DDX21 Controls Cell Cycle Progression and Autophagy in Pancreatic Cancer Cells
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture, Transfection, Western Blot
2.2. RNA Extraction and RT-PCR Analyses
2.3. RNA-Seq Analysis
2.4. Cell Proliferation, Viability and Clonogenic Assays
2.5. Immunofluorescence Assays
2.6. Cell Cycle Analysis
2.7. Statistical Analyses
3. Results
3.1. Expression of DDX21 Correlates with That of Genes Involved in Transcription, Metabolism and Cell Cycle Regulation in PDAC
3.2. DDX21 Is Upregulated in PDAC Liver Metastases
3.3. DDX21 Is Equally Expressed in Classic and Basal-like PDAC
3.4. Knockdown of DDX21 Exerts Widespread Effects on the Transcriptome of PANC-1 Cells
3.5. DDX21 Depletion Enhances Autophagy in PANC-1 Cells
3.6. DDX21 Promotes the G1-S Cell Cycle Progression and Proliferation of PANC-1 Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wood, L.D.; Canto, M.I.; Jaffee, E.M.; Simeone, D.M. Pancreatic Cancer: Pathogenesis, Screening, Diagnosis, and Treatment. Gastroenterology 2022, 163, 386–402.e1. [Google Scholar] [CrossRef] [PubMed]
- Halbrook, C.J.; Lyssiotis, C.A.; Pasca di Magliano, M.; Maitra, A. Pancreatic cancer: Advances and challenges. Cell 2023, 186, 1729–1754. [Google Scholar] [CrossRef]
- Neoptolemos, J.P.; Kleeff, J.; Michl, P.; Costello, E.; Greenhalf, W.; Palmer, D.H. Therapeutic developments in pancreatic cancer: Current and future perspectives. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 333–348. [Google Scholar] [CrossRef]
- Collisson, E.A.; Bailey, P.; Chang, D.K.; Biankin, A.V. Molecular subtypes of pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 207–220. [Google Scholar] [CrossRef] [PubMed]
- Naro, C.; Ruta, V.; Sette, C. Splicing dysregulation: Hallmark and therapeutic opportunity in pancreatic cancer. Trends Mol. Med. 2024, 7, S1471-4914(24)00308-3. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Lin, K.-T.; Rahman, M.A.; Ishigami, Y.; Wang, Z.; Jensen, M.A.; Wilkinson, J.E.; Park, Y.; Tuveson, D.A.; Krainer, A.R. Splicing Factor SRSF1 Promotes Pancreatitis and KRASG12D-Mediated Pancreatic Cancer. Cancer Discov. 2023, 13, 1678–1695. [Google Scholar] [CrossRef]
- Adesso, L.; Calabretta, S.; Barbagallo, F.; Capurso, G.; Pilozzi, E.; Geremia, R.; Delle Fave, G.; Sette, C. Gemcitabine triggers a pro-survival response in pancreatic cancer cells through activation of the MNK2/eIF4E pathway. Oncogene 2013, 32, 2848–2857. [Google Scholar] [CrossRef] [PubMed]
- Ruta, V.; Naro, C.; Pieraccioli, M.; Leccese, A.; Archibugi, L.; Cesari, E.; Panzeri, V.; Allgöwer, C.; Arcidiacono, P.G.; Falconi, M.; et al. An alternative splicing signature defines the basal-like phenotype and predicts worse clinical outcome in pancreatic cancer. Cell Rep. Med. 2024, 5, 101411. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X. DEAD-Box RNA Helicases in Cell Cycle Control and Clinical Therapy. Cells 2021, 10, 1540. [Google Scholar] [CrossRef] [PubMed]
- Calo, E.; Flynn, R.A.; Martin, L.; Spitale, R.C.; Chang, H.Y.; Wysocka, J. RNA helicase DDX21 coordinates transcription and ribosomal RNA processing. Nature 2015, 518, 249–253. [Google Scholar] [CrossRef]
- Kim, D.-S.; Camacho, C.V.; Nagari, A.; Malladi, V.S.; Challa, S.; Kraus, W.L. Activation of PARP-1 by snoRNAs Controls Ribosome Biogenesis and Cell Growth via the RNA Helicase DDX21. Mol. Cell 2019, 75, 1270–1285.e14. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, Y.; Zhang, J.; Wang, Y.; Liang, C.; Lu, T.; Zhang, C.; Liu, L.; Qin, Y.; He, J.; et al. ADAR1 links R-loop homeostasis to ATR activation in replication stress response. Nucleic Acids Res. 2023, 51, 11668–11687. [Google Scholar] [CrossRef]
- Miao, W.; Porter, D.F.; Lopez-Pajares, V.; Siprashvili, Z.; Meyers, R.M.; Bai, Y.; Nguyen, D.T.; Ko, L.A.; Zarnegar, B.J.; Ferguson, I.D.; et al. Glucose dissociates DDX21 dimers to regulate mRNA splicing and tissue differentiation. Cell 2023, 186, 80–97.e26. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Yang, Y.; Fu, Z.; Xu, W.; Ou, W.; Liu, F.; Du, P.; Liu, C.-Y. The RNA helicase DDX21 activates YAP to promote tumorigenesis and is transcriptionally upregulated by β-catenin in colorectal cancer. Oncogene 2024, 43, 3227–3239. [Google Scholar] [CrossRef]
- Cao, J.; Wu, N.; Han, Y.; Hou, Q.; Zhao, Y.; Pan, Y.; Xie, X.; Chen, F. DDX21 promotes gastric cancer proliferation by regulating cell cycle. Biochem. Biophys. Res. Commun. 2018, 505, 1189–1194. [Google Scholar] [CrossRef]
- Hu, A.; Wang, Y.; Tian, J.; Chen, Z.; Chen, R.; Han, X.; Chen, Y.; Liu, T.; Chen, Q. Pan-cancer analysis reveals DDX21 as a potential biomarker for the prognosis of multiple tumor types. Front. Oncol. 2022, 12, 947054. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, Y.; Chen, C.; Zhu, X.; Zhang, C.; Xia, Y.; Zhao, Y.; Andrisani, O.M.; Kong, L. A double-negative feedback loop between DEAD-box protein DDX21 and Snail regulates epithelial-mesenchymal transition and metastasis in breast cancer. Cancer Lett. 2018, 437, 67–78. [Google Scholar] [CrossRef]
- Wu, S.; Sun, X.; Hua, R.; Hu, C.; Qin, L. DDX21 functions as a potential novel oncopromoter in pancreatic ductal adenocarcinoma: A comprehensive analysis of the DExD box family. Discov. Oncol. 2024, 15, 333. [Google Scholar] [CrossRef]
- Panzeri, V.; Pieraccioli, M.; Cesari, E.; de la Grange, P.; Sette, C. CDK12/13 promote splicing of proximal introns by enhancing the interaction between RNA polymerase II and the splicing factor SF3B1. Nucleic Acids Res. 2023, 51, 5512–5526. [Google Scholar] [CrossRef]
- Naro, C.; Antonioni, A.; Medici, V.; Caggiano, C.; Jolly, A.; de la Grange, P.; Bielli, P.; Paronetto, M.P.; Sette, C. Splicing targeting drugs highlight intron retention as an actionable vulnerability in advanced prostate cancer. J. Exp. Clin. Cancer Res. 2024, 43, 58. [Google Scholar] [CrossRef] [PubMed]
- Naro, C.; De Musso, M.; Delle Monache, F.; Panzeri, V.; de la Grange, P.; Sette, C. The oncogenic kinase NEK2 regulates an RBFOX2-dependent pro-mesenchymal splicing program in triple-negative breast cancer cells. J. Exp. Clin. Cancer Res. 2021, 40, 397. [Google Scholar] [CrossRef] [PubMed]
- Panzeri, V.; Manni, I.; Capone, A.; Naro, C.; Sacconi, A.; Di Agostino, S.; de Latouliere, L.; Montori, A.; Pilozzi, E.; Piaggio, G.; et al. The RNA-binding protein MEX3A is a prognostic factor and regulator of resistance to gemcitabine in pancreatic ductal adenocarcinoma. Mol. Oncol. 2021, 15, 579–595. [Google Scholar] [CrossRef]
- Bielli, P.; Panzeri, V.; Lattanzio, R.; Mutascio, S.; Pieraccioli, M.; Volpe, E.; Pagliarulo, V.; Piantelli, M.; Giannantoni, A.; Di Stasi, S.M.; et al. The Splicing Factor PTBP1 Promotes Expression of Oncogenic Splice Variants and Predicts Poor Prognosis in Patients with Non–muscle-Invasive Bladder Cancer. Clin. Cancer Res. 2018, 24, 5422–5432. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Huang, C.; Cui Zhou, D.; Hu, Y.; Lih, T.M.; Savage, S.R.; Krug, K.; Clark, D.J.; Schnaubelt, M.; Chen, L.; et al. Proteogenomic characterization of pancreatic ductal adenocarcinoma. Cell 2021, 184, 5031–5052.e26. [Google Scholar] [CrossRef] [PubMed]
- Beatty, G.L.; Werba, G.; Lyssiotis, C.A.; Simeone, D.M. The biological underpinnings of therapeutic resistance in pancreatic cancer. Genes Dev. 2021, 35, 940–962. [Google Scholar] [CrossRef] [PubMed]
- Krebs, A.M.; Mitschke, J.; Losada, M.L.; Schmalhofer, O.; Boerries, M.; Busch, H.; Boettcher, M.; Mougiakakos, D.; Reichardt, W.; Bronsert, P.; et al. The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat. Cell Biol. 2017, 19, 518–529. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Yu, C.-C.; Fine, S.A.; Youssof, A.L.; Yang, Y.-R.; Yan, J.; Karg, D.C.; Cheung, E.C.; Friedman, R.A.; Ying, H.; et al. Loss of the wild-type KRAS allele promotes pancreatic cancer progression through functional activation of YAP1. Oncogene 2021, 40, 6759–6771. [Google Scholar] [CrossRef]
- Raphael, B.J.; Hruban, R.H.; Aguirre, A.J.; Moffitt, R.A.; Yeh, J.J.; Stewart, C.; Robertson, A.G.; Cherniack, A.D.; Gupta, M.; Getz, G.; et al. Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell 2017, 32, 185–203.e13. [Google Scholar] [CrossRef]
- Diaferia, G.R.; Balestrieri, C.; Prosperini, E.; Nicoli, P.; Spaggiari, P.; Zerbi, A.; Natoli, G. Dissection of transcriptional and cis -regulatory control of differentiation in human pancreatic cancer. EMBO J. 2016, 35, 595–617. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yang, R.; Song, M.; Li, J.; Zhou, Y.; Dai, C.; Song, T. Current understanding of the role of DDX21 in orchestrating gene expression in health and diseases. Life Sci. 2024, 349, 122716. [Google Scholar] [CrossRef] [PubMed]
- Sarwar, A.; Zhu, M.; Su, Q.; Zhu, Z.; Yang, T.; Chen, Y.; Peng, X.; Zhang, Y. Targeting mitochondrial dysfunctions in pancreatic cancer evokes new therapeutic opportunities. Crit. Rev. Oncol. Hematol. 2022, 180, 103858. [Google Scholar] [CrossRef] [PubMed]
- Assi, M.; Kimmelman, A.C. Impact of context-dependent autophagy states on tumor progression. Nat. Cancer 2023, 4, 596–607. [Google Scholar] [CrossRef]
- Liao, C.-Y.; Li, G.; Kang, F.-P.; Lin, C.-F.; Xie, C.-K.; Wu, Y.-D.; Hu, J.-F.; Lin, H.-Y.; Zhu, S.-C.; Huang, X.-X.; et al. Necroptosis enhances ‘don’t eat me’ signal and induces macrophage extracellular traps to promote pancreatic cancer liver metastasis. Nat. Commun. 2024, 15, 6043. [Google Scholar] [CrossRef]
- Tamagawa, H.; Fujii, M.; Togasaki, K.; Seino, T.; Kawasaki, S.; Takano, A.; Toshimitsu, K.; Takahashi, S.; Ohta, Y.; Matano, M.; et al. Wnt-deficient and hypoxic environment orchestrates squamous reprogramming of human pancreatic ductal adenocarcinoma. Nat. Cell Biol. 2024, 26, 1759–1772. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, H.; Zhang, S.; Mizushima, N. Autophagy genes in biology and disease. Nat. Rev. Genet. 2023, 24, 382–400. [Google Scholar] [CrossRef]
- Goel, S.; Bergholz, J.S.; Zhao, J.J. Targeting CDK4 and CDK6 in cancer. Nat. Rev. Cancer 2022, 22, 356–372. [Google Scholar] [CrossRef] [PubMed]
- Radulovich, N.; Pham, N.-A.; Strumpf, D.; Leung, L.; Xie, W.; Jurisica, I.; Tsao, M.-S. Differential roles of cyclin D1 and D3 in pancreatic ductal adenocarcinoma. Mol. Cancer 2010, 9, 24. [Google Scholar] [CrossRef]
- Hao, J.-D.; Liu, Q.-L.; Liu, M.-X.; Yang, X.; Wang, L.-M.; Su, S.-Y.; Xiao, W.; Zhang, M.-Q.; Zhang, Y.-C.; Zhang, L.; et al. DDX21 mediates co-transcriptional RNA m6A modification to promote transcription termination and genome stability. Mol. Cell 2024, 84, 1711–1726.e11. [Google Scholar] [CrossRef]
- Kong, Y.; Luo, Y.; Zheng, S.; Yang, J.; Zhang, D.; Zhao, Y.; Zheng, H.; An, M.; Lin, Y.; Ai, L.; et al. Mutant KRAS Mediates circARFGEF2 Biogenesis to Promote Lymphatic Metastasis of Pancreatic Ductal Adenocarcinoma. Cancer Res. 2023, 83, 3077–3094. [Google Scholar] [CrossRef]
- Lamb, C.A.; Yoshimori, T.; Tooze, S.A. The autophagosome: Origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 2013, 14, 759–774. [Google Scholar] [CrossRef]
- Goul, C.; Peruzzo, R.; Zoncu, R. The molecular basis of nutrient sensing and signalling by mTORC1 in metabolism regulation and disease. Nat. Rev. Mol. Cell Biol. 2023, 24, 857–875. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Liu, X.; Li, J.; Xie, X.; Huang, M.; Jiang, J.; Liao, Y.-P.; Donahue, T.; Meng, H. Use of ratiometrically designed nanocarrier targeting CDK4/6 and autophagy pathways for effective pancreatic cancer treatment. Nat. Commun. 2020, 11, 4249. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leccese, A.; Ruta, V.; Panzeri, V.; Attili, F.; Spada, C.; Cianfanelli, V.; Sette, C. DDX21 Controls Cell Cycle Progression and Autophagy in Pancreatic Cancer Cells. Cancers 2025, 17, 570. https://doi.org/10.3390/cancers17040570
Leccese A, Ruta V, Panzeri V, Attili F, Spada C, Cianfanelli V, Sette C. DDX21 Controls Cell Cycle Progression and Autophagy in Pancreatic Cancer Cells. Cancers. 2025; 17(4):570. https://doi.org/10.3390/cancers17040570
Chicago/Turabian StyleLeccese, Adriana, Veronica Ruta, Valentina Panzeri, Fabia Attili, Cristiano Spada, Valentina Cianfanelli, and Claudio Sette. 2025. "DDX21 Controls Cell Cycle Progression and Autophagy in Pancreatic Cancer Cells" Cancers 17, no. 4: 570. https://doi.org/10.3390/cancers17040570
APA StyleLeccese, A., Ruta, V., Panzeri, V., Attili, F., Spada, C., Cianfanelli, V., & Sette, C. (2025). DDX21 Controls Cell Cycle Progression and Autophagy in Pancreatic Cancer Cells. Cancers, 17(4), 570. https://doi.org/10.3390/cancers17040570