  195. La Monica, S.; Fumarola, C.; Cretella, D.; Bonelli, M.; Minari, R.; Cavazzoni, A.; Digiacomo, G.; Galetti, M.; Volta, F.; Mancini, M.; et al. Efficacy of the Cdk4/6 Dual Inhibitor Abemaciclib in Egfr-Mutated Nsclc Cell Lines with Different Resistance Mechanisms to Osimertinib. Cancers 2020, 13, 6. [Google Scholar] [CrossRef]
  196. Qin, Q.; Li, X.; Liang, X.; Zeng, L.; Wang, J.; Sun, L.; Zhong, D. Cdk4/6 Inhibitor Palbociclib Overcomes Acquired Resistance to Third-Generation Egfr Inhibitor Osimertinib in Non-Small Cell Lung Cancer (Nsclc). Thorac. Cancer 2020, 11, 2389–2397. [Google Scholar] [CrossRef]
  197. Ntzifa, A.; Marras, T.; Georgoulias, V.; Lianidou, E. Liquid Biopsy for the Management of Nsclc Patients under Osimertinib Treatment. Crit. Rev. Clin. Lab. Sci. 2024, 61, 347–369. [Google Scholar] [CrossRef]
  198. Wang, C.; Fei, K.; Liu, L.; Duan, J.; Wang, Z.; Li, S.; Xu, J.; Zhang, X.; Tian, Y.; Qu, Y.; et al. Abnormal Activation of Nf-Κb and Mapk Signaling Pathways Affect Osimertinib Resistance and Influence the Recruitment of Myeloid-Derived Suppressor Cells to Shape the Immunosuppressive Tumor Immune Microenvironment. Thorac. Cancer 2023, 14, 1843–1856. [Google Scholar] [CrossRef]
  199. Kato, R.; Hayashi, H.; Sakai, K.; Suzuki, S.; Haratani, K.; Takahama, T.; Tanizaki, J.; Nonagase, Y.; Tanaka, K.; Yoshida, T.; et al. Capp-Seq Analysis of Circulating Tumor DNA from Patients with Egfr T790m-Positive Lung Cancer after Osimertinib. Int. J. Clin. Oncol. 2021, 26, 1628–1639. [Google Scholar] [CrossRef] [PubMed]
  200. Li, N.; Guha, U.; Kim, C.; Ye, L.; Cheng, J.; Li, F.; Chia, D.; Wei, F.; Wong, D.T.W. Longitudinal Monitoring of Egfr and Pik3ca Mutations by Saliva-Based Efirm in Advanced Nsclc Patients with Local Ablative Therapy and Osimertinib Treatment: Two Case Reports. Front. Oncol. 2020, 10, 1240. [Google Scholar] [CrossRef] [PubMed]
  201. Park, S.; Shim, J.H.; Lee, B.; Cho, I.; Park, W.Y.; Kim, Y.; Lee, S.H.; Choi, Y.; Han, J.; Ahn, J.S.; et al. Paired Genomic Analysis of Squamous Cell Carcinoma Transformed from Egfr-Mutated Lung Adenocarcinoma. Lung Cancer 2019, 134, 7–15. [Google Scholar] [CrossRef] [PubMed]
  202. Hashemi, M.; Khosroshahi, E.M.; Asadi, S.; Tanha, M.; Mohseni, F.G.; Sagha, R.A.; Taheri, E.; Vazayefi, P.; Shekarriz, H.; Habibi, F.; et al. Emerging Roles of Non-Coding Rnas in Modulating the Pi3k/Akt Pathway in Cancer. Noncoding RNA Res. 2025, 10, 1–15. [Google Scholar] [CrossRef]
  203. Dimou, A.; Nasarre, C.; Peterson, Y.K.; Pagano, R.; Gooz, M.; Nasarre, P.; Drabkin, H.A.; Armeson, K.E.; Gibney, B.C.; Gemmill, R.M.; et al. Neuropilin-2b Facilitates Resistance to Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer. J. Thorac. Cardiovasc. Surg. 2021, 162, 463–473. [Google Scholar] [CrossRef] [PubMed]
  204. Hughes, P.E.; Caenepeel, S.; Wu, L.C. Targeted Therapy and Checkpoint Immunotherapy Combinations for the Treatment of Cancer. Trends Immunol. 2016, 37, 462–476. [Google Scholar] [CrossRef]
  205. Lu, T.; Zhou, L.; Chu, Z.; Song, Y.; Wang, Q.; Zhao, M.; Dai, C.; Chen, L.; Cheng, G.; Wang, J.; et al. Cordyceps Sinensis Relieves Non-Small Cell Lung Cancer by Inhibiting the Mapk Pathway. Chin. Med. 2024, 19, 54. [Google Scholar] [CrossRef] [PubMed]
  206. Della Corte, C.M.; Ciaramella, V.; Cardone, C.; La Monica, S.; Alfieri, R.; Petronini, P.G.; Malapelle, U.; Vigliar, E.; Pepe, F.; Troncone, G.; et al. Antitumor Efficacy of Dual Blockade of Egfr Signaling by Osimertinib in Combination with Selumetinib or Cetuximab in Activated Egfr Human Nclc Tumor Models. J. Thorac. Oncol. 2018, 13, 810–820. [Google Scholar] [CrossRef] [PubMed]
  207. Zhang, S.; Zeng, Z.; Qiu, F.; Li, X.; Xu, X. Circdonson Regulates the Proliferation, Invasion and Migration of Non-Small Cell Lung Cancer Cells through the Mapk Signaling Pathway. Genes Dis. 2025, 12, 101217. [Google Scholar] [CrossRef]
  208. Ohashi, K.; Sequist, L.V.; Arcila, M.E.; Moran, T.; Chmielecki, J.; Lin, Y.L.; Pan, Y.; Wang, L.; de Stanchina, E.; Shien, K.; et al. Lung Cancers with Acquired Resistance to Egfr Inhibitors Occasionally Harbor Braf Gene Mutations but Lack Mutations in Kras, Nras, or Mek1. Proc. Natl. Acad. Sci. USA 2012, 109, E2127–E2133. [Google Scholar] [CrossRef]
  209. Minari, R.; Bordi, P.; La Monica, S.; Squadrilli, A.; Leonetti, A.; Bottarelli, L.; Azzoni, C.; Lagrasta, C.A.M.; Gnetti, L.; Campanini, N.; et al. Concurrent Acquired Braf V600e Mutation and Met Amplification as Resistance Mechanism of First-Line Osimertinib Treatment in a Patient with Egfr-Mutated Nsclc. J. Thorac. Oncol. 2018, 13, e89–e91. [Google Scholar] [CrossRef]
  210. Blair, H.A. Sotorasib: First Approval. Drugs 2021, 81, 1573–1579. [Google Scholar] [CrossRef] [PubMed]
  211. Pandey, D.; Chauhan, S.C.; Kashyap, V.K.; Roy, K.K. Structural Insights into Small-Molecule Kras Inhibitors for Targeting Kras Mutant Cancers. Eur. J. Med. Chem. 2024, 277, 116771. [Google Scholar] [CrossRef]
  212. Mezquita, L.; Oulhen, M.; Aberlenc, A.; Deloger, M.; Aldea, M.; Honore, A.; Lecluse, Y.; Howarth, K.; Friboulet, L.; Besse, B.; et al. Resistance to Braf Inhibition Explored through Single Circulating Tumour Cell Molecular Profiling in Braf-Mutant Non-Small-Cell Lung Cancer. Br. J. Cancer 2024, 130, 682–693. [Google Scholar] [CrossRef] [PubMed]
  213. Chimbangu, C.T.; Ya, Z.; Xi, L.; Jiayue, Z.; Xiao, M.; Ying, W.; Xingxu, Y.; Liu, X. Promising Response of Dabrafenib, Trametinib, and Osimertinib Combination Therapy for Concomitant Braf and Egfr-Tki Resistance Mutations. Anticancer Drugs 2024, 35, 109–115. [Google Scholar] [CrossRef] [PubMed]
  214. La Monica, S.; Minari, R.; Cretella, D.; Bonelli, M.; Fumarola, C.; Cavazzoni, A.; Galetti, M.; Digiacomo, G.; Riccardi, F.; Petronini, P.G.; et al. Acquired Braf G469a Mutation as a Resistance Mechanism to First-Line Osimertinib Treatment in Nsclc Cell Lines Harboring an Egfr Exon 19 Deletion. Target. Oncol. 2019, 14, 619–626. [Google Scholar] [CrossRef]
  215. Al-Salama, Z.T. Encorafenib: A Review in Metastatic Colorectal Cancer with a Braf V600e Mutation. Drugs 2021, 81, 849–856. [Google Scholar] [CrossRef]
  216. Xie, Z.; Gu, Y.; Xie, X.; Lin, X.; Ouyang, M.; Qin, Y.; Zhang, J.; Lizaso, A.; Chen, S.; Zhou, C. Lung Adenocarcinoma Harboring Concomitant Egfr Mutations and Braf V600e Responds to a Combination of Osimertinib and Vemurafenib to Overcome Osimertinib Resistance. Clin. Lung Cancer 2021, 22, e390–e394. [Google Scholar] [CrossRef]
  217. Meng, P.; Koopman, B.; Kok, K.; Elst, A.T.; Schuuring, E.; van Kempen, L.C.; Timens, W.; Hiltermann, T.J.N.; Groen, H.J.M.; van den Berg, A.; et al. Combined Osimertinib, Dabrafenib and Trametinib Treatment for Advanced Non-Small-Cell Lung Cancer Patients with an Osimertinib-Induced Braf V600e Mutation. Lung Cancer 2020, 146, 358–361. [Google Scholar] [CrossRef]
  218. Huang, Y.; Gan, J.; Guo, K.; Deng, Y.; Fang, W. Acquired Braf V600e Mutation Mediated Resistance to Osimertinib and Responded to Osimertinib, Dabrafenib, and Trametinib Combination Therapy. J. Thorac. Oncol. 2019, 14, e236–e237. [Google Scholar] [CrossRef]
  219. Gu, J.; Yao, W.; Shi, P.; Zhang, G.; Owonikoko, T.K.; Ramalingam, S.S.; Sun, S.Y. Mek or Erk Inhibition Effectively Abrogates Emergence of Acquired Osimertinib Resistance in the Treatment of Epidermal Growth Factor Receptor-Mutant Lung Cancers. Cancer 2020, 126, 3788–3799. [Google Scholar] [CrossRef] [PubMed]
  220. Tsamis, I.; Gomatou, G.; Chachali, S.P.; Trontzas, I.P.; Patriarcheas, V.; Panagiotou, E.; Kotteas, E. Braf/Mek Inhibition in Nsclc: Mechanisms of Resistance and How to Overcome It. Clin. Transl. Oncol. 2023, 25, 10–20. [Google Scholar] [CrossRef]
  221. Shi, P.; Oh, Y.T.; Zhang, G.; Yao, W.; Yue, P.; Li, Y.; Kanteti, R.; Riehm, J.; Salgia, R.; Owonikoko, T.K.; et al. Met Gene Amplification and Protein Hyperactivation Is a Mechanism of Resistance to Both First and Third Generation Egfr Inhibitors in Lung Cancer Treatment. Cancer Lett. 2016, 380, 494–504. [Google Scholar] [CrossRef] [PubMed]
  222. Shi, P.; Oh, Y.T.; Deng, L.; Zhang, G.; Qian, G.; Zhang, S.; Ren, H.; Wu, G.; Legendre, B., Jr.; Anderson, E.; et al. Overcoming Acquired Resistance to Azd9291, a Third-Generation Egfr Inhibitor, through Modulation of Mek/Erk-Dependent Bim and Mcl-1 Degradation. Clin. Cancer Res. 2017, 23, 6567–6579. [Google Scholar] [CrossRef] [PubMed]
  223. Bian, D.J.H.; Lazaratos, A.M.; Maritan, S.M.; Quaiattini, A.; Zeng, Z.; Zhu, Z.; Sener, U.; Malani, R.; Kim, Y.J.; Ichihara, E.; et al. Osimertinib Is Associated with Improved Outcomes in Pre-Treated Non-Small Cell Lung Cancer Leptomeningeal Metastases: A Systematic Review and Meta-Analysiss. Heliyon 2024, 10, e29668. [Google Scholar] [CrossRef] [PubMed]
  224. Fukuda, K.; Otani, S.; Takeuchi, S.; Arai, S.; Nanjo, S.; Tanimoto, A.; Nishiyama, A.; Naoki, K.; Yano, S. Trametinib Overcomes Kras-G12v-Induced Osimertinib Resistance in a Leptomeningeal Carcinomatosis Model of Egfr-Mutant Lung Cancer. Cancer Sci. 2021, 112, 3784–3795. [Google Scholar] [CrossRef]
  225. Chen, W.; Yu, D.; Sun, S.Y.; Li, F. Nanoparticles for Co-Delivery of Osimertinib and Selumetinib to Overcome Osimertinib-Acquired Resistance in Non-Small Cell Lung Cancer. Acta Biomater. 2021, 129, 258–268. [Google Scholar] [CrossRef] [PubMed]
  226. Zhao, P.; Zhang, J.; Wu, A.; Zhang, M.; Zhao, Y.; Tang, Y.; Wang, B.; Chen, T.; Li, F.; Zhao, Q.; et al. Biomimetic Codelivery Overcomes Osimertinib-Resistant Nsclc and Brain Metastasis Via Macrophage-Mediated Innate Immunity. J. Control Release 2021, 329, 1249–1261. [Google Scholar] [CrossRef] [PubMed]
  227. Della Corte, C.M.; Malapelle, U.; Vigliar, E.; Pepe, F.; Troncone, G.; Ciaramella, V.; Troiani, T.; Martinelli, E.; Belli, V.; Ciardiello, F.; et al. Efficacy of Continuous Egfr-Inhibition and Role of Hedgehog in Egfr Acquired Resistance in Human Lung Cancer Cells with Activating Mutation of Egfr. Oncotarget 2017, 8, 23020–23032. [Google Scholar] [CrossRef] [PubMed]
  228. Zheng, H.; Tang, Y.; Zang, H.; Luo, J.; Zhou, H.; Zhan, Y.; Zou, Y.; Wen, Q.; Ma, J.; Fan, S. Itraconazole Reversing Acquired Resistance to Osimertinib in Nsclc by Inhibiting the Shh/Dusp13b/P-Stat3 Axis. Adv. Sci. 2024, e2409416. [Google Scholar] [CrossRef]
  229. Oxnard, G.R.; Yang, J.C.; Yu, H.; Kim, S.W.; Saka, H.; Horn, L.; Goto, K.; Ohe, Y.; Mann, H.; Thress, K.S.; et al. Tatton: A Multi-Arm, Phase Ib Trial of Osimertinib Combined with Selumetinib, Savolitinib, or Durvalumab in Egfr-Mutant Lung Cancer. Ann. Oncol. 2020, 31, 507–516. [Google Scholar] [CrossRef]
  230. Lee, P.H.; Huang, Y.H.; Lin, H.; Hsu, K.H.; Chen, K.C.; Tseng, J.S.; Chang, G.C.; Yang, T.Y. Histological Transformation after Acquired Resistance to the Third-Generation Egfr-Tki in Patients with Advanced Egfr-Mutant Lung Adenocarcinoma. Medicina 2022, 58, 908. [Google Scholar] [CrossRef]
  231. Chakraborty, S.; Coleman, C.; Manoj, P.; Demircioglu, D.; Shah, N.; de Stanchina, E.; Rudin, C.M.; Hasson, D.; Sen, T. De Novo and Histologically Transformed Small-Cell Lung Cancer Is Sensitive to Lurbinectedin Treatment through the Modulation of Emt and Notch Signaling Pathways. Clin. Cancer Res. 2023, 29, 3526–3540. [Google Scholar] [CrossRef] [PubMed]
  232. Wang, X.; Liang, J.; Li, L.; Pan, Z.; Wang, L. Reuse of Osimertinib after Small Cell Lung Cancer Transformation in Lung Adenocarcinoma with De-Novo Epidermal Growth Factor Receptor T790m Mutation: Case Report. Anticancer Drugs 2023, 34, 306–310. [Google Scholar] [CrossRef] [PubMed]
  233. Takahashi, S.; Sato, Y.; Sato, Y.; Hirabayashi, R.; Hara, S.; Takahashi, Y.; Tomii, K. Long-Term Efficacy of Immune Checkpoint Inhibitor for Squamous Cell Carcinoma Lesion Transformed from Egfr-Mutated Adenocarcinoma after Osimertinib Treatment: A Case Report. JTO Clin. Res. Rep. 2024, 5, 100639. [Google Scholar] [CrossRef]
  234. Stegelmeier, P.; Dawson, J.A.; Wallace, M.; Esebua, M. Osimertinib Resistance Via Histologic Transformation from Non-Small Cell Lung Carcinoma to Carcinosarcoma. Cureus 2024, 16, e59293. [Google Scholar] [CrossRef] [PubMed]
  235. Hakozaki, T.; Kitazono, M.; Takamori, M.; Kiriu, T. Combined Small and Squamous Transformation in Egfr-Mutated Lung Adenocarcinoma. Intern. Med. 2020, 59, 1291–1294. [Google Scholar] [CrossRef]
  236. Lee, P.H.; Chang, G.C. Transformations First into Squamous-Cell Carcinoma and Later into Sarcomatoid Carcinoma after Acquired Resistance to Osimertinib in a Patient with Egfr-Mutant Lung Adenocarcinoma: Case Report. Clin. Lung Cancer 2021, 22, e536–e541. [Google Scholar] [CrossRef]
  237. Jin, C.B.; Yang, L. Histological Transformation of Non-Small Cell Lung Cancer: Clinical Analysis of Nine Cases. World J. Clin. Cases 2021, 9, 4617–4626. [Google Scholar] [CrossRef] [PubMed]
  238. Quintanal-Villalonga, A.; Taniguchi, H.; Zhan, Y.A.; Hasan, M.M.; Chavan, S.S.; Meng, F.; Uddin, F.; Allaj, V.; Manoj, P.; Shah, N.S.; et al. Comprehensive Molecular Characterization of Lung Tumors Implicates Akt and Myc Signaling in Adenocarcinoma to Squamous Cell Transdifferentiation. J. Hematol. Oncol. 2021, 14, 170. [Google Scholar] [CrossRef] [PubMed]
  239. Lee, J.K.; Lee, J.; Kim, S.; Kim, S.; Youk, J.; Park, S.; An, Y.; Keam, B.; Kim, D.W.; Heo, D.S.; et al. Clonal History and Genetic Predictors of Transformation into Small-Cell Carcinomas from Lung Adenocarcinomas. J. Clin. Oncol. 2017, 35, 3065–3074. [Google Scholar] [CrossRef]
  240. Offin, M.; Chan, J.M.; Tenet, M.; Rizvi, H.A.; Shen, R.; Riely, G.J.; Rekhtman, N.; Daneshbod, Y.; Quintanal-Villalonga, A.; Penson, A.; et al. Concurrent Rb1 and Tp53 Alterations Define A subset of Egfr-Mutant Lung Cancers at Risk For histologic Transformation and Inferior Clinical Outcomes. J. Thorac. Oncol. 2019, 14, 1784–1793. [Google Scholar] [CrossRef]
  241. Cao, P.; Li, Y.; Shi, R.; Yuan, Y.; Gong, H.; Zhu, G.; Zhang, Z.; Chen, C.; Zhang, H.; Liu, M.; et al. Combining Egfr-Tki with Saha Overcomes Egfr-Tki-Acquired Resistance by Reducing the Protective Autophagy in Non-Small Cell Lung Cancer. Front. Chem. 2022, 10, 837987. [Google Scholar] [CrossRef] [PubMed]
  242. Qin, Q.; Li, X.; Liang, X.; Zeng, L.; Wang, J.; Sun, L.; Zhong, D. Targeting the Emt Transcription Factor Snail Overcomes Resistance to Osimertinib in Egfr-Mutant Non-Small Cell Lung Cancer. Thorac. Cancer 2021, 12, 1708–1715. [Google Scholar] [CrossRef]
  243. Dong, B.; Li, S.; Zhu, S.; Yi, M.; Luo, S.; Wu, K. MiRNA-Mediated Emt and Cscs in Cancer Chemoresistance. Exp. Hematol. Oncol. 2021, 10, 12. [Google Scholar] [CrossRef] [PubMed]
  244. Castosa, R.; Martinez-Iglesias, O.; Roca-Lema, D.; Casas-Pais, A.; Díaz-Díaz, A.; Iglesias, P.; Santamarina, I.; Graña, B.; Calvo, L.; Valladares-Ayerbes, M.; et al. Hakai Overexpression Effectively Induces Tumour Progression and Metastasis in Vivo. Sci. Rep. 2018, 8, 3466. [Google Scholar] [CrossRef] [PubMed]
  245. Weng, C.H.; Chen, L.Y.; Lin, Y.C.; Shih, J.Y.; Lin, Y.C.; Tseng, R.Y.; Chiu, A.C.; Yeh, Y.H.; Liu, C.; Lin, Y.T.; et al. Epithelial-Mesenchymal Transition (Emt) Beyond Egfr Mutations Per Se Is a Common Mechanism for Acquired Resistance to Egfr Tki. Oncogene 2019, 38, 455–468. [Google Scholar] [CrossRef] [PubMed]
  246. De Craene, B.; Berx, G. Regulatory Networks Defining Emt During Cancer Initiation and Progression. Nat. Rev. Cancer 2013, 13, 97–110. [Google Scholar] [CrossRef] [PubMed]
  247. Cho, H.J.; Baek, K.E.; Saika, S.; Jeong, M.J.; Yoo, J. Snail Is Required for Transforming Growth Factor-Beta-Induced Epithelial-Mesenchymal Transition by Activating Pi3 Kinase/Akt Signal Pathway. Biochem. Biophys. Res. Commun. 2007, 353, 337–343. [Google Scholar] [CrossRef]
  248. Xu, J.; Lamouille, S.; Derynck, R. Tgf-Beta-Induced Epithelial to Mesenchymal Transition. Cell Res. 2009, 19, 156–172. [Google Scholar] [CrossRef] [PubMed]
  249. Hisakane, K.; Seike, M.; Sugano, T.; Yoshikawa, A.; Matsuda, K.; Takano, N.; Takahashi, S.; Noro, R.; Gemma, A. Exosome-Derived Mir-210 Involved in Resistance to Osimertinib and Epithelial-Mesenchymal Transition in Egfr Mutant Non-Small Cell Lung Cancer Cells. Thorac. Cancer 2021, 12, 1690–1698. [Google Scholar] [CrossRef]
  250. Han, R.; Guo, H.; Shi, J.; Wang, H.; Zhao, S.; Jia, Y.; Liu, X.; Li, J.; Cheng, L.; Zhao, C.; et al. Tumour Microenvironment Changes after Osimertinib Treatment Resistance in Non-Small Cell Lung Cancer. Eur. J. Cancer 2023, 189, 112919. [Google Scholar] [CrossRef]
  251. Yochum, Z.A.; Cades, J.; Wang, H.; Chatterjee, S.; Simons, B.W.; O’Brien, J.P.; Khetarpal, S.K.; Lemtiri-Chlieh, G.; Myers, K.V.; Huang, E.H.; et al. Targeting the Emt Transcription Factor Twist1 Overcomes Resistance to Egfr Inhibitors in Egfr-Mutant Non-Small-Cell Lung Cancer. Oncogene 2019, 38, 656–670. [Google Scholar] [CrossRef] [PubMed]
  252. Liu, K.; Chen, X.; Wu, L.; Chen, S.; Fang, N.; Cai, L.; Jia, J. Id1 Mediates Resistance to Osimertinib in Egfr T790m-Positive Non-Small Cell Lung Cancer through Epithelial-Mesenchymal Transition. BMC Pulm. Med. 2021, 21, 163. [Google Scholar] [CrossRef] [PubMed]
  253. Jiang, X.M.; Xu, Y.L.; Yuan, L.W.; Zhang, L.L.; Huang, M.Y.; Ye, Z.H.; Su, M.X.; Chen, X.P.; Zhu, H.; Ye, R.D.; et al. Tgfβ2-Mediated Epithelial-Mesenchymal Transition and Nf-Κb Pathway Activation Contribute to Osimertinib Resistance. Acta Pharmacol. Sin. 2021, 42, 451–459. [Google Scholar] [CrossRef] [PubMed]
  254. Yu, Y.; Lin, Y.; Yang, G.; Tian, L. The Interplay between Tgf-Β/Smad and Bmp/Smad Signaling Pathways in the Epithelial Mesenchymal Transition of A549 Cells Induced by Silica. Toxicol. Mech. Methods 2018, 28, 286–292. [Google Scholar] [CrossRef] [PubMed]
  255. La Monica, S.; Minari, R.; Cretella, D.; Flammini, L.; Fumarola, C.; Bonelli, M.; Cavazzoni, A.; Digiacomo, G.; Galetti, M.; Madeddu, D.; et al. Third Generation Egfr Inhibitor Osimertinib Combined with Pemetrexed or Cisplatin Exerts Long-Lasting Anti-Tumor Effect in Egfr-Mutated Pre-Clinical Models of Nsclc. J. Exp. Clin. Cancer Res. 2019, 38, 222. [Google Scholar] [CrossRef] [PubMed]
  256. Hsiao, S.H.; Lu, Y.J.; Li, Y.Q.; Huang, Y.H.; Hsieh, C.H.; Wu, C.P. Osimertinib (Azd9291) Attenuates the Function of Multidrug Resistance-Linked Atp-Binding Cassette Transporter Abcb1 in Vitro. Mol. Pharm. 2016, 13, 2117–2125. [Google Scholar] [CrossRef] [PubMed]
  257. Wang, X.; Mao, W.; Wang, Z.; Li, X.; Xiong, Y.; Lu, H.; Wang, X.; Yin, H.; Cao, X.; Xin, H. Enhanced Anti-Brain Metastasis from Non-Small Cell Lung Cancer of Osimertinib and Doxorubicin Co-Delivery Targeted Nanocarrier. Int. J. Nanomed. 2020, 15, 5491–5501. [Google Scholar] [CrossRef]
  258. Tanaka, K.; Asahina, H.; Kishimoto, J.; Miyata, Y.; Uchida, T.; Watanabe, K.; Hamai, K.; Harada, T.; Tsubata, Y.; Sugawara, S.; et al. Osimertinib Versus Osimertinib Plus Chemotherapy for Non-Small Cell Lung Cancer with Egfr (T790m)-Associated Resistance to Initial Egfr Inhibitor Treatment: An Open-Label, Randomised Phase 2 Clinical Trial. Eur. J. Cancer 2021, 149, 14–22. [Google Scholar] [CrossRef]
  259. Sequist, L.V.; Peled, N.; Tufman, A.; Servidio, L.; Li, J.; Taylor, R.; Zhao, J. P47.11 Compel: Chemotherapy with/without Osimertinib in Patients with Egfrm Advanced Nsclc and Progression on First-Line Osimertinib. J. Thorac. Oncol. 2021, 16, S1101. [Google Scholar] [CrossRef]
  260. Okuma, Y.; Nomura, S.; Ninomiya, K.; Yamaguchi, H.; Murakami, S.; Kogure, Y.; Harada, D.; Okishio, K.; Okamoto, H.; Goto, Y. 1186tip Epona, Efficacy of Osimertinib with Platinum and Pemetrexed in Egfr Mutant Non-Small Cell Lung Cancer Patients Bearing Cns Metastasis, and Have Systemic Progression but Stable Intracranial Disease on Osimertinib Resistance (Torg 1938). Ann. Oncol. 2022, 33, S1090–S1091. [Google Scholar] [CrossRef]
  261. Saito, R.; Sugawara, S.; Ko, R.; Azuma, K.; Morita, R.; Maemondo, M.; Oizumi, S.; Takahashi, K.; Kagamu, H.; Tsubata, Y.; et al. Phase 2 Study of Osimertinib in Combination with Platinum and Pemetrexed in Patients with Previously Untreated Egfr-Mutated Advanced Non-Squamous Non-Small Cell Lung Cancer: The Opal Study. Eur. J. Cancer 2023, 185, 83–93. [Google Scholar] [CrossRef]
  262. Planchard, D.; Jänne, P.A.; Cheng, Y.; Yang, J.C.-H.; Yanagitani, N.; Kim, S.-W.; Sugawara, S.; Yu, Y.; Fan, Y.; Geater, S.L.; et al. Osimertinib with or without Chemotherapy in Egfr-Mutated Advanced Nsclc. N. Engl. J. Med. 2023, 389, 1935–1948. [Google Scholar] [CrossRef] [PubMed]
  263. Kanda, S.; Niho, S.; Kurata, T.; Nomura, S.; Kawashima, Y.; Yoneshima, Y.; Yokoyama, T.; Watanabe, Y.; Tanaka, H.; Fujiwara, Y.; et al. A Phase Iii Study Comparing Egfr Tyrosine Kinase Inhibitor (Egfr-Tki) Monotherapy and Egfr-Tki with Inserted Cisplatin (Cddp) Plus Pemetrexed (Pem) as a First-Line Treatment in Patients (Pts) with Advanced Non-Squamous Non–Small-Cell Lung Cancer (Nsqnsclc) Harboring Egfr Activating Mutation (Egfr-Nsqnsclc): Jcog1404/Wjog8214l, Again Study. J. Clin. Oncol. 2023, 41, LBA9009. [Google Scholar]
  264. Tabernero, J. The Role of Vegf and Egfr Inhibition: Implications for Combining Anti-Vegf and Anti-Egfr Agents. Mol. Cancer Res. 2007, 5, 203–220. [Google Scholar] [CrossRef]
  265. Seto, T.; Kato, T.; Nishio, M.; Goto, K.; Atagi, S.; Hosomi, Y.; Yamamoto, N.; Hida, T.; Maemondo, M.; Nakagawa, K.; et al. Erlotinib Alone or with Bevacizumab as First-Line Therapy in Patients with Advanced Non-Squamous Non-Small-Cell Lung Cancer Harbouring Egfr Mutations (Jo25567): An Open-Label, Randomised, Multicentre, Phase 2 Study. Lancet Oncol. 2014, 15, 1236–1244. [Google Scholar] [CrossRef]
  266. Saito, H.; Fukuhara, T.; Furuya, N.; Watanabe, K.; Sugawara, S.; Iwasawa, S.; Tsunezuka, Y.; Yamaguchi, O.; Okada, M.; Yoshimori, K.; et al. Erlotinib Plus Bevacizumab Versus Erlotinib Alone in Patients with Egfr-Positive Advanced Non-Squamous Non-Small-Cell Lung Cancer (Nej026): Interim Analysis of an Open-Label, Randomised, Multicentre, Phase 3 Trial. Lancet Oncol. 2019, 20, 625–635. [Google Scholar] [CrossRef] [PubMed]
  267. Zhou, Q.; Xu, C.R.; Cheng, Y.; Liu, Y.P.; Chen, G.Y.; Cui, J.W.; Yang, N.; Song, Y.; Li, X.L.; Lu, S.; et al. Bevacizumab Plus Erlotinib in Chinese Patients with Untreated, Egfr-Mutated, Advanced Nsclc (Artemis-Ctong1509): A Multicenter Phase 3 Study. Cancer Cell 2021, 39, 1279–1291.e3. [Google Scholar] [CrossRef] [PubMed]
  268. Yao, L.; Zhang, C.; Li, D.; Xu, L.; Yang, X. Efficacy and Safety of Osimertinib Plus Bevacizumab Versus Osimertinib Alone for Advanced Non-Small-Cell Lung Cancer with Egfr Mutations: A Meta-Analysis of Randomized Controlled Trials. Medicine 2024, 103, e40320. [Google Scholar] [CrossRef] [PubMed]
  269. Yu, H.A.; Schoenfeld, A.J.; Makhnin, A.; Kim, R.; Rizvi, H.; Tsui, D.; Falcon, C.; Houck-Loomis, B.; Meng, F.; Yang, J.L.; et al. Effect of Osimertinib and Bevacizumab on Progression-Free Survival for Patients with Metastatic Egfr-Mutant Lung Cancers: A Phase 1/2 Single-Group Open-Label Trial. JAMA Oncol. 2020, 6, 1048–1054. [Google Scholar] [CrossRef]
  270. Kenmotsu, H.; Wakuda, K.; Mori, K.; Kato, T.; Sugawara, S.; Kirita, K.; Yoneshima, Y.; Azuma, K.; Nishino, K.; Teraoka, S.; et al. Randomized Phase 2 Study of Osimertinib Plus Bevacizumab Versus Osimertinib for Untreated Patients with Nonsquamous Nsclc Harboring Egfr Mutations: Wjog9717l Study. J. Thorac. Oncol. 2022, 17, 1098–1108. [Google Scholar] [CrossRef]
  271. Soo, R.A.; Han, J.Y.; Dafni, U.; Cho, B.C.; Yeo, C.M.; Nadal, E.; Carcereny, E.; de Castro, J.; Sala, M.A.; Bernabé, R.; et al. A Randomised Phase Ii Study of Osimertinib and Bevacizumab Versus Osimertinib Alone as Second-Line Targeted Treatment in Advanced Nsclc with Confirmed Egfr and Acquired T790m Mutations: The European Thoracic Oncology Platform (Etop 10-16) Booster Trial. Ann. Oncol. 2022, 33, 181–192. [Google Scholar] [CrossRef] [PubMed]
  272. Zhou, Q.; Li, J.; Cang, S.D.; Lin, J.X.; Tu, H.Y.; Du, Y.; Qin, J.W.; Liang, X.H.; Yu, Y.; Lan, H.T.; et al. Flair: A Phase Ii, Open Label, Randomized Study of Osimertinib Plus Bevacizumab Versus Osimertinib in Recurrent or Metastatic Treatment-Naïve Nsclc Patients Harboring Egfr 21l858r Mutation. Clin. Lung Cancer 2024, in press. [Google Scholar] [CrossRef]
  273. Nishio, M.; Paz-Ares, L.; Reck, M.; Nakagawa, K.; Garon, E.B.; Popat, S.; Ceccarelli, M.; Graham, H.T.; Visseren-Grul, C.; Novello, S. Relay, Ramucirumab Plus Erlotinib (Ram+Erl) in Untreated Metastatic Egfr-Mutant Nsclc (Egfr+ Nsclc): Association between Tp53 Status and Clinical Outcome. Clin. Lung Cancer 2023, 24, 415–428. [Google Scholar] [CrossRef]
  274. Le, X.; Patel, J.D.; Shum, E.; Baik, C.; Sanborn, R.E.; Shu, C.A.; Kim, C.; Fidler, M.J.; Hall, R.; Elamin, Y.Y.; et al. A Multicenter Open-Label Randomized Phase Ii Study of Osimertinib with and without Ramucirumab in Tyrosine Kinase Inhibitor-Naïve Egfr-Mutant Metastatic Non-Small Cell Lung Cancer (Ramose Trial). J. Clin. Oncol. 2024, Jco2400533. [Google Scholar] [CrossRef] [PubMed]
  275. Daum, S.; Hagen, H.; Naismith, E.; Wolf, D.; Pircher, A. The Role of Anti-Angiogenesis in the Treatment Landscape of Non-Small Cell Lung Cancer—New Combinational Approaches and Strategies of Neovessel Inhibition. Front. Cell Dev. Biol. 2020, 8, 610903. [Google Scholar] [CrossRef]
  276. Han, R.; Guo, H.; Shi, J.; Zhao, S.; Jia, Y.; Liu, X.; Liu, Y.; Cheng, L.; Zhao, C.; Li, X.; et al. Osimertinib in Combination with Anti-Angiogenesis Therapy Presents a Promising Option for Osimertinib-Resistant Non-Small Cell Lung Cancer. BMC Med. 2024, 22, 174. [Google Scholar]
  277. Jin, X.; Pan, Y.; Cheng, C.; Shen, H.; Zhai, C.; Yin, K.; Zhu, X.; Pan, H.; You, L. Optimizing First-Line Tki Treatment Efficacy in Pd-L1-Positive Egfr-Mutated Nsclc: The Impact of Antiangiogenic Agents. Front. Pharmacol. 2024, 15, 1391972. [Google Scholar] [CrossRef] [PubMed]
  278. Kaira, K.; Imai, H.; Mouri, A.; Hashimoto, K.; Miura, Y.; Shiono, A.; Yamaguchi, O.; Kobayashi, K.; Kawasaki, T.; Yasuda, M.; et al. Clinicopathological Impact of Vegfr2 and Vegf-C in Patients with Egfr-Major Mutant Nsclc Receiving Osimertinib. Thorac. Cancer 2023, 14, 2950–2961. [Google Scholar] [CrossRef] [PubMed]
  279. Shen, B.; Wu, D.; Liu, J.; Yang, Y. Efficacy of Adjuvant First-Generation Tkis Versus Chemotherapy in Patients with Completely Resected Egfr-Mutant Non-Small Cell Lung Cancer: A Meta-Analysis. Cancer Investig. 2024, 42, 63–74. [Google Scholar] [CrossRef] [PubMed]
  280. Tang, Y.; Xia, B.; Xie, R.; Xu, X.; Zhang, M.; Wu, K.; Wang, B.; Ma, S. Timing in Combination with Radiotherapy and Patterns of Disease Progression in Non-Small Cell Lung Cancer Treated with Egfr-Tki. Lung Cancer 2020, 140, 65–70. [Google Scholar] [CrossRef]
  281. Sanchis-Borja, M.; Parrot, A.; Sroussi, D.; Del Campo, E.R.; Fallet, V.; Cadranel, J. Dramatic Radiation Recall Pneumonitis Induced by Osimertinib after Palliative Thoracic Radiotherapy for Lung Cancer. J. Thorac. Oncol. 2019, 14, e224–e226. [Google Scholar] [CrossRef] [PubMed]
  282. Jia, W.; Guo, H.; Jing, W.; Jing, X.; Li, J.; Wang, M.; Yu, J.; Zhu, H. An Especially High Rate of Radiation Pneumonitis Observed in Patients Treated with Thoracic Radiotherapy and Simultaneous Osimertinib. Radiother. Oncol. 2020, 152, 96–100. [Google Scholar] [CrossRef]
  283. Wang, N.; Wang, L.; Meng, X.; Wang, J.; Zhu, L.; Liu, C.; Li, S.; Zheng, L.; Yang, Z.; Xing, L.; et al. Osimertinib (Azd9291) Increases Radio-Sensitivity in Egfr T790m Non-Small Cell Lung Cancer. Oncol. Rep. 2019, 41, 77–86. [Google Scholar] [CrossRef]
  284. Liu, B.; Liu, H.; Ma, Y.; Ding, Q.; Zhang, M.; Liu, X.; Liu, M. Egfr-Mutated Stage Iv Non-Small Cell Lung Cancer: What Is the Role of Radiotherapy Combined with Tki? Cancer Med. 2021, 10, 6167–6188. [Google Scholar] [CrossRef]
  285. Saw, S.P.L.; Low, Y.F.; Lai, G.G.Y.; Chan, L.L.; Wong, W.K.Y.; Tsui, G.; Chen, O.H.; Seet, A.O.L.; Tan, W.C.; Tan, A.C.; et al. Real-World Outcomes of Pemetrexed-Platinum Chemotherapy Plus Osimertinib after Progression on First-Line Osimertinib in Advanced Egfr-Mutated Nsclc. Lung Cancer 2024, 193, 107856. [Google Scholar] [CrossRef] [PubMed]
  286. Zhou, Y.; Peng, L.; Liang, F.; Chu, L.; Chu, X.; Yang, X.; Zhang, J.; Guo, T.; Jiang, S.; Pang, Y.; et al. Safety and Efficacy of Consolidative Stereotactic Radiotherapy for Oligo-Residual Egfr-Mutant Non-Small Cell Lung Cancer after First-Line Third-Generation Egfr-Tyrosine Kinase Inhibitors: A Single-Arm, Phase 2 Trial. eClinicalMedicine 2024, 76, 102853. [Google Scholar] [CrossRef] [PubMed]
  287. Gandhi, S.J. 20 Phase Ii Randomized Study of Osimertinib (Osi) with or without Local Consolidative Therapy (Lct) for Metastatic Egfr Mutant Non-Small Cell Lung Cancer (Nsclc): Analysis of Adverse Events (Aes). J. Thorac. Oncol. 2023, 18, S36. [Google Scholar] [CrossRef]
  288. Peng, P.; Gong, J.; Zhang, Y.; Zhou, S.; Li, Y.; Han, G.; Meng, R.; Chen, Y.; Yang, M.; Shen, Q.; et al. Egfr-Tkis Plus Stereotactic Body Radiation Therapy (Sbrt) for Stage Iv Non-Small Cell Lung Cancer (Nsclc): A Prospective, Multicenter, Randomized, Controlled Phase Ii Study. Radiother. Oncol. 2023, 184, 109681. [Google Scholar] [CrossRef] [PubMed]
  289. Rashdan, S.; Sampath, S.; Iyengar, P.; Dowell, J.; Ahn, C.; Westover, K.D.; Zhang, Y.; Cole, S.; Massarelli, E.; Amini, A.; et al. Safety and Efficacy of Osimertinib Plus Consolidative Stereotactic Ablative Radiation (Sabr) in Advanced Egfr Mutant Non-Small Cell Lung Cancer (Nsclc): Results from a Multi-Center Phase Ii Trial. J. Clin. Oncol. 2024, 42, 8518. [Google Scholar] [CrossRef]
  290. Deng, L.; Kiedrowski, L.A.; Ravera, E.; Cheng, H.; Halmos, B. Response to Dual Crizotinib and Osimertinib Treatment in a Lung Cancer Patient with Met Amplification Detected by Liquid Biopsy Who Acquired Secondary Resistance to Egfr Tyrosine Kinase Inhibition. J. Thorac. Oncol. 2018, 13, e169–e172. [Google Scholar] [CrossRef] [PubMed]
  291. Wilgucki, M.; Yeung, V.; Ho, G.; Montenegro, G.L.B.; Jones, G.; Reuss, J.E.; Liu, S.V.; Kim, C. Osimertinib and Capmatinib Combination Therapy to Overcome Met Y1003n-Mediated Resistance in Egfr-Mutant Nsclc: A Case Report. JTO Clin. Res. Rep. 2022, 3, 100396. [Google Scholar] [CrossRef] [PubMed]
  292. Yu, D.; Li, Y.; Sun, K.D.; Gu, J.; Chen, Z.; Owonikoko, T.K.; Ramalingam, S.S.; Sun, S.Y. The Novel Met Inhibitor, Hqp8361, Possesses Single Agent Activity and Enhances Therapeutic Efficacy of Azd9291 (Osimertinib) against Azd9291-Resistant Nsclc Cells with Activated Met. Am. J. Cancer Res. 2020, 10, 3316–3327. [Google Scholar] [PubMed]
  293. Chen, Z.; Vallega, K.A.; Chen, H.; Zhou, J.; Ramalingam, S.S.; Sun, S.Y. The Natural Product Berberine Synergizes with Osimertinib Preferentially against Met-Amplified Osimertinib-Resistant Lung Cancer Via Direct Met Inhibition. Pharmacol. Res. 2022, 175, 105998. [Google Scholar] [CrossRef] [PubMed]
  294. Yu, J.; Zhang, L.; Peng, J.; Ward, R.; Hao, P.; Wang, J.; Zhang, N.; Yang, Y.; Guo, X.; Xiang, C.; et al. Dictamnine, a Novel C-Met Inhibitor, Suppresses the Proliferation of Lung Cancer Cells by Downregulating the Pi3k/Akt/Mtor and Mapk Signaling Pathways. Biochem. Pharmacol. 2022, 195, 114864. [Google Scholar] [CrossRef]
  295. Yun, J.; Lee, S.H.; Kim, S.Y.; Jeong, S.Y.; Kim, J.H.; Pyo, K.H.; Park, C.W.; Heo, S.G.; Yun, M.R.; Lim, S.; et al. Antitumor Activity of Amivantamab (Jnj-61186372), an Egfr-Met Bispecific Antibody, in Diverse Models of Egfr Exon 20 Insertion-Driven Nsclc. Cancer Discov. 2020, 10, 1194–1209. [Google Scholar] [CrossRef]
  296. Wang, K.; Du, R.; Myall, N.J.; Lewis, W.E.; Uy, N.; Hong, L.; Skoulidis, F.; Byers, L.A.; Tsao, A.; Cascone, T.; et al. Real-World Efficacy and Safety of Amivantamab for Egfr-Mutant Nsclc. J. Thorac. Oncol. 2024, 19, 500–506. [Google Scholar] [CrossRef] [PubMed]
  297. Park, K.; Haura, E.B.; Leighl, N.B.; Mitchell, P.; Shu, C.A.; Girard, N.; Viteri, S.; Han, J.Y.; Kim, S.W.; Lee, C.K.; et al. Amivantamab in Egfr Exon 20 Insertion-Mutated Non-Small-Cell Lung Cancer Progressing on Platinum Chemotherapy: Initial Results from the Chrysalis Phase I Study. J. Clin. Oncol. 2021, 39, 3391–3402. [Google Scholar] [CrossRef] [PubMed]
  298. Nagasaka, M.; Balmanoukian, A.S.; Madison, R.; Zhang, S.S.; Klempner, S.J.; Ou, S.I. Amivantamab (Jnj-61186372) Induces Clinical, Biochemical, Molecular, and Radiographic Response in a Treatment-Refractory Nsclc Patient Harboring Amplified Triple Egfr Mutations (L858r/ T790m/G796s) in Cis. Lung Cancer 2022, 164, 52–55. [Google Scholar] [CrossRef] [PubMed]
  299. Cho, B.C.; Felip, E.; Hayashi, H.; Thomas, M.; Lu, S.; Besse, B.; Sun, T.; Martinez, M.; Sethi, S.N.; Shreeve, S.M.; et al. Mariposa: Phase 3 Study of First-Line Amivantamab + lazertinib Versus Osimertinib in Egfr-Mutant Non-Small-Cell Lung Cancer. Future Oncol. 2022, 18, 639–647. [Google Scholar] [CrossRef]
  300. Cho, B.C.; Kim, D.W.; Spira, A.I.; Gomez, J.E.; Haura, E.B.; Kim, S.W.; Sanborn, R.E.; Cho, E.K.; Lee, K.H.; Minchom, A.; et al. Amivantamab Plus Lazertinib in Osimertinib-Relapsed Egfr-Mutant Advanced Non-Small Cell Lung Cancer: A Phase 1 Trial. Nat. Med. 2023, 29, 2577–2585. [Google Scholar] [CrossRef]
  301. Felip, E.; Cho, B.C.; Gutiérrez, V.; Alip, A.; Besse, B.; Lu, S.; Spira, A.I.; Girard, N.; Califano, R.; Gadgeel, S.M.; et al. Amivantamab Plus Lazertinib Versus Osimertinib in First-Line Egfr-Mutant Advanced Non-Small-Cell Lung Cancer with Biomarkers of High-Risk Disease: A secondary Analysis from Mariposa. Ann. Oncol. 2024, 35, 805–816. [Google Scholar] [CrossRef] [PubMed]
  302. Emdal, K.B.; Dittmann, A.; Reddy, R.J.; Lescarbeau, R.S.; Moores, S.L.; Laquerre, S.; White, F.M. Characterization of in Vivo Resistance to Osimertinib and Jnj-61186372, an Egfr/Met Bispecific Antibody, Reveals Unique and Consensus Mechanisms of Resistance. Mol. Cancer Ther. 2017, 16, 2572–2585. [Google Scholar] [CrossRef] [PubMed]
  303. Passaro, A.; Wang, J.; Wang, Y.; Lee, S.H.; Melosky, B.; Shih, J.Y.; Wang, J.; Azuma, K.; Juan-Vidal, O.; Cobo, M.; et al. Amivantamab Plus Chemotherapy with and without Lazertinib in Egfr-Mutant Advanced Nsclc after Disease Progression on Osimertinib: Primary Results from the Phase Iii Mariposa-2 Study. Ann. Oncol. 2024, 35, 77–90. [Google Scholar] [CrossRef] [PubMed]
  304. Tong, M.; Gao, M.; Xu, Y.; Fu, L.; Li, Y.; Bao, X.; Fu, H.; Quan, H.; Lou, L. Shr-A1403, a Novel C-Mesenchymal-Epithelial Transition Factor (C-Met) Antibody-Drug Conjugate, Overcomes Azd9291 Resistance in Non-Small Cell Lung Cancer Cells Overexpressing C-Met. Cancer Sci. 2019, 110, 3584–3594. [Google Scholar] [CrossRef] [PubMed]
  305. Sequist, L.V.; Han, J.Y.; Ahn, M.J.; Cho, B.C.; Yu, H.; Kim, S.W.; Yang, J.C.; Lee, J.S.; Su, W.C.; Kowalski, D.; et al. Osimertinib Plus Savolitinib in Patients with Egfr Mutation-Positive, Met-Amplified, Non-Small-Cell Lung Cancer after Progression on Egfr Tyrosine Kinase Inhibitors: Interim Results from a Multicentre, Open-Label, Phase 1b Study. Lancet Oncol. 2020, 21, 373–386. [Google Scholar] [CrossRef]
  306. Yoh, K.; Hirashima, T.; Saka, H.; Kurata, T.; Ohe, Y.; Hida, T.; Mellemgaard, A.; Verheijen, R.B.; Ou, X.; Ahmed, G.F.; et al. Savolitinib ± Osimertinib in Japanese Patients with Advanced Solid Malignancies or Egfrm Nsclc: Ph1b Tatton Part C. Target. Oncol. 2021, 16, 339–355. [Google Scholar] [CrossRef] [PubMed]
  307. Ahn, M.J.; De Marinis, F.; Bonanno, L.; Cho, B.C.; Kim, T.M.; Cheng, S.; Novello, S.; Proto, C.; Kim, S.W.; Lee, J.S.; et al. Ep08.02-140 Met Biomarker-Based Preliminary Efficacy Analysis in Savannah: Savolitinib+Osimertinib in Egfrm Nsclc Post-Osimertinib. J. Thorac. Oncol. 2022, 17, S469–S470. [Google Scholar] [CrossRef]
  308. Wu, Y.L.; Guarneri, V.; Voon, P.J.; Lim, B.K.; Yang, J.J.; Wislez, M.; Huang, C.; Liam, C.K.; Mazieres, J.; Tho, L.M.; et al. Tepotinib Plus Osimertinib in Patients with Egfr-Mutated Non-Small-Cell Lung Cancer with Met Amplification Following Progression on First-Line Osimertinib (Insight 2): A Multicentre, Open-Label, Phase 2 Trial. Lancet Oncol. 2024, 25, 989–1002. [Google Scholar] [CrossRef]
  309. Cheema, P.K.; Banerji, S.O.; Blais, N.; Chu, Q.S.; Desmeules, P.; Juergens, R.A.; Leighl, N.B.; Sheffield, B.S.; Wheatley-Price, P.F.; Melosky, B.L. Canadian Consensus Recommendations on the Management of Met-Altered Nsclc. Curr. Oncol. 2021, 28, 4552–4576. [Google Scholar] [CrossRef]
  310. Leighl, N.B.; Akamatsu, H.; Lim, S.M.; Cheng, Y.; Minchom, A.R.; Marmarelis, M.E.; Sanborn, R.E.; Yang, J.C.-H.; Liu, B.; John, T.; et al. Subcutaneous Versus Intravenous Amivantamab, Both in Combination with Lazertinib, in Refractory Epidermal Growth Factor Receptor-Mutated Non-Small Cell Lung Cancer: Primary Results from the Phase Iii Paloma-3 Study. J. Clin. Oncol. 2024, 42, 3593–3605. [Google Scholar] [CrossRef] [PubMed]
  311. Cho, B.C.; Lu, S.; Felip, E.; Spira, A.I.; Girard, N.; Lee, J.S.; Lee, S.H.; Ostapenko, Y.; Danchaivijitr, P.; Liu, B.; et al. Amivantamab Plus Lazertinib in Previously Untreated Egfr-Mutated Advanced Nsclc. N. Engl. J. Med. 2024, 391, 1486–1498. [Google Scholar] [CrossRef]
  312. Li, X.; Lian, Z.; Wang, S.; Xing, L.; Yu, J. Interactions between Egfr and Pd-1/Pd-L1 Pathway: Implications for Treatment of Nsclc. Cancer Lett. 2018, 418, 1–9. [Google Scholar] [CrossRef] [PubMed]
  313. Oshima, Y.; Tanimoto, T.; Yuji, K.; Tojo, A. Egfr-Tki-Associated Interstitial Pneumonitis in Nivolumab-Treated Patients with Non-Small Cell Lung Cancer. JAMA Oncol. 2018, 4, 1112–1115. [Google Scholar] [CrossRef] [PubMed]
  314. Qian, X.; Guo, X.; Li, T.; Hu, W.; Zhang, L.; Wu, C.; Ye, F. Efficacy of Immune Checkpoint Inhibitors in Egfr-Mutant Nsclc Patients with Egfr-Tki Resistance: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2022, 13, 926890. [Google Scholar] [CrossRef]
  315. Peng, J.; Zhao, X.; Zhao, K.; Meng, X. Case Report: Long Progression-Free Survival of Immunotherapy for Lung Adenocarcinoma with Epidermal Growth Factor Receptor Mutation. Front. Oncol. 2021, 11, 731429. [Google Scholar] [CrossRef]
  316. Zhao, Y.; He, Y.; Wang, W.; Cai, Q.; Ge, F.; Chen, Z.; Zheng, J.; Zhang, Y.; Deng, H.; Chen, Y.; et al. Efficacy and Safety of Immune Checkpoint Inhibitors for Individuals with Advanced Egfr-Mutated Non-Small-Cell Lung Cancer Who Progressed on Egfr Tyrosine-Kinase Inhibitors: A Systematic Review, Meta-Analysis, and Network Meta-Analysis. Lancet Oncol. 2024, 25, 1347–1356. [Google Scholar] [CrossRef]
  317. Thress, K.S.; Jacobs, V.; Angell, H.K.; Yang, J.C.; Sequist, L.V.; Blackhall, F.; Su, W.C.; Schuler, M.; Wolf, J.; Gold, K.A.; et al. Modulation of Biomarker Expression by Osimertinib: Results of the Paired Tumor Biopsy Cohorts of the Aura Phase I Trial. J. Thorac. Oncol. 2017, 12, 1588–1594. [Google Scholar] [CrossRef] [PubMed]
  318. Xiao, X.; Wu, Y.; Shen, F.; MuLaTiAize, Y.; Xinhua, N. Osimertinib Improves the Immune Microenvironment of Lung Cancer by Downregulating Pd-L1 Expression of Vascular Endothelial Cells and Enhances the Antitumor Effect of Bevacizumab. J. Oncol. 2022, 2022, 1531353. [Google Scholar] [CrossRef] [PubMed]
  319. Yang, J.C.; Shepherd, F.A.; Kim, D.W.; Lee, G.W.; Lee, J.S.; Chang, G.C.; Lee, S.S.; Wei, Y.F.; Lee, Y.G.; Laus, G.; et al. Osimertinib Plus Durvalumab Versus Osimertinib Monotherapy in Egfr T790m-Positive Nsclc Following Previous Egfr Tki Therapy: Caural Brief Report. J. Thorac. Oncol. 2019, 14, 933–939. [Google Scholar] [CrossRef] [PubMed]
  320. Gianni, C.; Bronte, G.; Delmonte, A.; Burgio, M.A.; Andrikou, K.; Monti, M.; Menna, C.; Frassineti, G.L.; Crinò, L. Case Report: Stevens-Johnson Syndrome and Hepatotoxicity Induced by Osimertinib Sequential to Pembrolizumab in a Patient with Egfr-Mutated Lung Adenocarcinoma. Front. Pharmacol. 2021, 12, 672233. [Google Scholar] [CrossRef]
  321. Lopez, M.; Hagopian, G.; Doan, L.; Lee, B.J.; Rojek, N.W.; Smith, J.; Ou, S.I.; Demirdag, Y.Y.; Nagasaka, M. Osimertinib Tolerance in a Patient with Stevens Johnson Syndrome During Osimertinib Therapy after Treatment with Pembrolizumab. Allergy Asthma Clin. Immunol. 2023, 19, 93. [Google Scholar] [CrossRef]
  322. Liu, W.J.; Wang, L.; Zhou, F.M.; Liu, S.W.; Wang, W.; Zhao, E.J.; Yao, Q.J.; Li, W.; Zhao, Y.Q.; Shi, Z.; et al. Elevated Nox4 Promotes Tumorigenesis and Acquired Egfr-Tkis Resistance Via Enhancing Il-8/Pd-L1 Signaling in Nsclc. Drug Resist. Updat. 2023, 70, 100987. [Google Scholar] [CrossRef] [PubMed]
  323. Li, Y.; Chen, Y.; Meng, Y.; Shen, M.; Yang, F.; Ren, X. Osimertinib Exacerbates Immune Checkpoint Inhibitor-Related Severe Adverse Events by Activating the Il-6/Jak/Stat3 Pathway in Macrophages. Cancer Biol. Med. 2024, 21, 20240269. [Google Scholar] [CrossRef] [PubMed]
  324. Schoenfeld, A.J.; Arbour, K.C.; Rizvi, H.; Iqbal, A.N.; Gadgeel, S.M.; Girshman, J.; Kris, M.G.; Riely, G.J.; Yu, H.A.; Hellmann, M.D. Severe Immune-Related Adverse Events Are Common with Sequential Pd-(L)1 Blockade and Osimertinib. Ann. Oncol. 2019, 30, 839–844. [Google Scholar] [CrossRef] [PubMed]
  325. Ba, H.; Liu, L.; Peng, Q.; Chen, J.; Zhu, Y.D. The Relationship between Blood-Based Tumor Mutation Burden Level and Efficacy of Pd-1/Pd-L1 Inhibitors in Advanced Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. BMC Cancer 2021, 21, 1220. [Google Scholar] [CrossRef]
  326. Garon, E.B.; Hellmann, M.D.; Rizvi, N.A.; Carcereny, E.; Leighl, N.B.; Ahn, M.J.; Eder, J.P.; Balmanoukian, A.S.; Aggarwal, C.; Horn, L.; et al. Five-Year Overall Survival for Patients with Advanced Non-Small-Cell Lung Cancer Treated with Pembrolizumab: Results from the Phase I Keynote-001 Study. J. Clin. Oncol. 2019, 37, 2518–2527. [Google Scholar] [CrossRef]
  327. Hsu, K.H.; Tseng, J.S.; Yang, T.Y.; Chen, K.C.; Su, K.Y.; Yu, S.L.; Chen, J.J.W.; Huang, Y.H.; Chang, G.C. Pd-L1 Strong Expressions Affect the Clinical Outcomes of Osimertinib in Treatment Naïve Advanced Egfr-Mutant Non-Small Cell Lung Cancer Patients. Sci. Rep. 2022, 12, 9753. [Google Scholar] [CrossRef] [PubMed]
  328. Papazyan, T.; Denis, M.G.; Sagan, C.; Raimbourg, J.; Herbreteau, G.; Pons-Tostivint, E. Impact of Pd-L1 Expression on the Overall Survival of Caucasian Patients with Advanced Egfr-Mutant Nsclc Treated with Frontline Osimertinib. Target. Oncol. 2024, 19, 611–621. [Google Scholar] [CrossRef]
  329. Jiang, X.M.; Xu, Y.L.; Huang, M.Y.; Zhang, L.L.; Su, M.X.; Chen, X.; Lu, J.J. Osimertinib (Azd9291) Decreases Programmed Death Ligand-1 in Egfr-Mutated Non-Small Cell Lung Cancer Cells. Acta Pharmacol. Sin. 2017, 38, 1512–1520. [Google Scholar] [CrossRef]
  330. Shiozawa, T.; Numata, T.; Tamura, T.; Endo, T.; Kaburagi, T.; Yamamoto, Y.; Yamada, H.; Kikuchi, N.; Saito, K.; Inagaki, M.; et al. Prognostic Implication of Pd-L1 Expression on Osimertinib Treatment for Egfr-Mutated Non-Small Cell Lung Cancer. Anticancer Res. 2022, 42, 2583–2590. [Google Scholar] [CrossRef] [PubMed]
  331. Kulendran, L.; Chia, P.L.; Samol, J.; Chang, A.Y. Combination of Osimertinib and Pembrolizumab Successfully Overcome Dual Resistances in a Patient with Advanced Adenocarcinoma of the Lung, a Case Report. Curr. Probl. Cancer Case Rep. 2022, 5, 100132. [Google Scholar] [CrossRef]
  332. Song, Z.; Ren, G.; Hu, L.; Wang, X.; Song, J.; Jia, Y.; Zhao, G.; Zang, A.; Du, H.; Sun, Y.; et al. Two Case Reports of Non-Small Cell Lung Cancer Patients Harboring Acquired Egfr T790m-Cis-C797s Benefit from Immune Checkpoint Inhibitor Combined with Platinum-Based Doublet Chemotherapy. Ann. Transl. Med. 2022, 10, 719. [Google Scholar] [CrossRef] [PubMed]
  333. Champiat, S.; Ferrara, R.; Massard, C.; Besse, B.; Marabelle, A.; Soria, J.C.; Ferté, C. Hyperprogressive Disease: Recognizing a Novel Pattern to Improve Patient Management. Nat. Rev. Clin. Oncol. 2018, 15, 748–762. [Google Scholar] [CrossRef] [PubMed]
  334. Kim, C.G.; Kim, K.H.; Pyo, K.H.; Xin, C.F.; Hong, M.H.; Ahn, B.C.; Kim, Y.; Choi, S.J.; Yoon, H.I.; Lee, J.G.; et al. Hyperprogressive Disease During Pd-1/Pd-L1 Blockade in Patients with Non-Small-Cell Lung Cancer. Ann. Oncol. 2019, 30, 1104–1113. [Google Scholar] [CrossRef] [PubMed]
  335. Ding, H.; Wu, L.; Qin, H.; Fu, W.; Wang, Y.; Wu, M.; Wang, J.; Han, Y. Synergistic Anti-Tumor Efficacy Achieved by Reversing Drug Resistance through the Regulation of the Tumor Immune Microenvironment with Il-12 and Osimertinib Combination Therapy. J. Cancer 2024, 15, 4534–4550. [Google Scholar] [CrossRef]
  336. Baglivo, S.; Mandarano, M.; Bellezza, G.; Minotti, V.; Bonaiti, A.; Fischer, M.J.; Birocchi, I.; Roila, F.; Metelli, N.; Ludovini, V.; et al. Inflamed Tumor Phenotype as Predictor of Long-Term Response to Pembrolizumab in an Egfr-Mutated Non-Small Cell Lung Cancer (Nsclc) Patient with Acquired Resistance to Afatinib: A Case Report and Review of the Literature. Oncol. Ther. 2022, 10, 291–300. [Google Scholar] [CrossRef]
Figure 1. Key mechanisms of off-target resistance to osimertinib in NSCLC. Resistance arises from both on-target mechanisms involving EGFR and off-target pathways. Off-target resistance is driven by alternative signaling pathways such as MAPK (RAS-RAF-MEK-ERK) and PI3K/AKT/mTOR, activated by EGFR mutations, HER2 amplification, HER3 upregulation, MET amplification, AXL overexpression, abnormalities in other receptor tyrosine kinases (RTKs, such as FGFR1, IGF1R), BCL-2 dysregulation, cell cycle alterations (CDK4/6), histologic transformation, and epithelial-to-mesenchymal transition (EMT). Together, these mechanisms promote tumor survival, proliferation, and metastasis and reduce the efficacy of osimertinib. This figure was created using BioRender (https://BioRender.com, accessed on 20 January 2025) under a paid license.
Figure 1. Key mechanisms of off-target resistance to osimertinib in NSCLC. Resistance arises from both on-target mechanisms involving EGFR and off-target pathways. Off-target resistance is driven by alternative signaling pathways such as MAPK (RAS-RAF-MEK-ERK) and PI3K/AKT/mTOR, activated by EGFR mutations, HER2 amplification, HER3 upregulation, MET amplification, AXL overexpression, abnormalities in other receptor tyrosine kinases (RTKs, such as FGFR1, IGF1R), BCL-2 dysregulation, cell cycle alterations (CDK4/6), histologic transformation, and epithelial-to-mesenchymal transition (EMT). Together, these mechanisms promote tumor survival, proliferation, and metastasis and reduce the efficacy of osimertinib. This figure was created using BioRender (https://BioRender.com, accessed on 20 January 2025) under a paid license.
Cancers 17 00459 g001
Table 3. Ongoing osimertinib-based combination clinical trials in NSCLC.
Table 3. Ongoing osimertinib-based combination clinical trials in NSCLC.
Combination PhaseStatusClinical Trials Number
RadiotherapyStereotactic body radiation therapy (SBRT)IIActive, not recruitingNCT03667820
SBRTN/ANot yet recruitingNCT05583409
SBRTN/ARecruitingNCT05033691
SBRTN/ANot yet recruitingNCT05998993
Chemotherapycarboplatin and pemetrexedIIIRecruitingNCT04695925
carboplatin and pemetrexedIIRecruitingNCT04410796
VEGF inhibitorBevacizumabIIIRecruitingNCT04181060
BevacizumabIINot yet recruitingNCT04988607
RamucirumabIIIActive, not recruitingNCT02411448
MET inhibitorTepotinibIIActive, not recruitingNCT03940703
Capmatinib, Nazartinib, and GefitinibIIRecruitingNCT03040973
SavolitinibIIIRecruitingNCT05261399
SavolitinibIIIRecruitingNCT05015608
SavolitinibIIActive, not recruitingNCT03778229
SavolitinibIIActive, not recruitingNCT05163249
SavolitinibIIActive, not recruitingNCT04606771
OthersAbemaciclib (CDK4/6 inhibitor)IIActive, not recruitingNCT04545710
Itacitinib (JAK1 inhibitor)I/IIActive, not recruitingNCT02917993
Selumetinib (MEK inhibitor)IIActive, not recruitingNCT03392246
Sapanisertib (mTOR inhibitor)IActive, not recruitingNCT02503722
Multi-drugsAZD6094, SelumetinibIActive, not recruitingNCT02143466
AZD4547, Vistusertib, Palbociclib, Crizotinib, Selumetinib, Docetaxel, AZD5363, Durvalumab, Sitravatinib, AZD6738IIActive, not recruitingNCT02664935
Savolitinib, Gefitinib, Necitumumab, Durvalumab, Carboplatin, Pemetrexed, Alectinib, Selpercatinib, Selumetinib, Etoposide, Cisplatin, Datopotamab deruxtecanIIActive, not recruitingNCT03944772
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Liao, Y.-Y.; Tsai, C.-L.; Huang, H.-P. Optimizing Osimertinib for NSCLC: Targeting Resistance and Exploring Combination Therapeutics. Cancers 2025, 17, 459. https://doi.org/10.3390/cancers17030459

AMA Style

Liao Y-Y, Tsai C-L, Huang H-P. Optimizing Osimertinib for NSCLC: Targeting Resistance and Exploring Combination Therapeutics. Cancers. 2025; 17(3):459. https://doi.org/10.3390/cancers17030459

Chicago/Turabian Style

Liao, Yan-You, Chia-Luen Tsai, and Hsiang-Po Huang. 2025. "Optimizing Osimertinib for NSCLC: Targeting Resistance and Exploring Combination Therapeutics" Cancers 17, no. 3: 459. https://doi.org/10.3390/cancers17030459

APA Style

Liao, Y.-Y., Tsai, C.-L., & Huang, H.-P. (2025). Optimizing Osimertinib for NSCLC: Targeting Resistance and Exploring Combination Therapeutics. Cancers, 17(3), 459. https://doi.org/10.3390/cancers17030459

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop