Low Phosphatidylserine+ Cells Within the CD34+/CD45dim/CD117(c-kit)+ Subpopulation are Associated with Poor Outcomes in Metastatic Colorectal Cancer
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Peripheral Blood Collection
2.3. Flow Cytometry Assay for the Identification and Count of Circulating Endothelial Cells, Circulating Progenitor Endothelial Cells, and Their Subsets
2.3.1. Blood Processing and Cell Staining
2.3.2. Flow Cytometry Computational Analysis
2.3.3. Identification and Enumeration of Cell Subsets by Manual Gating
2.4. Statistical Analysis
3. Results
3.1. Machine Learning Algorithms Reveal Specific Subsets of Cells with a CD34+/CD45-/dim Phenotype in mCRC Responders vs. Non-Responders to Antitumoral Systemic Therapies
3.2. Blood Levels of Peripheral Blood Cells with a CD34+/CD45dim/CD117+/AnnV- Phenotype Are Correlated with Overall Response Rate to Antitumoral Systemic Therapies in Patients with mCRC
3.3. Blood-Circulating Concentration of CD34+/CD45dim/CD117+/Annexin V- Cells Correlates with the Number of Metastatic Sites
3.4. A High Percentage of Blood Annexin V- Cells with a CD34+/CD45dim/CD117+ Phenotype Independently Predicts Worse Survival in Patients with mCRC
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roshandel, G.; Ghasemi-Kebria, F.; Malekzadeh, R. Colorectal Cancer: Epidemiology, Risk Factors, and Prevention. Cancers 2024, 16, 1530. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.S.; Karuniawati, H.; Jairoun, A.A.; Urbi, Z.; Ooi, D.J.; John, A.; Lim, Y.C.; Kibria, K.M.K.; Mohiuddin, A.K.M.; Ming, L.C.; et al. Colorectal Cancer: A Review of Carcinogenesis, Global Epidemiology, Current Challenges, Risk Factors, Preventive and Treatment Strategies. Cancers 2022, 14, 1732. [Google Scholar] [CrossRef]
- Dakowicz, D.; Zajkowska, M.; Mroczko, B. Relationship between VEGF Family Members, Their Receptors and Cell Death in the Neoplastic Transformation of Colorectal Cancer. Int. J. Mol. Sci. 2022, 23, 3375. [Google Scholar] [CrossRef]
- Strickler, J.H.; Hurwitz, H.I. Bevacizumab-based therapies in the first-line treatment of metastatic colorectal cancer. Oncologist 2012, 17, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Hurwitz, H.I.; Tebbutt, N.C.; Kabbinavar, F.; Giantonio, B.J.; Guan, Z.-Z.; Mitchell, L.; Waterkamp, D.; Tabernero, J. Efficacy and safety of bevacizumab in metastatic colorectal cancer: Pooled analysis from seven randomized controlled trials. Oncologist 2013, 18, 1004–1012. [Google Scholar] [CrossRef]
- Denda, T.; Sakai, D.; Hamaguchi, T.; Sugimoto, N.; Ura, T.; Yamazaki, K.; Fujii, H.; Kajiwara, T.; Nakajima, T.E.; Takahashi, S.; et al. Phase II trial of aflibercept with FOLFIRI as a second-line treatment for Japanese patients with metastatic colorectal cancer. Cancer Sci. 2019, 110, 1032–1043. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Martinelli, E.; Cascinu, S.; Sobrero, A.; Banzi, M.; Seitz, J.-F.; Barone, C.; Ychou, M.; Peeters, M.; Brenner, B.; et al. Regorafenib for Patients with Metastatic Colorectal Cancer Who Progressed After Standard Therapy: Results of the Large, Single-Arm, Open-Label Phase IIIb CONSIGN Study. Oncologist 2019, 24, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, A.; Siebler, J.; Grützmann, R.; Stürzl, M.; Naschberger, E. Blood Vessel-Targeted Therapy in Colorectal Cancer: Current Strategies and Future Perspectives. Cancers 2024, 16, 890. [Google Scholar] [CrossRef] [PubMed]
- Mody, K.; Baldeo, C.; Bekaii-Saab, T. Antiangiogenic Therapy in Colorectal Cancer. Cancer J. 2018, 24, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, A.M.E.; Xiao, L.; Ullah, M.W.; Yu, M.; Ouyang, C.; Yang, G. Current Challenges of Cancer Anti-angiogenic Therapy and the Promise of Nanotherapeutics. Theranostics 2018, 8, 533–548. [Google Scholar] [CrossRef]
- Haibe, Y.; Kreidieh, M.; El Hajj, H.; Khalifeh, I.; Mukherji, D.; Temraz, S.; Shamseddine, A. Resistance Mechanisms to Anti-angiogenic Therapies in Cancer. Front. Oncol. 2020, 10, 221. [Google Scholar] [CrossRef]
- Killock, D. New anti-angiogenic option for mCRC. Nat. Rev. Clin. Oncol. 2023, 20, 579. [Google Scholar] [CrossRef] [PubMed]
- Sveen, A.; Kopetz, S.; Lothe, R.A. Biomarker-guided therapy for colorectal cancer: Strength in complexity. Nat. Rev. Clin. Oncol. 2020, 17, 11–32. [Google Scholar] [CrossRef]
- De Pascale, M.R.; Bruzzese, G.; Crimi, E.; Grimaldi, V.; Liguori, A.; Brongo, S.; Barbieri, M.; Picascia, A.; Schiano, C.; Sommese, L.; et al. Severe Type 2 Diabetes Induces Reversible Modifications of Endothelial Progenitor Cells Which are Ameliorate by Glycemic Control. Int. J. stem cells 2016, 9, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-B.; Gong, Y.-F.; Yu, C.-J.; Sun, Y.-Y.; Li, X.-Y.; Zhao, D.; Zhang, Z.-R. Endothelial progenitor cells in cardiovascular diseases: From biomarker to therapeutic agent. Regen. Med. Res. 2013, 1, 9. [Google Scholar] [CrossRef]
- Lachmann, R.; Lanuti, P.; Miscia, S. OMIP-011: Characterization of circulating endothelial cells (CECs) in peripheral blood. Cytometry. A 2012, 81, 549–551. [Google Scholar] [CrossRef]
- Lanuti, P.; Simeone, P.; Rotta, G.; Almici, C.; Avvisati, G.; Azzaro, R.; Bologna, G.; Budillon, A.; Di Cerbo, M.; Di Gennaro, E.; et al. A standardized flow cytometry network study for the assessment of circulating endothelial cell physiological ranges. Sci. Rep. 2018, 8, 5823. [Google Scholar] [CrossRef]
- Lanuti, P.; Rotta, G.; Almici, C.; Avvisati, G.; Budillon, A.; Doretto, P.; Malara, N.; Marini, M.; Neva, A.; Simeone, P.; et al. Endothelial progenitor cells, defined by the simultaneous surface expression of VEGFR2 and CD133, are not detectable in healthy peripheral and cord blood. Cytometry. A 2016, 89, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Malka, D.; Boige, V.; Jacques, N.; Vimond, N.; Adenis, A.; Boucher, E.; Pierga, J.Y.; Conroy, T.; Chauffert, B.; François, E.; et al. Clinical value of circulating endothelial cell levels in metastatic colorectal cancer patients treated with first-line chemotherapy and bevacizumab. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2012, 23, 919–927. [Google Scholar] [CrossRef] [PubMed]
- Garmy-Susini, B.; Varner, J.A. Circulating endothelial progenitor cells. Br. J. Cancer 2005, 93, 855–858. [Google Scholar] [CrossRef]
- Yang, B.; Gu, W.; Peng, B.; Xu, Y.; Liu, M.; Che, J.; Geng, J.; Zheng, J. High level of circulating endothelial progenitor cells positively correlates with serum vascular endothelial growth factor in patients with renal cell carcinoma. J. Urol. 2012, 188, 2055–2061. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Zheng, L.; Wang, Q.; Li, W.; Cai, Z.; Xiong, S.; Bao, J. Quantity and clinical relevance of circulating endothelial progenitor cells in human ovarian cancer. J. Exp. Clin. Cancer Res. 2010, 29, 27. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, L.; Wang, Q.; Wang, L.; Wang, H.; Shen, Y.; Li, X.; Fu, Y.; Shen, Y.; Yu, Y. Circulating endothelial progenitor cells are involved in VEGFR-2-related endothelial differentiation in glioma. Oncol. Rep. 2014, 32, 2007–2014. [Google Scholar] [CrossRef] [PubMed]
- Marçola, M.; Rodrigues, C.E. Endothelial progenitor cells in tumor angiogenesis: Another brick in the wall. Stem Cells Int. 2015, 2015, 832649. [Google Scholar] [CrossRef] [PubMed]
- Zahran, A.M.; Abdel-Rahim, M.H.; Refaat, A.; Sayed, M.; Othman, M.M.; Khalak, L.M.R.; Hetta, H.F. Circulating hematopoietic stem cells, endothelial progenitor cells and cancer stem cells in hepatocellular carcinoma patients: Contribution to diagnosis and prognosis. Acta Oncol. 2020, 59, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Wierzbowska, A.; Robak, T.; Krawczyńska, A.; Pluta, A.; Wrzesień-Kuś, A.; Cebula, B.; Robak, E.; Smolewski, P. Kinetics and apoptotic profile of circulating endothelial cells as prognostic factors for induction treatment failure in newly diagnosed acute myeloid leukemia patients. Ann. Hematol. 2008, 87, 97–106. [Google Scholar] [CrossRef]
- Wang, L.; Du, F.; Zhang, H.M.; Zhang, W.J.; Wang, H.X. Changes in circulating endothelial progenitor cells predict responses of multiple myeloma patients to treatment with bortezomib and dexamethasone. Brazilian J. Med. Biol. Res. Rev. Bras. Pesqui. medicas e Biol. 2015, 48, 736–742. [Google Scholar] [CrossRef]
- Li, C.X.; Shao, Y.; Ng, K.T.P.; Liu, X.B.; Ling, C.C.; Ma, Y.Y.; Geng, W.; Fan, S.T.; Lo, C.M.; Man, K. FTY720 suppresses liver tumor metastasis by reducing the population of circulating endothelial progenitor cells. PLoS ONE 2012, 7, e32380. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.-H.; Jung, S.-Y.; Kim, J.-W.; Lee, S.-H.; Lee, J.-H.; Lee, B.-Y.; Kwon, S.-M. Phloroglucinol inhibits the bioactivities of endothelial progenitor cells and suppresses tumor angiogenesis in LLC-tumor-bearing mice. PLoS ONE 2012, 7, e33618. [Google Scholar] [CrossRef] [PubMed]
- Campioni, D.; Zauli, G.; Gambetti, S.; Campo, G.; Cuneo, A.; Ferrari, R.; Secchiero, P. In vitro characterization of circulating endothelial progenitor cells isolated from patients with acute coronary syndrome. PLoS ONE 2013, 8, e56377. [Google Scholar] [CrossRef] [PubMed]
- Kourek, C.; Dimopoulos, S.; Alshamari, M.; Zouganeli, V.; Psarra, K.; Mitsiou, G.; Ntalianis, A.; Pittaras, T.; Nanas, S.; Karatzanos, E. A Cardiac Rehabilitation Program Increases the Acute Response of Endothelial Progenitor Cells to Maximal Exercise in Heart Failure Patients. Acta Cardiol. Sin. 2022, 38, 516–520. [Google Scholar] [CrossRef]
- Appleby, S.L.; Cockshell, M.P.; Pippal, J.B.; Thompson, E.J.; Barrett, J.M.; Tooley, K.; Sen, S.; Sun, W.Y.; Grose, R.; Nicholson, I.; et al. Characterization of a distinct population of circulating human non-adherent endothelial forming cells and their recruitment via intercellular adhesion molecule-3. PLoS ONE 2012, 7, e46996. [Google Scholar] [CrossRef] [PubMed]
- Van Craenenbroeck, E.M.; Van Craenenbroeck, A.H.; van Ierssel, S.; Bruyndonckx, L.; Hoymans, V.Y.; Vrints, C.J.; Conraads, V.M. Quantification of circulating CD34+/KDR+/CD45dim endothelial progenitor cells: Analytical considerations. Int. J. Cardiol. 2013, 167, 1688–1695. [Google Scholar] [CrossRef] [PubMed]
- Kalender, G.; Kornberger, A.; Lisy, M.; Beiras-Fernandez, A.; Stock, U.A. Kinetics of circulating endothelial progenitor cells in patients undergoing carotid artery surgery. Ther. Clin. Risk Manag. 2016, 12, 1841–1847. [Google Scholar] [CrossRef] [PubMed]
- Delorme, B.; Basire, A.; Gentile, C.; Sabatier, F.; Monsonis, F.; Desouches, C.; Blot-Chabaud, M.; Uzan, G.; Sampol, J.; Dignat-George, F. Presence of endothelial progenitor cells, distinct from mature endothelial cells, within human CD146+ blood cells. Thromb. Haemost. 2005, 94, 1270–1279. [Google Scholar] [CrossRef] [PubMed]
- Etemadifar, M.; Dehghani, L.; Ganji, H.; Soleimani, R.; Talebi, M.; Eskandari, N.; Samani, F.S.; Meamar, R. Evaluation of the circulating CD34(+), CD309(+), and endothelial progenitor cells in patients with first attack of optic neuritis. Adv. Biomed. Res. 2015, 4, 151. [Google Scholar] [CrossRef]
- Zhao, Y.; Adjei, A.A. Targeting Angiogenesis in Cancer Therapy: Moving Beyond Vascular Endothelial Growth Factor. Oncologist 2015, 20, 660–673. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, W.-Q.; Broussy, S.; Han, B.; Fang, H. Recent advances of anti-angiogenic inhibitors targeting VEGF/VEGFR axis. Front. Pharmacol. 2023, 14, 1307860. [Google Scholar] [CrossRef] [PubMed]
- Ghalehbandi, S.; Yuzugulen, J.; Pranjol, M.Z.I.; Pourgholami, M.H. The role of VEGF in cancer-induced angiogenesis and research progress of drugs targeting VEGF. Eur. J. Pharmacol. 2023, 949, 175586. [Google Scholar] [CrossRef] [PubMed]
- Duetz, C.; Van Gassen, S.; Westers, T.M.; van Spronsen, M.F.; Bachas, C.; Saeys, Y.; van de Loosdrecht, A.A. Computational flow cytometry as a diagnostic tool in suspected-myelodysplastic syndromes. Cytometry. A 2021, 99, 814–824. [Google Scholar] [CrossRef]
- O’Neill, K.; Aghaeepour, N.; Spidlen, J.; Brinkman, R. Flow cytometry bioinformatics. PLoS Comput. Biol. 2013, 9, e1003365. [Google Scholar] [CrossRef] [PubMed]
- Sandstedt, J.; Jonsson, M.; Lindahl, A.; Jeppsson, A.; Asp, J. C-kit+ CD45- cells found in the adult human heart represent a population of endothelial progenitor cells. Basic Res. Cardiol. 2010, 105, 545–556. [Google Scholar] [CrossRef] [PubMed]
- Marcelo, K.L.; Sills, T.M.; Coskun, S.; Vasavada, H.; Sanglikar, S.; Goldie, L.C.; Hirschi, K.K. Hemogenic endothelial cell specification requires c-Kit, Notch signaling, and p27-mediated cell-cycle control. Dev. Cell 2013, 27, 504–515. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Suzuki, S.; Fujino, N.; Ota, C.; Yamada, M.; Suzuki, T.; Yamaya, M.; Kondo, T.; Kubo, H. c-Kit immunoexpression delineates a putative endothelial progenitor cell population in developing human lungs. Am. J. Physiol. Cell. Mol. Physiol. 2014, 306, L855–L865. [Google Scholar] [CrossRef] [PubMed]
- Guerin, C.L.; Guyonnet, L.; Goudot, G.; Revets, D.; Konstantinou, M.; Chipont, A.; Chocron, R.; Blandinieres, A.; Khider, L.; Rancic, J.; et al. Multidimensional Proteomic Approach of Endothelial Progenitors Demonstrate Expression of KDR Restricted to CD19 Cells. Stem Cell Rev. Reports 2021, 17, 639–651. [Google Scholar] [CrossRef]
- Ran, S.; Thorpe, P.E. Phosphatidylserine is a marker of tumor vasculature and a potential target for cancer imaging and therapy. Int. J. Radiat. Oncol. Biol. Phys. 2002, 54, 1479–1484. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, A.H.; Arledge, C.A.; Xing, F.; Chan, M.D.; Brekken, R.A.; Habib, A.A.; Zhao, D. Exposed Phosphatidylserine as a Biomarker for Clear Identification of Breast Cancer Brain Metastases in Mouse Models. Cancers 2024, 16, 3088. [Google Scholar] [CrossRef]
- Pontejo, S.M.; Murphy, P.M. Chemokines act as phosphatidylserine-bound “find-me” signals in apoptotic cell clearance. PLoS Biol. 2021, 19, e3001259. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Chen, Y.-Z.; Zhang, Y.; Wang, X.; Zhao, X.; Godfroy, J.I.; Liang, Q.; Zhang, M.; Zhang, T.; Yuan, Q.; et al. A lysine-rich motif in the phosphatidylserine receptor PSR-1 mediates recognition and removal of apoptotic cells. Nat. Commun. 2015, 6, 5717. [Google Scholar] [CrossRef]
- Timeus, F.; Crescenzio, N.; Valle, P.; Pistamiglio, P.; Piglione, M.; Garelli, E.; Ricotti, E.; Rocchi, P.; Strippoli, P.; Cordero di Montezemolo, L.; et al. Stem cell factor suppresses apoptosis in neuroblastoma cell lines. Exp. Hematol. 1997, 25, 1253–1260. [Google Scholar] [PubMed]
- Li, T.-S.; Hamano, K.; Nishida, M.; Hayashi, M.; Ito, H.; Mikamo, A.; Matsuzaki, M. CD117+ stem cells play a key role in therapeutic angiogenesis induced by bone marrow cell implantation. Am. J. Physiol. Heart Circ. Physiol. 2003, 285, H931–H937. [Google Scholar] [CrossRef] [PubMed]
- Sedwick, C. On the hunt for vascular endothelial stem cells. PLoS Biol. 2012, 10, e1001408. [Google Scholar] [CrossRef] [PubMed]
- Vizio, B.; Biasi, F.; Scirelli, T.; Novarino, A.; Prati, A.; Ciuffreda, L.; Montrucchio, G.; Poli, G.; Bellone, G. Pancreatic-carcinoma-cell-derived pro-angiogenic factors can induce endothelial-cell differentiation of a subset of circulating CD34+ progenitors. J. Transl. Med. 2013, 11, 314. [Google Scholar] [CrossRef]
- Angelopoulou, M.K.; Tsirkinidis, P.; Boutsikas, G.; Vassilakopoulos, T.P.; Tsirigotis, P. New insights in the mobilization of hematopoietic stem cells in lymphoma and multiple myeloma patients. Biomed Res. Int. 2014, 2014, 835138. [Google Scholar] [CrossRef]
- Eljaszewicz, A.; Bolkun, L.; Grubczak, K.; Rusak, M.; Wasiluk, T.; Dabrowska, M.; Radziwon, P.; Marlicz, W.; Kamiński, K.; Kloczko, J.; et al. Very Small Embryonic-Like Stem Cells, Endothelial Progenitor Cells, and Different Monocyte Subsets Are Effectively Mobilized in Acute Lymphoblastic Leukemia Patients after G-CSF Treatment. Stem Cells Int. 2018, 2018, 1943980. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Yamamoto, N.; Yamada, Y.; Nokihara, H.; Fujiwara, Y.; Hirata, T.; Koizumi, F.; Nishio, K.; Koyama, N.; Tamura, T. Phase I dose-escalation study and biomarker analysis of E7080 in patients with advanced solid tumors. Clin. Cancer Res. 2011, 17, 2528–2537. [Google Scholar] [CrossRef] [PubMed]
- de la Puente, P.; Muz, B.; Azab, F.; Azab, A.K. Cell Trafficking of Endothelial Progenitor Cells in Tumor Progression. Clin. Cancer Res. 2013, 19, 3360–3368. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Hui, A.-M.; Su, Q.; Vortmeyer, A.; Kotliarov, Y.; Pastorino, S.; Passaniti, A.; Menon, J.; Walling, J.; Bailey, R.; et al. Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell 2006, 9, 287–300. [Google Scholar] [CrossRef]
- Raspollini, M.R.; Amunni, G.; Villanucci, A.; Baroni, G.; Taddei, A.; Taddei, G.L. c-KIT expression and correlation with chemotherapy resistance in ovarian carcinoma: An immunocytochemical study. Ann. Oncol. 2004, 15, 594–597. [Google Scholar] [CrossRef] [PubMed]
- Kashiwagi, S.; Yashiro, M.; Takashima, T.; Aomatsu, N.; Kawajiri, H.; Ogawa, Y.; Onoda, N.; Ishikawa, T.; Wakasa, K.; Hirakawa, K. c-Kit expression as a prognostic molecular marker in patients with basal-like breast cancer. Br. J. Surg. 2013, 100, 490–496. [Google Scholar] [CrossRef]
- Das Roy, L.; Curry, J.M.; Sahraei, M.; Besmer, D.M.; Kidiyoor, A.; Gruber, H.E.; Mukherjee, P. Arthritis augments breast cancer metastasis: Role of mast cells and SCF/c-Kit signaling. Breast Cancer Res. 2013, 15, R32. [Google Scholar] [CrossRef]
- Li, W.; Xu, H.; Qian, C. c-Kit-Positive Adipose Tissue-Derived Mesenchymal Stem Cells Promote the Growth and Angiogenesis of Breast Cancer. Biomed Res. Int. 2017, 2017, 7407168. [Google Scholar] [CrossRef] [PubMed]
Variable | |
---|---|
Sex (%) Male Female | 29 (72.5) 11 (27.5) |
Median Age (IQR) | 69 (17.8) |
ECOG PS (%) 0 1 | 21 (52.5) 19 (47.5) |
Median BMI (IQR) | 26.5 (8.5) |
Median serum CEA ng/mL (IQR) | 14.8 (133.7) |
Diabetes (%) Yes No Missing | 2 (5.0) 35 (87.5) 3 (7.5) |
Hypertension Yes No Missing | 21 (51.5) 17 (42.5) 2 (5.0) |
Cardiovascular disease Yes No Missing | 17 (42.5) 16 (40.0) 7 (17.5) |
Tumor location Rectum Right Colon Left Colon | 15 (37.5) 8 (20.0) 17 (42.5) |
K-RAS mutational status Wild-type Mutated | 22 (55.0) 18 (45.0) |
Tumor grading G1-2 G3 | 35 (87.5) 5 (12.5) |
Liver metastasis Yes No | 32 (80.0) 8 (20.0) |
Lung metastasis Yes No | 12 (70.0) 28 (30.0) |
Number of metastatic sites (%) 1 2 ≥3 | 23 (57.5) 11 (27.5) 6 (15.0) |
Line of therapy First-line Second/third-line | 31 (77.5) 9 (22.5) |
Systemic Therapy Chemotherapy + Cetuximab/Panitumumab Chemotherapy + Bevacizumab Chemotherapy + Aflibercept Chemotherapy Regorafenib Cetuximab/Panitumumab Lonsurf | 14 (35.0) 14 (35.0) 2 (5.0) 7 (17.5) 1 (2.5) 1 (2.5) 1 (2.5) |
Univariate Analysis | Bootstrap Results (1000 Replicas) | Multivariate Analysis | ||||||
---|---|---|---|---|---|---|---|---|
Variable | HR (95% CI) | p. | Bias | SE | 95% CI | p. | HR (95% CI) | p. |
Total CD34+/CD45dim/Cd117+ cells/µL | ||||||||
Continuous variable | 1.00 (1.00–1.00) | 0.23 | 0.00 | 0.00 | −0.00 to 0.00 | 0.45 | ||
% Annexin- CD34+/CD45dim/Cd117+ cells | ||||||||
Continuous variable | 1.01 (1.00–1.03) | 0.04 | 0.001 | 0.01 | −0.00 to 0.21 | 0.01 | 1.01 (1.00–1.02) | 0.03 |
ECOG PS 0 | 1 [reference] | |||||||
1 | 3.94 (1.75–8.87) | 0.001 | 0.21 | 0.42 | 0.64 to 2.28 | 0.001 | 4.10 (1.77–9.31) | 0.001 |
Age (years) | ||||||||
Continuous variable | 1.01 (0.98–1.05) | 0.53 | 0.00 | 0.02 | −0.02 to 0.05 | 0.48 | ||
Body Mass Index | ||||||||
Continuous variable | 1.02 (0.95–1.10) | 0.62 | -0.01 | 0.04 | −0.07 to 0.08 | 0.57 | ||
CEA | ||||||||
Continuous variable | 1.00 (1.00–1.00) | 0.03 | -0.00 | 0.00 | −0.00 to 0.00 | 0.004 | ||
Tumor grading 1–2 | 1 [reference] | |||||||
3 | 2.67 (0.98–7.26) | 0.05 | 0.56 | 0.45 | 0.29 to 2.06 | 0.01 a | ||
Primary tumor location Right Colon Left Colon | 1 [reference] 0.58 (0.23–1.45) | 0.24 | −0.09 | 0.87 | −2.20 to 0.58 | 0.33 | ||
Rectum | 0.44 (0.17–1.14) | 0.43 | −0.12 | 0.88 | −2.45 to 0.20 | 0.15 | ||
K-RAS mutational status Mutated | 1 (reference) | |||||||
Wild-type | 0.97 (0.49–1.95) | 0.94 | 0.01 | 0.36 | −0.74 to 0.69 | 0.94 | ||
Number of metastatic sites 1 2 | 1 [reference] 1.05 (0.39–2.87) | 0.91 | −0.03 | 0.69 | −1.15 to 1.32 | 0.91 | ||
3 | 0.98 (0.32–2.94) | 0.98 | −0.01 | 0.75 | −1.37 to 1.35 | 0.98 | ||
Line of therapy First-line | 1 [reference] | |||||||
Second/third-line | 1.02 (0.97–4.75) | 0.06 | 0.01 | 0.36 | −0.16 to 1.57 | 0.02 | ||
Systemic therapy Antiangiogenic therapy No antiangiogenic therapy | 1 [reference] 0.55 (0.27–1.11) | 0.09 | −0.04 | 0.38 | −1.39 to 0.06 | 0.09 | 0.48 (0.23–0.99) | 0.047 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brocco, D.; Simeone, P.; Marino, P.D.; De Bellis, D.; D’Ascanio, F.; Colasante, G.; Grassadonia, A.; De Tursi, M.; Florio, R.; Di Ianni, M.; et al. Low Phosphatidylserine+ Cells Within the CD34+/CD45dim/CD117(c-kit)+ Subpopulation are Associated with Poor Outcomes in Metastatic Colorectal Cancer. Cancers 2025, 17, 499. https://doi.org/10.3390/cancers17030499
Brocco D, Simeone P, Marino PD, De Bellis D, D’Ascanio F, Colasante G, Grassadonia A, De Tursi M, Florio R, Di Ianni M, et al. Low Phosphatidylserine+ Cells Within the CD34+/CD45dim/CD117(c-kit)+ Subpopulation are Associated with Poor Outcomes in Metastatic Colorectal Cancer. Cancers. 2025; 17(3):499. https://doi.org/10.3390/cancers17030499
Chicago/Turabian StyleBrocco, Davide, Pasquale Simeone, Pietro Di Marino, Domenico De Bellis, Francesca D’Ascanio, Giulia Colasante, Antonino Grassadonia, Michele De Tursi, Rosalba Florio, Mauro Di Ianni, and et al. 2025. "Low Phosphatidylserine+ Cells Within the CD34+/CD45dim/CD117(c-kit)+ Subpopulation are Associated with Poor Outcomes in Metastatic Colorectal Cancer" Cancers 17, no. 3: 499. https://doi.org/10.3390/cancers17030499
APA StyleBrocco, D., Simeone, P., Marino, P. D., De Bellis, D., D’Ascanio, F., Colasante, G., Grassadonia, A., De Tursi, M., Florio, R., Di Ianni, M., Cama, A., Tinari, N., & Lanuti, P. (2025). Low Phosphatidylserine+ Cells Within the CD34+/CD45dim/CD117(c-kit)+ Subpopulation are Associated with Poor Outcomes in Metastatic Colorectal Cancer. Cancers, 17(3), 499. https://doi.org/10.3390/cancers17030499