Historic p87 Is Diagnostic for Lung Cancer Preceding Clinical Presentation by at Least 4 Years
Simple Summary
Abstract
1. Introduction
2. Methods
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chakraborty, R.K.; Sharma, S. Bronchoalveolar Cancer. [Updated 2020 Mar 24]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Tobi, M.; Bluth, M.H.; Rossi, N.F.; Demian, E.; Talwar, H.; Tobi, Y.Y.; Sochacki, P.; Levi, E.; Lawson, M.; McVicker, B. In the SARS-CoV-2 Pandora Pandemic: Can the Stance of Premorbid Intestinal Innate Immune System as Measured by Fecal Adnab-9 Binding of p87:Blood Ferritin, Yielding the FERAD Ratio, Predict COVID-19 Susceptibility and Survival in a Prospective Population Database? Int. J. Mol. Sci. 2023, 24, 7536. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.; Sun, S.W.; Xiong, X.Z. From COPD to Lung Cancer: Mechanisms Linking, Diagnosis, Treatment, and Prognosis. Int. J. Chron Obstruct. Pulmon. Dis. 2022, 17, 2603–2621. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Trivedi, N.N.; Arjomandi, M.; Brown, J.K.; Rubenstein, T.; Rostykus, A.D.; Esposito, S.; Axler, E.; Beggs, M.; Yu, H.; Carbonell, L.; et al. Risk assessment for indeterminate pulmonary nodules using a novel, plasma-protein based biomarker assay. Biomed. Res. Clin. Pract. 2018, 3. [Google Scholar] [CrossRef]
- Weiss, G.; Schlegel, A.; Kottwitz, D.; König, T.; Tetzner, R. Validation of the SHOX2/PTGER4 DNA methylation marker panel for plasma-based discrimination between patients with malignant and nonmalignant lung disease. J. Thorac. Oncol 2017, 12, 77–84. [Google Scholar] [CrossRef]
- Ooki, A.; Maleki, Z.; Tsay, J.C.J.; Goparaju, C.; Brait, M.; Turaga, N.; Nam, H.S.; Rom, W.N.; Pass, H.I.; Sidransky, D.; et al. A panel of novel detection and prognostic methylated DNA markers in primary non- small cell lung cancer and serum DNA. Clin. Cancer Res. 2017, 23, 7141–7152. [Google Scholar] [CrossRef]
- Tobi, M.; Elitsur, Y.; Moyer, M.P.; Halline, A.; Deutsch, M.; Nochomovitz, L.; Luk, G.D. Mucosal origin and shedding of an early colonic tumor marker defined by Adnab-9 monoclonal antibody. Scand. J. Gastroenterol. 1993, 28, 1025–1034. [Google Scholar]
- Tobi, M.; Hatfield, J.; Adsay, V.; Galagan, K.; Kozarek, R.; Inagaki, M.; Kasai, S.; Tokusashi, Y.; Obara, T.; Hruban, R.H.; et al. Prognostic Significance of the Labeling of Adnab-9, in Pancreatic Intraductal Papillary Mucinous Neoplasms. Int. J. Pancreatol. 2001, 29, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Tobi, M.; Darmon, E.; Rozen, P.; Harpaz, N.; Fink, A.; Maliakkal, B.; Halline, A.; Mobarhan, S.; Bentwich, Z. Urinary organ specific neoantigen-A potentially diagnostic test for colorectal cancer. Dig. Dis. Sci. 1995, 40, 1531–1537. [Google Scholar] [CrossRef]
- Tobi, M.; Tobi, Y.Y.; Antaki, F.; Rambus, M.; Lawson, M. Preliminary data of a stool test for lung cancer from a prospective study. In Proceedings of the American Association for Cancer Research Annual Meeting 2018, Chicago, IL, USA, 14–18 April 2018; AACR: Philadelphia, PA, USA, 2018. [Google Scholar]
- Seijo, L.M.; Peled, N.; Ajona, D.; Boeri, M.; Field, J.K.; Sozzi, G.; Pio, R.; Zulueta, J.J.; Spira, A.; Massion, P.P. Biomarkers in lung cancer screening: Achievements, promises and challenges. J. Thoracic. Oncol. 2018, 14, 343–357. [Google Scholar] [CrossRef]
- Shestakova, T.; Zhuravel, E.; Bolgova, L.; Alekseenko, O.; Soldatkina, M.; Pogrebnoy, P. Expression of human beta-defensins-1,2, and 4 mRNA in human lung tumor tissue: A pilot study. Exp. Oncol. 2008, 2, 153–156. [Google Scholar]
- Arimura, Y.; Ashitani, J.I.; Yanagi, S.; Tokojima, M.; Abe, K.; Mukae, H.; Nakazato, M. Elevated serum β-defensins concentrations in patients with lung cancer. Anticancer. Res. 2004, 24, 4051–4058. [Google Scholar] [PubMed]
- Gosh, S.K.; McCormick, T.S.; Weinberg, A. Human β-defensins and cancer: Contradictions and common ground. Front. Oncol. 2019, 9, 341. [Google Scholar] [CrossRef]
- Yuan, M.; Xhang, X.-P.; Leu, Y.-L.; Xu, Y.; Ullah, N.; Lawson, M.; Tobi, M. Fecal Adnab-9 Binding as a Risk Marker for Colorectal Neoplasia. Cancer Lett. 2006, 235, 48–52. [Google Scholar] [CrossRef]
- Yuan, M.; Zhang, X.P.; Tobi, M. GP87 as the tumor marker for gastric precancerous conditions. Chin. J. Oncol. 1995, 17, 136–138. [Google Scholar]
- Qiao, S.; Yuan, M.; Liu, Y.-L.; Lin, X.-S.; Zhang, X.-P.; Tobi, M. Detection of Gastric Cancer and Pre- malignant Lesions by a Novel Marker GP87 using Monoclonal Antibody Adnab-9. Cancer Epidemiol. Biomark. Prev. 2003, 12, 1095–1099. [Google Scholar]
- Abe, H.; Ushiku, T. Pathological Diversity of Gastric Cancer from the Viewpoint of Background Condition. Digestion 2022, 103, 45–53. [Google Scholar] [CrossRef]
- Li, Q.; Wang, H.; Zogopoulos, G.; Shao, Q.; Dong, K.; Lv, F.; Nwilati, K.; Gui, X.Y.; Cuggia, A.; Liu, J.L.; et al. Reg proteins promote acinar-to-ductal metaplasia and act as novel diagnostic and prognostic markers in pancreatic ductal adenocarcinoma. Oncotarget 2016, 7, 77838–77853. [Google Scholar] [CrossRef] [PubMed]
- Bhatavdekar, J.M.; Patel, D.D.; Chikhlikar, P.R.; Shah, N.G.; Vora, H.H.; Ghosh, N.; Trivedi, T.A. Molecular markers are predictors of recurrence and survival in patients with Dukes B and Dukes C colorectal adenocarcinoma. Dis. Colon. Rectum. 2001, 44, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Chu, G.C.W.; Lazare, K.; Sullivan, F. Serum and blood-based markers for lung cancer screening: A systematic review. BMC Cancer 2018, 18, 181. [Google Scholar] [CrossRef]
- Mehta, H.J.; Mohammed, T.L.; Jantz, M.A. The American College of Radiology Lung Imaging Reporting and Data System: Potential Drawbacks and Need for Revision. Chest 2017, 151, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Nooreldeen, R.; Bach, H. Current and Future Development in Lung Cancer Diagnosis. Int. J. Mol. Sci. 2021, 22, 8661. [Google Scholar] [CrossRef] [PubMed]
- Wadowska, K.; Bil-Lula, I.; Trembecki, Ł.; Śliwińska-Mossoń, M. Genetic Markers in Lung Cancer Diagnosis: A Review. Int. J. Mol. Sci. 2020, 21, 4569. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Zhang, N.; Hu, X.; Wang, H. Tumor-associated exosomes promote lung cancer metastasis through multiple mechanisms. Mol. Cancer 2021, 20, 117. [Google Scholar] [CrossRef]
- Li, M.Y.; Liu, L.Z.; Dong, M. Progress on pivotal role and application of exosome in lung cancer carcinogenesis, diagnosis, therapy and prognosis. Mol. Cancer 2021, 20, 22. [Google Scholar] [CrossRef]
- Jain, D.; Nambirajan, A.; Borczuk, A.; Chen, G.; Minami, Y.; Moreira, A.L.; Motoi, N.; Papotti, M.; Rekhtman, N.; Russell, P.A.; et al. Immunocytochemistry for predictive biomarker testing in lung cancer cytology. IASLC Pathology Committee. Cancer Cytopathol. 2019, 127, 325–339. [Google Scholar] [CrossRef] [PubMed]
- Rosenblatt, M.B.; Lisa, J.R.; Collier, F. Primary and metastatic broncho-alveolar carcinoma. Dis. Chest 1967, 52, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Yatabe, Y.; Dacic, S.; Borczuk, A.C.; Warth, A.; Russell, P.A.; Lantuejoul, S.; Beasley, M.B.; Thunnissen, E.; Pelosi, G.; Rekhtman, N.; et al. Best Practices Recommendations for Diagnostic Immunohistochemistry in Lung Cancer. J. Thorac. Oncol. 2019, 14, 377–407. [Google Scholar] [CrossRef]
- Ritterhouse, L.L.; Vivero, M.; Mino-Kenudson, M.; Sholl, L.M.; Iafrate, J.A.; Nardi, V.; Dong, F. GNAS mutations in primary mucinous and non-mucinous lung adenocarcinomas. Mod. Pathol. 2017, 30, 1720–1727. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.J.; Rho, J.K.; Jeon, B.-S.; Choi, S.J.; Park, S.C.; Lee, S.S.; Kim, H.-R.; Kim, C.H.; Lee, J.C. Combined inhibition of IGFR enhances the effects of gefitinib in H1650: A lung cancer cell line with EGFR mutation and primary resistance to EGFR-TK inhibitors. Cancer Chemother. Pharmacol. 2010, 66, 381–388. [Google Scholar] [CrossRef]
- Surya, P.; Klaus, R.; Nicola, H.; Claus, V.; Jeremy, C.; Mona, B.; Stephanie, C. Dupilumab for COPD with Type 2 Inflammation Indicated by Eosinophil Counts. N. Engl. J. Med. 2023, 389, 205–214. [Google Scholar] [CrossRef]
Parameter | % Lung Cancer Cases | % Controls | Chi-Square: or (ci) | p-Value |
---|---|---|---|---|
Age > 50 | 77.7 | 61.7 | 2.16 (1.37–3.40) | <0.001 |
Male gender | 92.0 | 88.8 | 1.44 (0.72–2.89) | 0.38 |
Race black | 66.7 | 52.2 | 1.83 (1.22–2.75) | <0.005 |
BMI > 28 | 29.3 | 51.3 | 0.39 (0.24–0.64) | <0.0002 |
FEV1 > 1.5 L/s | 89.5 | 83.7 | 1.66 (0.37–7.53) | 0.55 |
Smoking | 65.3 | 36.1 | 3.34 (2.05–5.46) | <0.0001 |
Diabetes | 26.1 | 36.2 | Yates cs 3.25 | 0.07 |
No F/H cancer | 45.3 | 41.2 | Yates cs 0.53 | 0.47 |
No other cancer | 18.9 | 28.5 | Yates cs 4.34 | 0.037 |
Mortality | 87.5 | 61.1 | 0.23 (0.13–0.40) | <0.0001 |
F/H Lung Ca | 1.9 | 0.11 | 16.69 (2.33–119.70) | <0.02 |
Parameter | p87− Patients n = 26 | p87+ Patients n = 25 | p-Value |
---|---|---|---|
Age in years ± standard deviation | 63.2 ± 9.66 | 67.5 ± 11.2 | p = 0.149 |
Survival (dx to death) | 10.6 ± 4.8 years | 7.3 ± 4.4 years | p = 0.35 |
Ferritin (ng/dL) ± standard deviation | 358 ± 314 | 149 ± 129 | p < 0.034 |
Native p87 cecum ELISA (OD-Bg) | 0.132 ± 0.014 | 0.055 ± 0.031 | p < 0.035 |
Native p87 Asc C ELISA (OD-Bg) | 0.203 ± 0.059 | 0.042 ± 0.023 | p < 0.008 |
FERAD ratio | 179,882 ± 302,992 | 2987 ± 3492 | p < 0.048 |
Cancer Type | Ad-9 (p87) | TTF1 (Clones) | NE Marker | %p63/p40 | CK7 (NRecc) |
---|---|---|---|---|---|
Lepidic/BA | 67 | N/A | N/A | ||
AdenoCa | 32 | 80 (muc10–15) | N/A | 20–30 | 94–100 |
Squamous | 6 | N/A | 5–77 mean 25% | ||
Large Cell | 0 | 41 (9–85) | 92 | ||
Small Cell | 22 | 79–100 | |||
NSCLC | 15 | 10–20 | 68 | ||
AdenoSquamous | 27 | N/A | 99 | ||
Papillary | 74 | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tobi, M.; Ezekwudo, D.; Tobi, Y.Y.; Zhao, X.; Antaki, F.; Rambus, M.; Levi, E.; Talwar, H.; McVicker, B. Historic p87 Is Diagnostic for Lung Cancer Preceding Clinical Presentation by at Least 4 Years. Cancers 2025, 17, 952. https://doi.org/10.3390/cancers17060952
Tobi M, Ezekwudo D, Tobi YY, Zhao X, Antaki F, Rambus M, Levi E, Talwar H, McVicker B. Historic p87 Is Diagnostic for Lung Cancer Preceding Clinical Presentation by at Least 4 Years. Cancers. 2025; 17(6):952. https://doi.org/10.3390/cancers17060952
Chicago/Turabian StyleTobi, Martin, Daniel Ezekwudo, Yosef Y. Tobi, Xiaoqing Zhao, Fadi Antaki, MaryAnn Rambus, Edi Levi, Harvinder Talwar, and Benita McVicker. 2025. "Historic p87 Is Diagnostic for Lung Cancer Preceding Clinical Presentation by at Least 4 Years" Cancers 17, no. 6: 952. https://doi.org/10.3390/cancers17060952
APA StyleTobi, M., Ezekwudo, D., Tobi, Y. Y., Zhao, X., Antaki, F., Rambus, M., Levi, E., Talwar, H., & McVicker, B. (2025). Historic p87 Is Diagnostic for Lung Cancer Preceding Clinical Presentation by at Least 4 Years. Cancers, 17(6), 952. https://doi.org/10.3390/cancers17060952