γδ T Cells: Game Changers in Immune Cell Therapy for Cancer
Simple Summary
Abstract
1. Overview of γδ T Cells in the Immune System
2. Differences Between γδ T Cells and αβ T Cells
3. Classification and Anti-Tumor Mechanisms of γδ T Cells
4. γδ T Cell-Based Immunotherapies in Cancer: Clinical Applications and Challenges
4.1. Clinical Outcomes of γδ T Cell-Based Therapies
4.2. Current Clinical Trials and Combination Strategies
5. Optimization of γδ T Cell Expansion for Therapeutic Applications
5.1. Activation and Stimulation Approaches
5.2. Co-Culture Systems and Feeder Cells
5.3. Expansion Protocol Optimization
5.4. Overcoming T Cell Exhaustion and Enhancing γδ T Cell Persistence in the Tumor Microenvironment
6. Characterization and Comparative Analysis of γδ T Cell Expansion Protocols
7. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Ullrich, R.; Schieferdecker, H.L.; Ziegler, K.; Riecken, E.O.; Zeitz, M. Γδ T Cells in the Human Intestine Express Surface Markers of Activation and Are Preferentially Located in the Epithelium. Cell. Immunol. 1990, 128, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, M.M.; Witherden, D.A.; Havran, W.L. Γδ T Cells in Homeostasis and Host Defence of Epithelial Barrier Tissues. Nat. Rev. Immunol. 2017, 17, 733. [Google Scholar] [CrossRef] [PubMed]
- Edelblum, K.L.; Shen, L.; Weber, C.R.; Marchiando, A.M.; Clay, B.S.; Wang, Y.; Prinz, I.; Malissen, B.; Sperling, A.I.; Turner, J.R. Dynamic Migration of Γδ Intraepithelial Lymphocytes Requires Occludin. Proc. Natl. Acad. Sci. USA 2012, 109, 7097–7102. [Google Scholar] [CrossRef]
- Qu, G.; Wang, S.; Zhou, Z.; Jiang, D.; Liao, A.; Luo, J. Comparing Mouse and Human Tissue-Resident Γδ T Cells. Front. Immunol. 2022, 13, 891687. [Google Scholar] [CrossRef]
- Mensurado, S.; Blanco-Domínguez, R.; Silva-Santos, B. The Emerging Roles of Γδ T Cells in Cancer Immunotherapy. Nat. Rev. Clin. Oncol. 2023, 20, 178–191. [Google Scholar] [CrossRef]
- Hayday, A.; Dechanet-Merville, J.; Rossjohn, J.; Silva-Santos, B. Cancer Immunotherapy by Γδ T Cells. Science 2024, 386, eabq7248. [Google Scholar] [CrossRef]
- Costa, G.P.; Mensurado, S.; Silva-Santos, B. Therapeutic Avenues for Γδ T Cells in Cancer. J. Immunother. Cancer 2023, 11, e007955. [Google Scholar] [CrossRef]
- Hu, Y.; Hu, Q.; Li, Y.; Lu, L.; Xiang, Z.; Yin, Z.; Kabelitz, D.; Wu, Y. Γδ T Cells: Origin and Fate, Subsets, Diseases and Immunotherapy. Signal Transduct. Target. Ther. 2023, 8, 434. [Google Scholar] [CrossRef]
- Vantourout, P.; Hayday, A. Six-of-the-Best: Unique Contributions of Γδ T Cells to Immunology. Nat. Rev. Immunol. 2013, 13, 88–100. [Google Scholar] [CrossRef]
- Harly, C.; Guillaume, Y.; Nedellec, S.; Peigné, C.-M.; Mönkkönen, H.; Mönkkönen, J.; Li, J.; Kuball, J.; Adams, E.J.; Netzer, S.; et al. Key Implication of CD277/Butyrophilin-3 (BTN3A) in Cellular Stress Sensing by a Major Human Γδ T-Cell Subset. Blood 2012, 120, 2269–2279. [Google Scholar] [CrossRef]
- Sandstrom, A.; Peigné, C.-M.; Léger, A.; Crooks, J.E.; Konczak, F.; Gesnel, M.-C.; Breathnach, R.; Bonneville, M.; Scotet, E.; Adams, E.J. The Intracellular B30.2 Domain of Butyrophilin 3A1 Binds Phosphoantigens to Mediate Activation of Human Vγ9Vδ2 T Cells. Immunity 2014, 40, 490–500. [Google Scholar] [CrossRef] [PubMed]
- Mo, F.; Mamonkin, M.; Brenner, M.K.; Heslop, H.E. Taking T-Cell Oncotherapy Off-the-Shelf. Trends Immunol. 2021, 42, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Kabelitz, D.; Serrano, R.; Kouakanou, L.; Peters, C.; Kalyan, S. Cancer Immunotherapy with Γδ T Cells: Many Paths Ahead of Us. Cell Mol. Immunol. 2020, 17, 925–939. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Wang, W.; Hawes, I.; Han, J.; Yao, Z.; Bertaina, A. Advancements in γδT Cell Engineering: Paving the Way for Enhanced Cancer Immunotherapy. Front. Immunol. 2024, 15, 1360237. [Google Scholar] [CrossRef]
- Sebestyen, Z.; Prinz, I.; Déchanet-Merville, J.; Silva-Santos, B.; Kuball, J. Translating Gammadelta (Γδ) T Cells and Their Receptors into Cancer Cell Therapies. Nat. Rev. Drug Discov. 2020, 19, 169–184. [Google Scholar] [CrossRef]
- Silva-Santos, B.; Strid, J. Working in “NK Mode”: Natural Killer Group 2 Member D and Natural Cytotoxicity Receptors in Stress-Surveillance by Γδ T Cells. Front. Immunol. 2018, 9, 851. [Google Scholar] [CrossRef]
- Couzi, L.; Pitard, V.; Sicard, X.; Garrigue, I.; Hawchar, O.; Merville, P.; Moreau, J.-F.; Déchanet-Merville, J. Antibody-Dependent Anti-Cytomegalovirus Activity of Human Γδ T Cells Expressing CD16 (FcγRIIIa). Blood 2012, 119, 1418–1427. [Google Scholar] [CrossRef]
- Angelini, D.F.; Borsellino, G.; Poupot, M.; Diamantini, A.; Poupot, R.; Bernardi, G.; Poccia, F.; Fournié, J.-J.; Battistini, L. FcgammaRIII Discriminates between 2 Subsets of Vgamma9Vdelta2 Effector Cells with Different Responses and Activation Pathways. Blood 2004, 104, 1801–1807. [Google Scholar] [CrossRef]
- Krangel, M.S.; Yssel, H.; Brocklehurst, C.; Spits, H. A Distinct Wave of Human T Cell Receptor Gamma/Delta Lymphocytes in the Early Fetal Thymus: Evidence for Controlled Gene Rearrangement and Cytokine Production. J. Exp. Med. 1990, 172, 847. [Google Scholar] [CrossRef]
- Willcox, C.R.; Davey, M.S.; Willcox, B.E. Development and Selection of the Human Vγ9Vδ2+ T-Cell Repertoire. Front. Immunol. 2018, 9, 1501. [Google Scholar] [CrossRef]
- Ribot, J.C.; Lopes, N.; Silva-Santos, B. γδ T cells in tissue physiology and surveillance. Nat. Rev. Immunol. 2021, 21, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Bauer, S.; Groh, V.; Wu, J.; Steinle, A.; Phillips, J.H.; Lanier, L.L.; Spies, T. Activation of NK Cells and T Cells by NKG2D, a Receptor for Stress-Inducible MICA. Science 1999, 285, 727–729. [Google Scholar] [CrossRef] [PubMed]
- Mikulak, J.; Oriolo, F.; Bruni, E.; Roberto, A.; Colombo, F.S.; Villa, A.; Bosticardo, M.; Bortolomai, I.; Lo Presti, E.; Meraviglia, S.; et al. NKp46-Expressing Human Gut-Resident Intraepithelial Vδ1 T Cell Subpopulation Exhibits High Antitumor Activity against Colorectal Cancer. J. Clin. Investig. 2019, 4, e125884. [Google Scholar] [CrossRef]
- Deniger, D.C.; Maiti, S.N.; Mi, T.; Switzer, K.C.; Ramachandran, V.; Hurton, L.V.; Ang, S.; Olivares, S.; Rabinovich, B.A.; Huls, H.; et al. Activating and Propagating Polyclonal Gamma Delta T Cells with Broad Specificity for Malignancies. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2014, 20, 5708. [Google Scholar] [CrossRef]
- Sanz, M.; Mann, B.T.; Ryan, P.L.; Bosque, A.; Pennington, D.J.; Hackstein, H.; Soriano-Sarabia, N. Deep Characterization of Human Γδ T Cell Subsets Defines Shared and Lineage-Specific Traits. Front. Immunol. 2023, 14, 1148988. [Google Scholar] [CrossRef]
- Kong, Y.; Cao, W.; Xi, X.; Ma, C.; Cui, L.; He, W. The NKG2D Ligand ULBP4 Binds to TCRγ9/Δ2 and Induces Cytotoxicity to Tumor Cells through Both TCRγδ and NKG2D. Blood 2009, 114, 310–317. [Google Scholar] [CrossRef]
- Tokuyama, H.; Hagi, T.; Mattarollo, S.R.; Morley, J.; Wang, Q.; Fai-So, H.; Moriyasu, F.; Nieda, M.; Nicol, A.J. Vγ9Vδ2 T Cell Cytotoxicity against Tumor Cells Is Enhanced by Monoclonal Antibody Drugs—Rituximab and Trastuzumab. Int. J. Cancer 2008, 122, 2526–2534. [Google Scholar] [CrossRef]
- Dokouhaki, P.; Schuh, N.W.; Joe, B.; Allen, C.A.D.; Der, S.D.; Tsao, M.-S.; Zhang, L. NKG2D Regulates Production of Soluble TRAIL by Ex Vivo Expanded Human Γδ T Cells. Eur. J. Immunol. 2013, 43, 3175–3182. [Google Scholar] [CrossRef]
- Groh, V.; Steinle, A.; Bauer, S.; Spies, T. Recognition of Stress-Induced MHC Molecules by Intestinal Epithelial Gammadelta T Cells. Science 1998, 279, 1737–1740. [Google Scholar] [CrossRef]
- Porcelli, S.; Brenner, M.B.; Greenstein, J.L.; Balk, S.P.; Terhorst, C.; Bleicher, P.A. Recognition of Cluster of Differentiation 1 Antigens by Human CD4-CD8-Cytolytic T Lymphocytes. Nature 1989, 341, 447–450. [Google Scholar] [CrossRef]
- Bai, L.; Picard, D.; Anderson, B.; Chaudhary, V.; Luoma, A.; Jabri, B.; Adams, E.J.; Savage, P.B.; Bendelac, A. The Majority of CD1d-Sulfatide Specific T Cells in Human Blood Use a Semi-Invariant Vδ1 TCR. Eur. J. Immunol. 2012, 42, 2505–2510. [Google Scholar] [CrossRef] [PubMed]
- Vincent, M.S.; Roessner, K.; Sellati, T.; Huston, C.D.; Sigal, L.H.; Behar, S.M.; Radolf, J.D.; Budd, R.C. Lyme Arthritis Synovial Gamma Delta T Cells Respond to Borrelia Burgdorferi Lipoproteins and Lipidated Hexapeptides. J. Immunol. Baltim. 1998, 161, 5762–5771. [Google Scholar]
- Scotet, E.; Martinez, L.O.; Grant, E.; Barbaras, R.; Jenö, P.; Guiraud, M.; Monsarrat, B.; Saulquin, X.; Maillet, S.; Estève, J.-P.; et al. Tumor Recognition Following Vgamma9Vdelta2 T Cell Receptor Interactions with a Surface F1-ATPase-Related Structure and Apolipoprotein A-I. Immunity 2005, 22, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Marlin, R.; Pappalardo, A.; Kaminski, H.; Willcox, C.R.; Pitard, V.; Netzer, S.; Khairallah, C.; Lomenech, A.-M.; Harly, C.; Bonneville, M.; et al. Sensing of Cell Stress by Human Γδ TCR-Dependent Recognition of Annexin A2. Proc. Natl. Acad. Sci. USA 2017, 114, 3163–3168. [Google Scholar] [CrossRef]
- Morita, C.T.; Beckman, E.M.; Bukowski, J.F.; Tanaka, Y.; Band, H.; Bloom, B.R.; Golan, D.E.; Brenner, M.B. Direct Presentation of Nonpeptide Prenyl Pyrophosphate Antigens to Human Gamma Delta T Cells. Immunity 1995, 3, 495–507. [Google Scholar] [CrossRef]
- Morita, C.T.; Jin, C.; Sarikonda, G.; Wang, H. Nonpeptide Antigens, Presentation Mechanisms, and Immunological Memory of Human Vγ2Vδ2 T Cells: Discriminating Friend from Foe through the Recognition of Prenyl Pyrophosphate Antigens. Immunol. Rev. 2007, 215, 59–76. [Google Scholar] [CrossRef]
- Holmen Olofsson, G.; Idorn, M.; Carnaz Simões, A.M.; Aehnlich, P.; Skadborg, S.K.; Noessner, E.; Debets, R.; Moser, B.; Met, Ö.; thor Straten, P. Vγ9Vδ2 T Cells Concurrently Kill Cancer Cells and Cross-Present Tumor Antigens. Front. Immunol. 2021, 12, 645131. [Google Scholar] [CrossRef]
- Brandes, M.; Willimann, K.; Bioley, G.; Lévy, N.; Eberl, M.; Luo, M.; Tampé, R.; Lévy, F.; Romero, P.; Moser, B. Cross-Presenting Human Γδ T Cells Induce Robust CD8+ Aβ T Cell Responses. Proc. Natl. Acad. Sci. USA 2009, 106, 2307–2312. [Google Scholar] [CrossRef]
- Dhar, S.; Chiplunkar, S.V. Lysis of Aminobisphosphonate-Sensitized MCF-7 Breast Tumor Cells by Vγ9Vδ2 T Cells. Cancer Immun. 2010, 10, 10. [Google Scholar]
- Joalland, N.; Chauvin, C.; Oliver, L.; Vallette, F.M.; Pecqueur, C.; Jarry, U.; Scotet, E. IL-21 Increases the Reactivity of Allogeneic Human Vγ9Vδ2 T Cells Against Primary Glioblastoma Tumors. J. Immunother. 2018, 41, 224. [Google Scholar] [CrossRef]
- Poggi, A.; Venturino, C.; Catellani, S.; Clavio, M.; Miglino, M.; Gobbi, M.; Steinle, A.; Ghia, P.; Stella, S.; Caligaris-Cappio, F.; et al. Vdelta1 T Lymphocytes from B-CLL Patients Recognize ULBP3 Expressed on Leukemic B Cells and up-Regulated by Trans-Retinoic Acid. Cancer Res. 2004, 64, 9172–9179. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Ly, D.; Castro, C.D.; Li, N.-S.; Hawk, A.J.; Altman, J.D.; Meredith, S.C.; Piccirilli, J.A.; Moody, D.B.; Adams, E.J. Molecular Analysis of Lipid-Reactive Vδ1 Γδ T Cells Identified by CD1c Tetramers. J. Immunol. 2016, 196, 1933–1942. [Google Scholar] [CrossRef] [PubMed]
- Luoma, A.M.; Castro, C.D.; Mayassi, T.; Bembinster, L.A.; Bai, L.; Picard, D.; Anderson, B.; Scharf, L.; Kung, J.E.; Sibener, L.V.; et al. Crystal Structure of Vδ1 T Cell Receptor in Complex with CD1d-Sulfatide Shows MHC-like Recognition of a Self-Lipid by Human Γδ T Cells. Immunity 2013, 39, 1032–1042. [Google Scholar] [CrossRef]
- Uldrich, A.P.; Le Nours, J.; Pellicci, D.G.; Gherardin, N.A.; McPherson, K.G.; Lim, R.T.; Patel, O.; Beddoe, T.; Gras, S.; Rossjohn, J.; et al. CD1d-Lipid Antigen Recognition by the Γδ TCR. Nat. Immunol. 2013, 14, 1137–1145. [Google Scholar] [CrossRef]
- Rao, A.; Agrawal, A.; Borthakur, G.; Battula, V.L.; Maiti, A. Gamma Delta T Cells in Acute Myeloid Leukemia: Biology and Emerging Therapeutic Strategies. J. Immunother. Cancer 2024, 12, e007981. [Google Scholar] [CrossRef]
- Pistoia, V.; Tumino, N.; Vacca, P.; Veneziani, I.; Moretta, A.; Locatelli, F.; Moretta, L. Human Γδ T-Cells: From Surface Receptors to the Therapy of High-Risk Leukemias. Front. Immunol. 2018, 9, 984. [Google Scholar] [CrossRef]
- Correia, D.V.; Fogli, M.; Hudspeth, K.; da Silva, M.G.; Mavilio, D.; Silva-Santos, B. Differentiation of Human Peripheral Blood Vδ1+ T Cells Expressing the Natural Cytotoxicity Receptor NKp30 for Recognition of Lymphoid Leukemia Cells. Blood 2011, 118, 992–1001. [Google Scholar] [CrossRef]
- Cordova, A.; Toia, F.; La Mendola, C.; Orlando, V.; Meraviglia, S.; Rinaldi, G.; Todaro, M.; Cicero, G.; Zichichi, L.; Donni, P.L.; et al. Characterization of Human Γδ T Lymphocytes Infiltrating Primary Malignant Melanomas. PLoS ONE 2012, 7, e49878. [Google Scholar] [CrossRef]
- Lo Presti, E.; Dieli, F.; Meraviglia, S. Tumor-Infiltrating Γδ T Lymphocytes: Pathogenic Role, Clinical Significance, and Differential Programing in the Tumor Microenvironment. Front. Immunol. 2014, 5, 607. [Google Scholar] [CrossRef]
- Petrasca, A.; Melo, A.M.; Breen, E.P.; Doherty, D.G. Human Vδ3+ γδ T cells induce maturation and IgM secretion by B cells. Immunol. Lett. 2018, 196, 126–134. [Google Scholar] [CrossRef]
- Niu, C.; Jin, H.; Li, M.; Xu, J.; Xu, D.; Hu, J.; He, H.; Li, W.; Cui, J. In Vitro Analysis of the Proliferative Capacity and Cytotoxic Effects of Ex Vivo Induced Natural Killer Cells, Cytokine-Induced Killer Cells, and Gamma-Delta T Cells. BMC Immunol. 2015, 16, 61. [Google Scholar] [CrossRef]
- Lee, D.; Rosenthal, C.J.; Penn, N.E.; Dunn, Z.S.; Zhou, Y.; Yang, L. Human Γδ T Cell Subsets and Their Clinical Applications for Cancer Immunotherapy. Cancers 2022, 14, 3005. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Yang, W.; Pan, M.; Scully, E.; Girardi, M.; Augenlicht, L.H.; Craft, J.; Yin, Z. Γδ T Cells Provide an Early Source of Interferon γ in Tumor Immunity. J. Exp. Med. 2003, 198, 433. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Xiao, Z.; Zhao, Q.; Li, M.; Wu, X.; Zhang, L.; Hu, W.; Cho, C.H. Anti-cancer Therapy with TNFα and IFNγ: A Comprehensive Review. Cell Prolif. 2018, 51, e12441. [Google Scholar] [CrossRef]
- Li, Y.; Li, G.; Zhang, J.; Wu, X.; Chen, X. The Dual Roles of Human Γδ T Cells: Anti-Tumor or Tumor-Promoting. Front. Immunol. 2020, 11, 619954. [Google Scholar] [CrossRef]
- Todaro, M.; D’Asaro, M.; Caccamo, N.; Iovino, F.; Francipane, M.G.; Meraviglia, S.; Orlando, V.; La Mendola, C.; Gulotta, G.; Salerno, A.; et al. Efficient Killing of Human Colon Cancer Stem Cells by Γδ T Lymphocytes1. J. Immunol. 2009, 182, 7287–7296. [Google Scholar] [CrossRef]
- Wu, P.; Wu, D.; Ni, C.; Ye, J.; Chen, W.; Hu, G.; Wang, Z.; Wang, C.; Zhang, Z.; Xia, W.; et al. γδT17 Cells Promote the Accumulation and Expansion of Myeloid-Derived Suppressor Cells in Human Colorectal Cancer. Immunity 2014, 40, 785–800. [Google Scholar] [CrossRef]
- Coffelt, S.B.; Kersten, K.; Doornebal, C.W.; Weiden, J.; Vrijland, K.; Hau, C.-S.; Verstegen, N.J.M.; Ciampricotti, M.; Hawinkels, L.J.A.C.; Jonkers, J.; et al. IL-17-Producing Γδ T Cells and Neutrophils Conspire to Promote Breast Cancer Metastasis. Nature 2015, 522, 345–348. [Google Scholar] [CrossRef]
- Wakita, D.; Sumida, K.; Iwakura, Y.; Nishikawa, H.; Ohkuri, T.; Chamoto, K.; Kitamura, H.; Nishimura, T. Tumor-Infiltrating IL-17-Producing Gammadelta T Cells Support the Progression of Tumor by Promoting Angiogenesis. Eur. J. Immunol. 2010, 40, 1927–1937. [Google Scholar] [CrossRef]
- Rei, M.; Gonçalves-Sousa, N.; Lança, T.; Thompson, R.G.; Mensurado, S.; Balkwill, F.R.; Kulbe, H.; Pennington, D.J.; Silva-Santos, B. Murine CD27(-) Vγ6(+) Γδ T Cells Producing IL-17A Promote Ovarian Cancer Growth via Mobilization of Protumor Small Peritoneal Macrophages. Proc. Natl. Acad. Sci. USA 2014, 111, E3562–E3570. [Google Scholar] [CrossRef]
- Caccamo, N.; La Mendola, C.; Orlando, V.; Meraviglia, S.; Todaro, M.; Stassi, G.; Sireci, G.; Fournié, J.J.; Dieli, F. Differentiation, Phenotype, and Function of Interleukin-17-Producing Human Vγ9Vδ2 T Cells. Blood 2011, 118, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Lo Presti, E.; Toia, F.; Oieni, S.; Buccheri, S.; Turdo, A.; Mangiapane, L.R.; Campisi, G.; Caputo, V.; Todaro, M.; Stassi, G.; et al. Squamous Cell Tumors Recruit Γδ T Cells Producing Either IL17 or IFNγ Depending on the Tumor Stage. Cancer Immunol. Res. 2017, 5, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Kyle-Cezar, F.; Woolf, R.T.; Naceur-Lombardelli, C.; Owen, J.; Biswas, D.; Lorenc, A.; Vantourout, P.; Gazinska, P.; Grigoriadis, A.; et al. An Innate-like Vδ1+ Γδ T Cell Compartment in the Human Breast Is Associated with Remission in Triple-Negative Breast Cancer. Sci. Transl. Med. 2019, 11, eaax9364. [Google Scholar] [CrossRef]
- Mensurado, S.; Rei, M.; Lança, T.; Ioannou, M.; Gonçalves-Sousa, N.; Kubo, H.; Malissen, M.; Papayannopoulos, V.; Serre, K.; Silva-Santos, B. Tumor-Associated Neutrophils Suppress pro-Tumoral IL-17+ Γδ T Cells through Induction of Oxidative Stress. PLoS Biol. 2018, 16, e2004990. [Google Scholar] [CrossRef]
- Nakajima, J.; Murakawa, T.; Fukami, T.; Goto, S.; Kaneko, T.; Yoshida, Y.; Takamoto, S.; Kakimi, K. A Phase I Study of Adoptive Immunotherapy for Recurrent Non-Small-Cell Lung Cancer Patients with Autologous Γδ T Cells. Eur. J. Cardiothorac. Surg. 2010, 37, 1191–1197. [Google Scholar] [CrossRef]
- Aoki, T.; Matsushita, H.; Hoshikawa, M.; Hasegawa, K.; Kokudo, N.; Kakimi, K. Adjuvant Combination Therapy with Gemcitabine and Autologous Γδ T-Cell Transfer in Patients with Curatively Resected Pancreatic Cancer. Cytotherapy 2017, 19, 473–485. [Google Scholar] [CrossRef]
- Sakamoto, M.; Nakajima, J.; Murakawa, T.; Fukami, T.; Yoshida, Y.; Murayama, T.; Takamoto, S.; Matsushita, H.; Kakimi, K. Adoptive Immunotherapy for Advanced Non-Small Cell Lung Cancer Using Zoledronate-Expanded Γδ T Cells: A Phase I Clinical Study. J. Immunother. 2011, 34, 202. [Google Scholar] [CrossRef]
- Kakimi, K.; Matsushita, H.; Masuzawa, K.; Karasaki, T.; Kobayashi, Y.; Nagaoka, K.; Hosoi, A.; Ikemura, S.; Kitano, K.; Kawada, I.; et al. Adoptive Transfer of Zoledronate-Expanded Autologous Vγ9Vδ2 T-Cells in Patients with Treatment-Refractory Non-Small-Cell Lung Cancer: A Multicenter, Open-Label, Single-Arm, Phase 2 Study. J. Immunother. Cancer 2020, 8, e001185. [Google Scholar] [CrossRef]
- Sato, Y.; Mori, K.; Hirano, K.; Yagi, K.; Kobayashi, Y.; Nagaoka, K.; Hosoi, A.; Matsushita, H.; Kakimi, K.; Seto, Y. Adoptive γδT-Cell Transfer Alone or Combined with Chemotherapy for the Treatment of Advanced Esophageal Cancer. Cytotherapy 2021, 23, 423–432. [Google Scholar] [CrossRef]
- Abe, Y.; Muto, M.; Nieda, M.; Nakagawa, Y.; Nicol, A.; Kaneko, T.; Goto, S.; Yokokawa, K.; Suzuki, K. Clinical and Immunological Evaluation of Zoledronate-Activated Vγ9γδ T-Cell-Based Immunotherapy for Patients with Multiple Myeloma. Exp. Hematol. 2009, 37, 956–968. [Google Scholar] [CrossRef]
- Nicol, A.J.; Tokuyama, H.; Mattarollo, S.R.; Hagi, T.; Suzuki, K.; Yokokawa, K.; Nieda, M. Clinical Evaluation of Autologous Gamma Delta T Cell-Based Immunotherapy for Metastatic Solid Tumours. Br. J. Cancer 2011, 105, 778. [Google Scholar] [CrossRef] [PubMed]
- Wada, I.; Matsushita, H.; Noji, S.; Mori, K.; Yamashita, H.; Nomura, S.; Shimizu, N.; Seto, Y.; Kakimi, K. Intraperitoneal Injection of in Vitro Expanded Vγ9Vδ2 T Cells Together with Zoledronate for the Treatment of Malignant Ascites Due to Gastric Cancer. Cancer Med. 2014, 3, 362. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Tanaka, Y.; Yagi, J.; Minato, N.; Tanabe, K. Phase I/II Study of Adoptive Transfer of Γδ T Cells in Combination with Zoledronic Acid and IL-2 to Patients with Advanced Renal Cell Carcinoma. Cancer Immunol. Immunother. CII 2011, 60, 1075. [Google Scholar] [CrossRef] [PubMed]
- Bennouna, J.; Bompas, E.; Neidhardt, E.M.; Rolland, F.; Philip, I.; Galéa, C.; Salot, S.; Saiagh, S.; Audrain, M.; Rimbert, M.; et al. Phase-I Study of Innacell ΓδTM, an Autologous Cell-Therapy Product Highly Enriched in Γ9δ2 T Lymphocytes, in Combination with IL-2, in Patients with Metastatic Renal Cell Carcinoma. Cancer Immunol. Immunother. CII 2008, 57, 1599. [Google Scholar] [CrossRef]
- Kobayashi, H.; Tanaka, Y.; Yagi, J.; Osaka, Y.; Nakazawa, H.; Uchiyama, T.; Minato, N.; Toma, H. Safety Profile and Anti-Tumor Effects of Adoptive Immunotherapy Using Gamma-Delta T Cells against Advanced Renal Cell Carcinoma: A Pilot Study. Cancer Immunol. Immunother. CII 2007, 56, 469–476. [Google Scholar] [CrossRef]
- Vydra, J.; Cosimo, E.; Lesný, P.; Wanless, R.S.; Anderson, J.; Clark, A.G.; Scott, A.; Nicholson, E.K.; Leek, M. A Phase I Trial of Allogeneic Γδ T Lymphocytes from Haploidentical Donors in Patients With Refractory or Relapsed Acute Myeloid Leukemia. Clin. Lymphoma Myeloma Leuk. 2023, 23, e232–e239. [Google Scholar] [CrossRef]
- Lamb, L.S.; Henslee-Downey, P.J.; Parrish, R.S.; Godder, K.; Thompson, J.; Lee, C.; Gee, A.P. Increased Frequency of TCR Gamma Delta + T Cells in Disease-Free Survivors Following T Cell-Depleted, Partially Mismatched, Related Donor Bone Marrow Transplantation for Leukemia. J. Hematother. 1996, 5, 503–509. [Google Scholar] [CrossRef]
- Godder, K.T.; Henslee-Downey, P.J.; Mehta, J.; Park, B.S.; Chiang, K.-Y.; Abhyankar, S.; Lamb, L.S. Long Term Disease-Free Survival in Acute Leukemia Patients Recovering with Increased Gammadelta T Cells after Partially Mismatched Related Donor Bone Marrow Transplantation. Bone Marrow Transplant. 2007, 39, 751–757. [Google Scholar] [CrossRef]
- Perko, R.; Kang, G.; Sunkara, A.; Leung, W.; Thomas, P.G.; Dallas, M.H. Gamma Delta T Cell Reconstitution Is Associated with Fewer Infections and Improved Event Free Survival Following Hematopoietic Stem Cell Transplantation for Pediatric Leukemia Gamma Delta T Cells after HSCT. Biol. Blood Marrow Transplant. J. Am. Soc. Blood Marrow Transplant. 2015, 21, 130–136. [Google Scholar] [CrossRef]
- Kunzmann, V.; Smetak, M.; Kimmel, B.; Weigang-Koehler, K.; Goebeler, M.; Birkmann, J.; Becker, J.; Schmidt-Wolf, I.G.H.; Einsele, H.; Wilhelm, M. Tumor-Promoting versus Tumor-Antagonizing Roles of Γδ T Cells in Cancer Immunotherapy: Results from a Prospective Phase I/II Trial. J. Immunother. 2012, 35, 205–213. [Google Scholar] [CrossRef]
- Wilhelm, M.; Smetak, M.; Schaefer-Eckart, K.; Kimmel, B.; Birkmann, J.; Einsele, H.; Kunzmann, V. Successful Adoptive Transfer and in Vivo Expansion of Haploidentical Γδ T Cells. J. Transl. Med. 2014, 12, 45. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, M.; Kunzmann, V.; Eckstein, S.; Reimer, P.; Weissinger, F.; Ruediger, T.; Tony, H.-P. Gammadelta T Cells for Immune Therapy of Patients with Lymphoid Malignancies. Blood 2003, 102, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Saura-Esteller, J.; de Jong, M.; King, L.A.; Ensing, E.; Winograd, B.; de Gruijl, T.D.; Parren, P.W.H.I.; van der Vliet, H.J. Gamma Delta T-Cell Based Cancer Immunotherapy: Past-Present-Future. Front. Immunol. 2022, 13, 915837. [Google Scholar] [CrossRef]
- Lo Presti, E.; Corsale, A.M.; Dieli, F.; Meraviglia, S. γδ cell-based immunotherapy for cancer. Expert Opin. Biol. Ther. 2019, 19, 887–895. [Google Scholar] [CrossRef]
- Choi, H.; Kim, T.-G.; Jeun, S.-S.; Ahn, S. Human Gamma-Delta (Γδ) T Cell Therapy for Glioblastoma: A Novel Alternative to Overcome Challenges of Adoptive Immune Cell Therapy. Cancer Lett. 2023, 571, 216335. [Google Scholar] [CrossRef]
- Li, W.; Zhao, X.; Ren, C.; Gao, S.; Han, Q.; Lu, M.; Li, X. The Therapeutic Role of γδT Cells in TNBC. Front. Immunol. 2024, 15, 1420107. [Google Scholar] [CrossRef]
- Lamb, L.; Lobbous, M.; Goswami, T.; Rochlin, K.; Shepard, J.; Weekley, B.B.; Lucas, C.; Langford, C.; Youngblood, S.; Haak, M.T.; et al. 637 INB-200: Phase I Study of Gene Modified Autologous Gamma-Delta (Γδ) T Cells in Newly Diagnosed Glioblastoma (GBM) Patients Receiving Maintenance Temozolomide (TMZ): Immunobiologic Correlative Data. J. Immunother. Cancer 2023, 11, A1–A1731. [Google Scholar] [CrossRef]
- Koreth, J.; Matsuoka, K.; Kim, H.T.; McDonough, S.M.; Bindra, B.; Alyea, E.P.; Armand, P.; Cutler, C.; Ho, V.T.; Treister, N.S.; et al. Interleukin-2 and Regulatory T Cells in Graft-versus-Host Disease. N. Engl. J. Med. 2011, 365, 2055–2066. [Google Scholar] [CrossRef]
- Siegers, G.M.; Lamb, L.S. Cytotoxic and Regulatory Properties of Circulating Vδ1+ Γδ T Cells: A New Player on the Cell Therapy Field? Mol. Ther. 2014, 22, 1416–1422. [Google Scholar] [CrossRef]
- Almeida, A.R.; Correia, D.V.; Fernandes-Platzgummer, A.; da Silva, C.L.; da Silva, M.G.; Anjos, D.R.; Silva-Santos, B. Delta One T Cells for Immunotherapy of Chronic Lymphocytic Leukemia: Clinical-Grade Expansion/Differentiation and Preclinical Proof of Concept. Clin. Cancer Res. 2016, 22, 5795–5804. [Google Scholar] [CrossRef]
- Iwasaki, M.; Tanaka, Y.; Kobayashi, H.; Murata-Hirai, K.; Miyabe, H.; Sugie, T.; Toi, M.; Minato, N. Expression and Function of PD-1 in Human Γδ T Cells That Recognize Phosphoantigens. Eur. J. Immunol. 2011, 41, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Hoeres, T.; Holzmann, E.; Smetak, M.; Birkmann, J.; Wilhelm, M. PD-1 Signaling Modulates Interferon-γ Production by Gamma Delta (Γδ) T-Cells in Response to Leukemia. Oncoimmunology 2018, 8, 1550618. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Luo, H.; Liang, S.; Chen, J.; Liu, A.; Niu, L.; Jiang, Y. Pembrolizumab plus Allogeneic NK Cells in Advanced Non-Small Cell Lung Cancer Patients. J. Clin. Investig. 2020, 130, 2560–2569. [Google Scholar] [CrossRef]
- Van Hall, T.; André, P.; Horowitz, A.; Ruan, D.F.; Borst, L.; Zerbib, R.; Narni-Mancinelli, E.; van der Burg, S.H.; Vivier, E. Monalizumab: Inhibiting the Novel Immune Checkpoint NKG2A. J. Immunother. Cancer 2019, 7, 263. [Google Scholar] [CrossRef]
- André, P.; Denis, C.; Soulas, C.; Bourbon-Caillet, C.; Lopez, J.; Arnoux, T.; Bléry, M.; Bonnafous, C.; Gauthier, L.; Morel, A.; et al. Anti-NKG2A mAb Is a Checkpoint Inhibitor That Promotes Anti-Tumor Immunity by Unleashing Both T and NK Cells. Cell 2018, 175, 1731–1743.e13. [Google Scholar] [CrossRef]
- Oberg, H.-H.; Peipp, M.; Kellner, C.; Sebens, S.; Krause, S.; Petrick, D.; Adam-Klages, S.; Röcken, C.; Becker, T.; Vogel, I.; et al. Novel Bispecific Antibodies Increase Γδ T-Cell Cytotoxicity against Pancreatic Cancer Cells. Cancer Res. 2014, 74, 1349–1360. [Google Scholar] [CrossRef]
- De Weerdt, I.; Lameris, R.; Ruben, J.M.; de Boer, R.; Kloosterman, J.; King, L.A.; Levin, M.-D.; Parren, P.W.H.I.; de Gruijl, T.D.; Kater, A.P.; et al. A Bispecific Single-Domain Antibody Boosts Autologous Vγ9Vδ2-T Cell Responses Toward CD1d in Chronic Lymphocytic Leukemia. Clin. Cancer Res. 2021, 27, 1744–1755. [Google Scholar] [CrossRef]
- De Weerdt, I.; Lameris, R.; Scheffer, G.L.; Vree, J.; de Boer, R.; Stam, A.G.; van de Ven, R.; Levin, M.-D.; Pals, S.T.; Roovers, R.C.; et al. A Bispecific Antibody Antagonizes Prosurvival CD40 Signaling and Promotes Vγ9Vδ2 T Cell–Mediated Antitumor Responses in Human B-Cell Malignancies. Cancer Immunol. Res. 2021, 9, 50–61. [Google Scholar] [CrossRef]
- Van Diest, E.; Hernández López, P.; Meringa, A.D.; Vyborova, A.; Karaiskaki, F.; Heijhuurs, S.; Gumathi Bormin, J.; vanDooremalen, S.; Nicolasen, M.J.T.; Gatti, L.C.D.E.; et al. Gamma Delta TCR Anti-CD3 Bispecific Molecules (GABs) as Novel Immunotherapeutic Compounds. J. Immunother. Cancer 2021, 9, e003850. [Google Scholar] [CrossRef]
- Schiller, C.B.; Braciak, T.A.; Fenn, N.C.; Seidel, U.J.E.; Roskopf, C.C.; Wildenhain, S.; Honegger, A.; Schubert, I.A.; Schele, A.; Lämmermann, K.; et al. CD19-Specific Triplebody SPM-1 Engages NK and γδ T Cells for Rapid and Efficient Lysis of Malignant B-Lymphoid Cells. Oncotarget 2016, 7, 83392–83408. [Google Scholar] [CrossRef]
- Deniger, D.C.; Moyes, J.S.; Cooper, L.J.N. Clinical Applications of Gamma Delta T Cells with Multivalent Immunity. Front. Immunol. 2014, 5, 636. [Google Scholar] [CrossRef]
- Kunzmann, V.; Bauer, E.; Feurle, J.; Weissinger, F.; Tony, H.P.; Wilhelm, M. Stimulation of gammadelta T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood. 2000, 96, 384–392. [Google Scholar]
- Kunzmann, V.; Bauer, E.; Wilhelm, M. γ/δ T-Cell Stimulation by Pamidronate. N. Engl. J. Med. 1999, 340, 737–738. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y. Cancer Immunotherapy Harnessing Γδ T Cells and Programmed Death-1. Immunol. Rev. 2020, 298, 237–253. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, E.; Belmant, C.; Pont, F.; Luciani, B.; Poupot, R.; Romagné, F.; Brailly, H.; Bonneville, M.; Fournié, J.-J. Chemical Synthesis and Biological Activity of Bromohydrin Pyrophosphate, a Potent Stimulator of Human Γδ T Cells*. J. Biol. Chem. 2001, 276, 18337–18344. [Google Scholar] [CrossRef]
- Wiemer, D.F.; Wiemer, A.J. Opportunities and Challenges in Development of Phosphoantigens as Vγ9Vδ2 T Cell Agonists. Biochem. Pharmacol. 2014, 89, 301–312. [Google Scholar] [CrossRef]
- Dokouhaki, P.; Han, M.; Joe, B.; Li, M.; Johnston, M.R.; Tsao, M.-S.; Zhang, L. Adoptive Immunotherapy of Cancer Using Ex Vivo Expanded Human Γδ T Cells: A New Approach. Cancer Lett. 2010, 297, 126–136. [Google Scholar] [CrossRef]
- Hoeres, T.; Smetak, M.; Pretscher, D.; Wilhelm, M. Improving the Efficiency of Vγ9Vδ2 T-Cell Immunotherapy in Cancer. Front. Immunol. 2018, 9, 800. [Google Scholar] [CrossRef]
- Starick, L.; Riano, F.; Karunakaran, M.M.; Kunzmann, V.; Li, J.; Kreiss, M.; Amslinger, S.; Scotet, E.; Olive, D.; De Libero, G.; et al. Butyrophilin 3A (BTN3A, CD277)-Specific Antibody 20.1 Differentially Activates Vγ9Vδ2 TCR Clonotypes and Interferes with Phosphoantigen Activation. Eur. J. Immunol. 2017, 47, 982–992. [Google Scholar] [CrossRef]
- Rincon-Orozco, B.; Kunzmann, V.; Wrobel, P.; Kabelitz, D.; Steinle, A.; Herrmann, T. Activation of Vγ9Vδ2 T Cells by NKG2D1. J. Immunol. 2005, 175, 2144–2151. [Google Scholar] [CrossRef]
- Ribeiro, S.T.; Ribot, J.C.; Silva-Santos, B. Five Layers of Receptor Signalling in Γδ T Cell Differentiation and Activation. Front. Immunol. 2015, 6, 15. [Google Scholar] [CrossRef]
- Ross, S.H.; Cantrell, D.A. Signaling and Function of Interleukin-2 in T Lymphocytes. Annu. Rev. Immunol. 2018, 36, 411. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari, S.; Torabi-Rahvar, M.; Aghayan, S.; Jabbarpour, Z.; Moradzadeh, K.; Omidkhoda, A.; Ahmadbeigi, N. Optimizing Interleukin-2 Concentration, Seeding Density and Bead-to-Cell Ratio of T-Cell Expansion for Adoptive Immunotherapy. BMC Immunol. 2021, 22, 43. [Google Scholar] [CrossRef]
- Acker, H.H.V.; Anguille, S.; Willemen, Y.; den Bergh, J.M.V.; Berneman, Z.N.; Lion, E.; Smits, E.L.; Tendeloo, V.F.V. Interleukin-15 Enhances the Proliferation, Stimulatory Phenotype, and Antitumor Effector Functions of Human Gamma Delta T Cells. J. Hematol. Oncol. 2016, 9, 101. [Google Scholar] [CrossRef]
- Jiang, H.; Yang, Z.; Song, Z.; Green, M.; Song, H.; Shao, Q. Γδ T Cells in Hepatocellular Carcinoma Patients Present Cytotoxic Activity but Are Reduced in Potency Due to IL-2 and IL-21 Pathways. Int. Immunopharmacol. 2019, 70, 167–173. [Google Scholar] [CrossRef]
- Wu, K.; Zhao, H.; Xiu, Y.; Li, Z.; Zhao, J.; Xie, S.; Zeng, H.; Zhang, H.; Yu, L.; Xu, B. IL-21-Mediated Expansion of Vγ9Vδ2 T Cells Is Limited by the Tim-3 Pathway. Int. Immunopharmacol. 2019, 69, 136–142. [Google Scholar] [CrossRef]
- Fowler, D.; Barisa, M.; Southern, A.; Nattress, C.; Hawkins, E.; Vassalou, E.; Kanouta, A.; Counsell, J.; Rota, E.; Vlckova, P.; et al. Payload-delivering engineered γδ T cells display enhanced cytotoxicity, persistence, and efficacy in preclinical models of osteosarcoma. Sci. Transl. Med. 2024, 16, eadg9814. [Google Scholar] [CrossRef]
- Arias, M.B.; Nguyen, A.; Ross, D.; Eagerton, D.; Ritthipichai, K. Lighting the Way: An Economical Alternative to Feeder Cell Irradiation for T-Cell Expansion. Front. Immunol. 2024, 15, 1453740. [Google Scholar] [CrossRef]
- Dudley, M.E.; Wunderlich, J.R.; Shelton, T.E.; Even, J.; Rosenberg, S.A. Generation of Tumor-Infiltrating Lymphocyte Cultures for Use in Adoptive Transfer Therapy for Melanoma Patients. J. Immunother. 2003, 26, 332. [Google Scholar] [CrossRef]
- Yang, S.; Dudley, M.E.; Rosenberg, S.A.; Morgan, R.A. A Simplified Method for the Clinical-Scale Generation of Central Memory-like CD8+ T Cells After Transduction with Lentiviral Vectors Encoding Antitumor Antigen T-Cell Receptors. J. Immunother. 2010, 33, 648. [Google Scholar] [CrossRef]
- Forget, M.-A.; Malu, S.; Liu, H.; Toth, C.; Maiti, S.; Kale, C.; Haymaker, C.; Bernatchez, C.; Huls, H.; Wang, E.; et al. Activation and Propagation of Tumor-Infiltrating Lymphocytes on Clinical-Grade Designer Artificial Antigen-Presenting Cells for Adoptive Immunotherapy of Melanoma. J. Immunother. 2014, 37, 448. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Chen, C.; Li, Z.; Zhu, S.; Tay, J.C.; Zhang, X.; Zha, S.; Zeng, J.; Tan, W.K.; Liu, X.; et al. Large-Scale Expansion of Vγ9Vδ2 T Cells with Engineered K562 Feeder Cells in G-Rex Vessels and Their Use as Chimeric Antigen Receptor-Modified Effector Cells. Cytotherapy 2018, 20, 420–435. [Google Scholar] [CrossRef] [PubMed]
- Boucher, J.C.; Yu, B.; Li, G.; Shrestha, B.; Sallman, D.; Landin, A.M.; Cox, C.; Karyampudi, K.; Anasetti, C.; Davila, M.L.; et al. Large Scale Ex Vivo Expansion of Γδ T Cells Using Artificial Antigen-Presenting Cells. J. Immunother. 2022, 46, 5. [Google Scholar] [CrossRef]
- Wang, S. Expansion of Gamma Delta T Cells-A Short Review on Bisphosphonate and K562-Based Methods. J. Immunol. Sci. 2018, 2, 6–12. [Google Scholar] [CrossRef]
- Alnaggar, M.; Xu, Y.; Li, J.; He, J.; Chen, J.; Li, M.; Wu, Q.; Lin, L.; Liang, Y.; Wang, X.; et al. Allogenic Vγ9Vδ2 T Cell as New Potential Immunotherapy Drug for Solid Tumor: A Case Study for Cholangiocarcinoma. J. Immunother. Cancer 2019, 7, 36. [Google Scholar] [CrossRef]
- Izumi, T.; Kondo, M.; Takahashi, T.; Fujieda, N.; Kondo, A.; Tamura, N.; Murakawa, T.; Nakajima, J.; Matsushita, H.; Kakimi, K. Ex Vivo Characterization of Γδ T-Cell Repertoire in Patients after Adoptive Transfer of Vγ9Vδ2 T Cells Expressing the Interleukin-2 Receptor β-Chain and the Common γ-Chain. Cytotherapy 2013, 15, 481–491. [Google Scholar] [CrossRef]
- Lin, M.; Zhang, X.; Liang, S.; Luo, H.; Alnaggar, M.; Liu, A.; Yin, Z.; Chen, J.; Niu, L.; Jiang, Y. Irreversible Electroporation plus Allogenic Vγ9Vδ2 T Cells Enhances Antitumor Effect for Locally Advanced Pancreatic Cancer Patients. Signal Transduct. Target. Ther. 2020, 5, 215. [Google Scholar] [CrossRef]
- Van den Bergh, J.M.J.; Van Tendeloo, V.F.I.; Smits, E.L.J.M. Interleukin-15: New Kid on the Block for Antitumor Combination Therapy. Cytokine Growth Factor Rev. 2015, 26, 15–24. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, X.; Feng, C.; Weinstein, A.; Xia, R.; Wen, W.; Lv, Q.; Zuo, S.; Tang, P.; Yang, X.; et al. IL-36γ Transforms the Tumor Microenvironment and Promotes Type 1 Lymphocyte-Mediated Antitumor Immune Responses. Cancer Cell 2015, 28, 296–306. [Google Scholar] [CrossRef]
- Du, S.-H.; Li, Z.; Chen, C.; Tan, W.-K.; Chi, Z.; Kwang, T.W.; Xu, X.-H.; Wang, S. Co-Expansion of Cytokine-Induced Killer Cells and Vγ9Vδ2 T Cells for CAR T-Cell Therapy. PLoS ONE 2016, 11, e0161820. [Google Scholar] [CrossRef]
- Chen, H.-C.; Joalland, N.; Bridgeman, J.S.; Alchami, F.S.; Jarry, U.; Khan, M.W.A.; Piggott, L.; Shanneik, Y.; Li, J.; Herold, M.J.; et al. Synergistic Targeting of Breast Cancer Stem-like Cells by Human Γδ T Cells and CD8+ T Cells. Immunol. Cell Biol. 2017, 95, 620–629. [Google Scholar] [CrossRef] [PubMed]
- Ou, L.; Wang, H.; Liu, Q.; Zhang, J.; Lu, H.; Luo, L.; Shi, C.; Lin, S.; Dong, L.; Guo, Y.; et al. Dichotomous and Stable Gamma Delta T-Cell Number and Function in Healthy Individuals. J. Immunother. Cancer 2021, 9, e002274. [Google Scholar] [CrossRef] [PubMed]
- Aehnlich, P.; Simões, A.M.C.; Skadborg, S.K.; Olofsson, G.H.; Straten, P. thor Expansion With IL-15 Increases Cytotoxicity of Vγ9Vδ2 T Cells and Is Associated with Higher Levels of Cytotoxic Molecules and T-Bet. Front. Immunol. 2020, 11, 1868. [Google Scholar] [CrossRef]
- Yu, S.; He, W.; Chen, J.; Zhang, F.; Ba, D. Expansion and Immunological Study of Human Tumor Infiltrating Gamma/Delta T Lymphocytes in Vitro1. Int. Arch. Allergy Immunol. 1999, 119, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Siegers, G.M.; Felizardo, T.C.; Mathieson, A.M.; Kosaka, Y.; Wang, X.-H.; Medin, J.A.; Keating, A. Anti-Leukemia Activity of In Vitro-Expanded Human Gamma Delta T Cells in a Xenogeneic Ph+ Leukemia Model. PLoS ONE 2011, 6, e16700. [Google Scholar] [CrossRef]
- Shrestha, B.; Zhang, Y.; Yu, B.; Li, G.; Boucher, J.C.; Beatty, N.J.; Tsai, H.-C.; Wang, X.; Mishra, A.; Sweet, K.; et al. Generation of Antitumor T Cells for Adoptive Cell Therapy with Artificial Antigen Presenting Cells. J. Immunother. 2020, 43, 79–88. [Google Scholar] [CrossRef]
- Ferry, G.M.; Agbuduwe, C.; Forrester, M.; Dunlop, S.; Chester, K.; Fisher, J.; Anderson, J.; Barisa, M. A Simple and Robust Single-Step Method for CAR-Vδ1 γδT Cell Expansion and Transduction for Cancer Immunotherapy. Front. Immunol. 2022, 13, 863155. [Google Scholar] [CrossRef]
Cell Subset | Vδ1 | Vδ2 | Vδ3 | αβ T Cells |
---|---|---|---|---|
Tissue Distribution | Predominantly tissue-resident (gut epithelium, dermis, liver, spleen) | Circulating blood, some lymphoid tissues | Enriched in liver and gut; rare in blood | Found in blood, lymph nodes, and tissues based on antigen-specific responses |
Receptors | γδ TCR (Vδ1 chain), NKG2D [22], NKp46 [23], DNAM-1 [24], CD16 [25] 2025-03-21 11:17:00 | γδ TCR (Vγ9Vδ2 pairing), NKG2D [26], CD16 [27], TRAIL [28], DNAM-1 [24] 2025-03-21 11:17:00 | γδ TCR (Vδ3 chain), similar to Vδ1 | αβ TCR, CD4, CD8 |
Antigen Recognition | Recognizes MHC-like molecules (e.g., CD1d, CD1c, MICA/B) and lipopeptides [29,30,31,32] | Recognizes phosphoantigens in an MHC-independent manner, ULBP4, F1-ATPase [26,33] | Annexin A2 [34] | MHC-restricted recognition of peptide antigens presented by HLA |
Cytotoxic Pathways | TRAIL, FasL, perforin–granzyme [8] | Perforin–granzyme, TRAIL, FasL ADCC via CD16 [8] | ¿? | Perforin–granzyme, TRAIL, FasL |
Therapeutic Agent | Cancer Type | Endpoints | Reference |
---|---|---|---|
Autologous γδ T Cells | Recurrent non-small-cell lung cancer (NSCLC) | Response rate | [65] |
Autologous γδ T Cells plus Gemcitabine (GEM) | Resected pancreatic cancer | Recurrence-free survival, overall survival compared to GEM alone | [66] |
Autologous γδ T cells | Advanced non-small-cell lung cancer (NSCLC) | Median survival, median progression-free survival (PFS) | [67] |
Autologous Vγ9Vδ2 T-cells | Refractory non-small-cell lung cancer (NSCLC) | Partial response, PFS, median overall survival (OS) | [68] |
Autologous γδ T cells alone or with chemotherapy | Recurrent or metastatic esophageal cancer | Median OS, PFS | [69] |
Autologous Vγ9γδ T cells | Multiple myeloma | Safety | [70] |
Autologous Vγ9Vδ2 T-cells | Metastatic solid tumors | Dose-limiting toxicity, remission rate and disease progression | [71] |
Vγ9Vδ2 T cells plus zoledronate | Malignant ascites resulting from peritoneal dissemination of gastric cancer | Safety, local antitumor effects | [72] |
Autologous γδ T cells | Advanced renal cell carcinoma | Safety, response rate | [73] |
Innacell γδ™ | Metastatic renal cell carcinoma | Dose-limiting toxicity, response rate | [74] |
Allogeneic γδ T cells | Refractory or relapsed acute myeloid leukemia | Safety, response rate | [76] |
Trial ID | Therapeutic Agent | Targeted Cancer Types | Endpoints | Phase | Status |
---|---|---|---|---|---|
NCT04765462 | Allogeneic Vγ9Vδ2 T Cells | Solid Tumors | Incidence of dose-limiting toxicity (DLT) and severe adverse events | Phase I/II | Ongoing |
NCT04764513 | Ex vivo expanded γδ T cell | Hematological Malignancies | Incidence of treatment-emergent adverse events (AEs), safety and efficacy | Phase I/II | Recruiting |
NCT06404281 | γδ T-PD-1 Ab cells | Advanced Solid Tumors | Incidence of dose-limiting toxicities (DLTs), incidence of adverse events (AEs) | Phase I | Recruiting |
NCT04165941 | DRI cell therapy (Drug Resistant Immunotherapy γδ T Cells) | Glioblastoma | Highest safe dose frequency or maximally planned dose | Phase I | Active, not recruiting |
NCT03533816 | EAGD T-cell infusión (Ex Vivo Expanded/Activated Gamma Delta T-cell) | Hematological Malignancies | Incidence of dose-limiting toxicities (DLTs), incidence of adverse events (AEs), Rate of acute GVHD | Phase I | Recruiting |
NCT05015426 | Ex vivo expanded γδ T cell | Acute Myeloid Leukemia at High Risk of Relapse | Maximum tolerated dose, leukemia free survival | Phase I/Ib | Active, not recruiting |
NCT05400603 | Allogeneic Ex Vivo Expanded Gamma Delta (γδ) T Cells | Relapsed/Refractory Neuroblastoma or Refractory/Relapsed Osteosarcoma | Maximum tolerated dose | Phase I | Recruiting |
NCT05358808 | TCB008 (Allogeneic Vγ9Vδ2 T Cells) | Refractory or Relapsed Acute Myeloid Leukaemia | Efficacy of TCB008 | Phase II | Recruiting |
NCT04735471 | ADI-001 (Anti-CD20 CAR-engineered allogeneic γδ T Cells) | Refractory or Relapsed B cell malignancies | Safety and tolerability | Phase I | Active, not recruiting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subhi-Issa, N.; Tovar Manzano, D.; Pereiro Rodriguez, A.; Sanchez Ramon, S.; Perez Segura, P.; Ocaña, A. γδ T Cells: Game Changers in Immune Cell Therapy for Cancer. Cancers 2025, 17, 1063. https://doi.org/10.3390/cancers17071063
Subhi-Issa N, Tovar Manzano D, Pereiro Rodriguez A, Sanchez Ramon S, Perez Segura P, Ocaña A. γδ T Cells: Game Changers in Immune Cell Therapy for Cancer. Cancers. 2025; 17(7):1063. https://doi.org/10.3390/cancers17071063
Chicago/Turabian StyleSubhi-Issa, Nabil, Daniel Tovar Manzano, Alejandro Pereiro Rodriguez, Silvia Sanchez Ramon, Pedro Perez Segura, and Alberto Ocaña. 2025. "γδ T Cells: Game Changers in Immune Cell Therapy for Cancer" Cancers 17, no. 7: 1063. https://doi.org/10.3390/cancers17071063
APA StyleSubhi-Issa, N., Tovar Manzano, D., Pereiro Rodriguez, A., Sanchez Ramon, S., Perez Segura, P., & Ocaña, A. (2025). γδ T Cells: Game Changers in Immune Cell Therapy for Cancer. Cancers, 17(7), 1063. https://doi.org/10.3390/cancers17071063