Infectious Agents and Esophageal Cancer: A Comprehensive Review
Simple Summary
Abstract
1. Introduction
Knowledge Gaps
2. Risk Factors Overview
3. Helicobacter pylori
3.1. Introduction
3.2. Pathogenesis and Proposed Mechanism for Carcinogenesis
3.3. Association with Esophageal Squamous Cell Cancer
3.4. Association with Esophageal Adenocarcinoma
4. Viruses
4.1. Human Papillomavirus
4.1.1. Introduction
4.1.2. Epidemiology and Transmission
4.1.3. Pathogenesis of HPV-Associated Squamous Cell Cancers
4.1.4. Association of HPV Status with Outcome to Therapy in Squamous Cell Cancers
4.1.5. Association with Esophageal Squamous Cell Cancer
4.1.6. Association with Esophageal Adenocarcinoma
4.2. Herpesviruses
4.2.1. Epstein–Barr Virus
Introduction
EBV Oncogenic Mechanism
EBV Association with EAC and ESCC
EBV Association with Lymphoepithelioma-like Cancer
4.2.2. Herpes Simplex Virus
4.2.3. Cytomegalovirus
4.3. Hepatitis B and Hepatitis C Viruses
4.4. Polyomaviruses
5. Oral Commensals as Biomarkers
5.1. Porphyromonas gingivalis
5.2. Aggregatibacter actinomycetemcomitans
5.3. Fusobacterium nucleatum
6. Other Infectious Agents
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Howlader, N.; Noone, A.M.; Krapcho, M.; Miller, D.; Brest, A.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; Lewis, D.R.; et al. SEER Cancer Statistics Review, 1975–2018. Natl. Cancer Inst. 2021. Available online: https://seer.cancer.gov/archive/csr/1975_2018/index.html (accessed on 3 November 2024).
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar]
- He, H.; Chen, N.; Hou, Y.; Wang, Z.; Zhang, Y.; Zhang, G.; Fu, J. Trends in the Incidence and Survival of Patients with Esophageal Cancer: A SEER Database Analysis. Thorac. Cancer 2020, 11, 1121–1128. [Google Scholar]
- Huang, F.; Yu, S. Esophageal Cancer: Risk Factors, Genetic Association, and Treatment. Asian J. Surg. 2018, 41, 210–215. [Google Scholar] [CrossRef]
- Domper Arnal, M.J.; Ferrández Arenas, Á.; Lanas Arbeloa, Á. Esophageal Cancer: Risk Factors, Screening and Endoscopic Treatment in Western and Eastern Countries. World J. Gastroenterol. 2015, 21, 7933–7943. [Google Scholar]
- El-Zimaity, H.; Di Pilato, V.; Novella Ringressi, M.; Brcic, I.; Rajendra, S.; Langer, R.; Dislich, B.; Tripathi, M.; Guindi, M.; Riddell, R. Risk Factors for Esophageal Cancer: Emphasis on Infectious Agents. Ann. N. Y. Acad. Sci. 2018, 1434, 319–332. [Google Scholar]
- Chang, F.; Syrjänen, S.; Wang, L.; Syrjänen, K. Infectious Agents in the Etiology of Esophageal Cancer. Gastroenterology 1992, 103, 1336–1348. [Google Scholar] [CrossRef]
- Pagano, J.S.; Blaser, M.; Buendia, M.; Damania, B.; Khalili, K.; Raab-Traub, N.; Roizman, B. Infectious Agents and Cancer: Criteria for a Causal Relation. Semin. Cancer Biol. 2004, 14, 453–471. [Google Scholar] [CrossRef]
- Günther, C.; Neumann, H.; Vieth, M. Esophageal Epithelial Resistance. Dig. Dis. 2014, 32, 6–10. [Google Scholar] [CrossRef]
- Masrour-Roudsari, J.; Ebrahimpour, S. Casual role of infectious agents in cancer: An overview. Caspian J. Intern. Med. 2017, 8, 153–158. [Google Scholar] [CrossRef]
- Zhang, Y. Epidemiology of Esophageal Cancer. World J. Gastroenterol. 2013, 19, 5598–5606. [Google Scholar]
- Wheeler, J.B.; Reed, C.E. Epidemiology of Esophageal Cancer. Surg. Clin. N. Am. 2012, 92, 1077–1087. [Google Scholar]
- Pera, M.; Pera, M. Recent Changes in the Epidemiology of Esophageal Cancer. Surg. Oncol. 2001, 10, 81–90. [Google Scholar] [CrossRef]
- Gammon, M.D.; Schoenberg, J.B.; Ahsan, H.; Risch, H.A.; Vaughan, T.L.; Chow, W.H.; Rotterdam, H.; West, A.B.; Dubrow, R.; Stanford, J.L.; et al. Tobacco, Alcohol, and Socioeconomic Status and Adenocarcinomas of the Esophagus and Gastric Cardia. J. Natl. Cancer Inst. 1997, 89, 1277–1284. [Google Scholar]
- Fan, Y.; Yuan, J.; Wang, R.; Gao, Y.; Yu, M.C. Alcohol, Tobacco, and Diet in Relation to Esophageal Cancer: The Shanghai Cohort Study. Nutr. Cancer 2008, 60, 354–363. [Google Scholar]
- Prabhu, A.; Obi, K.O.; Rubenstein, J.H. The Synergistic Effects of Alcohol and Tobacco Consumption on the Risk of Esophageal Squamous Cell Carcinoma: A Meta-Analysis. Am. J. Gastroenterol. 2014, 109, 822–827. [Google Scholar]
- Engeland, A.; Tretli, S.; Bjørge, T. Height and Body Mass Index in Relation to Esophageal Cancer; 23-Year Follow-Up of Two Million Norwegian Men and Women. Cancer Causes Control 2004, 15, 837–843. [Google Scholar] [CrossRef]
- Lagergren, J.; Bergström, R.; Lindgren, A.; Nyrén, O. Symptomatic Gastroesophageal Reflux as a Risk Factor for Esophageal Adenocarcinoma. N. Engl. J. Med. 1999, 340, 825–831. [Google Scholar]
- Bytzer, P.; Christensen, P.B.; Damkier, P.; Vinding, K.; Seersholm, N. Adenocarcinoma of the Esophagus and Barrett’s Esophagus: A Population-Based Study. Am. J. Gastroenterol. 1999, 94, 86–91. [Google Scholar]
- Hvid-Jensen, F.; Pedersen, L.; Drewes, A.M.; Sørensen, H.T.; Funch-Jensen, P. Incidence of Adenocarcinoma among Patients with Barrett’s Esophagus. N. Engl. J. Med. 2011, 365, 1375–1383. [Google Scholar] [CrossRef] [PubMed]
- Reid, B.J.; Li, X.; Galipeau, P.C.; Vaughan, T.L. Barrett’s Oesophagus and Oesophageal Adenocarcinoma: Time for a New Synthesis. Nat. Rev. Cancer. 2010, 10, 87–101. [Google Scholar]
- Kwon, M.J.; Kang, H.S.; Choi, H.G.; Kim, J.-H.; Kim, J.H.; Bang, W.J.; Hong, S.K.; Kim, N.Y.; Hong, S.; Lee, H.K. Risk for Esophageal Cancer Based on Lifestyle Factors–Smoking, Alcohol Consumption, and Body Mass Index: Insight from a South Korean Population Study in a Low-Incidence Area. J. Clin. Med. 2023, 12, 7086. [Google Scholar] [CrossRef]
- Katelaris, P.; Hunt, R.; Bazzoli, F.; Cohen, H.; Fock, K.M.; Gemilyan, M.; Malfertheiner, P.; Mégraud, F.; Piscoya, A.; Quach, D.; et al. Helicobacter Pylori World Gastroenterology Organization Global Guideline. J. Clin. Gastroenterol. 2023, 57, 111–126. [Google Scholar] [CrossRef]
- Hooi, J.K.Y.; Lai, W.Y.; Ng, W.K.; Suen, M.M.Y.; Underwood, F.E.; Tanyingoh, D.; Malfertheiner, P.; Graham, D.Y.; Wong, V.W.S.; Wu, J.C.Y.; et al. Global Prevalence of Helicobacter Pylori Infection: Systematic Review and Meta-Analysis. Gastroenterology 2017, 153, 420–429. [Google Scholar] [CrossRef]
- Duan, M.; Li, Y.; Liu, J.; Zhang, W.; Dong, Y.; Han, Z.; Wan, M.; Lin, M.; Lin, B.; Kong, Q.; et al. Transmission routes and patterns of helicobacter pylori. Helicobacter 2023, 28, e12945. [Google Scholar] [CrossRef]
- Ansari, S.; Yamaoka, Y. Survival of Helicobacter Pylori in Gastric Acidic Territory. Helicobacter 2017, 22, e12386. [Google Scholar] [CrossRef]
- Amieva, M.R.; El-Omar, E.M. Host-Bacterial Interactions in Helicobacter Pylori Infection. Gastroenterology 2008, 134, 306–323. [Google Scholar] [CrossRef]
- Alzahrani, S.; Lina, T.T.; Gonzalez, J.; Pinchuk, I.V.; Beswick, E.J.; Reyes, V.E. Effect of Helicobacter Pylori on Gastric Epithelial Cells. World J. Gastroenterol. 2014, 20, 12767–12780. [Google Scholar] [CrossRef]
- Buti, L.; Spooner, E.; Van der Veen, A.G.; Rappuoli, R.; Covacci, A.; Ploegh, H.L. Helicobacter Pylori Cytotoxin-Associated Gene A (CagA) Subverts the Apoptosis-Stimulating Protein of p53 (ASPP2) Tumor Suppressor Pathway of the Host. Proc. Natl. Acad. Sci. USA 2011, 108, 9238–9243. [Google Scholar] [CrossRef]
- Öztekin, M.; Yılmaz, B.; Ağagündüz, D.; Capasso, R. Overview of Helicobacter Pylori Infection: Clinical Features, Treatment, and Nutritional Aspects. Diseases 2021, 9, 66. [Google Scholar] [CrossRef]
- Ye, W.; Held, M.; Lagergren, J.; Engstrand, L.; Blot, W.J.; McLaughlin, J.K.; Nyrén, O. Helicobacter pylori Infection and Gastric Atrophy: Risk of Adenocarcinoma and Squamous-Cell Carcinoma of the Esophagus and Adenocarcinoma of the Gastric Cardia. JNCI J. Natl. Cancer Inst. 2004, 96, 388–396. [Google Scholar] [CrossRef]
- Vermeer, I.T.M.; Gerrits, M.M.; Moonen, E.J.C.; Engels, L.G.J.B.; Dallinga, J.W.; Kleinjans, J.C.S.; van Maanen, J.M.S.; Kuipers, E.J.; Kusters, J.G. Helicobacter Pylori does Not Mediate the Formation of Carcinogenic N-Nitrosamines. Helicobacter 2002, 7, 163–169. [Google Scholar] [CrossRef]
- Maity, R.; Dhali, A.; Biswas, J. Is Helicobacter pylori infection protective against esophageal cancer? World J. Gastroenterol. 2024, 30, 4168–4174. [Google Scholar] [CrossRef]
- Wu, D.; Wu, I.-C.; Lee, J.; Hsu, H.; Kao, E.; Chou, S.; Wu, M. Helicobacter Pylori Infection: A Protective Factor for Esophageal Squamous Cell Carcinoma in a Taiwanese Population. Am. J. Gastroenterol. 2005, 100, 588–593. [Google Scholar]
- Wu, I.-C.; Wu, D.; Yu, F.; Wang, J.; Kuo, C.; Yang, S.; Wang, C.; Wu, M. Association between Helicobacter Pylori Seropositivity and Digestive Tract Cancers. World J. Gastroenterol. 2009, 15, 5465–5471. [Google Scholar] [CrossRef]
- Xie, F.; Zhang, Y.; Zheng, Q.; Jin, H.; Wang, F.; Chen, M.; Shao, L.; Zou, D.; Yu, X.; Mao, W. Helicobacter Pylori Infection and Esophageal Cancer Risk: An Updated Meta-Analysis. World J. Gastroenterol. 2013, 19, 6098–6107. [Google Scholar]
- Gao, H.; Li, L.; Zhang, C.; Tu, J.; Geng, X.; Wang, J.; Zhou, X.; Jing, J.; Pan, W. Systematic Review with Meta-Analysis: Association of Helicobacter Pylori Infection with Esophageal Cancer. Gastroenterol. Res. Pract. 2019, 2019, 1953497. [Google Scholar]
- Peters, Y.; Al-Kaabi, A.; Shaheen, N.J.; Chak, A.; Blum, A.; Souza, R.F.; Di Pietro, M.; Iyer, P.G.; Pech, O.; Fitzgerald, R.C.; et al. Barrett Oesophagus. Nat. Rev. Dis. Primers 2019, 5, 35. [Google Scholar] [CrossRef]
- Wong, A.; Fitzgerald, R.C. Epidemiologic Risk Factors for Barrett’s Esophagus and Associated Adenocarcinoma. Clin. Gastroenterol. Hepatol. 2005, 3, 1–10. [Google Scholar]
- Kountouras, J.; Chatzopoulos, D.; Zavos, C. Eradication of Helicobacter Pylori might Halt the Progress to Oesophageal Adenocarcinoma in Patients with Gastro-Oesophageal Reflux Disease and Barrett’s Oesophagus. Med. Hypotheses 2007, 68, 1174–1175. [Google Scholar] [CrossRef]
- Hur, C.; Miller, M.; Kong, C.Y.; Dowling, E.C.; Nattinger, K.J.; Dunn, M.; Feuer, E.J. Trends in Esophageal Adenocarcinoma Incidence and Mortality. Cancer 2013, 119, 1149–1158. [Google Scholar]
- Qumseya, B.; Yang, S.; Guo, Y. Trends in Prevalence of Esophageal Adenocarcinoma: Findings from a Statewide Database of Over 6 Million Patients. Endosc. Int. Open 2024, 12, E218–E226. [Google Scholar] [CrossRef]
- Islami, F.; Kamangar, F. Helicobacter Pylori and Esophageal Cancer Risk: A Meta-Analysis. Cancer Prev. Res. 2008, 1, 329–338. [Google Scholar] [CrossRef]
- Zhuo, X.; Zhang, Y.; Wang, Y.; Zhuo, W.; Zhu, Y.; Zhang, X. Helicobacter Pylori Infection and Oesophageal Cancer Risk: Association Studies Via Evidence-Based Meta-Analyses. Clin. Oncol. 2008, 20, 757–762. [Google Scholar] [CrossRef]
- Derakhshan, M.H.; El-Omar, E.; Oien, K.; Gillen, D.; Fyfe, V.; Crabtree, J.E.; McColl, K.E.L. Gastric Histology, Serological Markers and Age as Predictors of Gastric Acid Secretion in Patients Infected with Helicobacter Pylori. J. Clin. Pathol. 2006, 59, 1293–1299. [Google Scholar] [CrossRef]
- Koike, T.; Ohara, S.; Sekine, H.; Iijima, K.; Kato, K.; Shimosegawa, T.; Toyota, T. Helicobacter Pylori Infection Inhibits Reflux Esophagitis by Inducing Atrophic Gastritis. Am. J. Gastroenterol. 1999, 94, 3468–3472. [Google Scholar] [CrossRef]
- McColl, K.E.L.; Watabe, H.; Derakhshan, M.H. Role of Gastric Atrophy in Mediating Negative Association between Helicobacter Pylori Infection and Reflux Oesophagitis, Barrett’s Oesophagus and Oesophageal Adenocarcinoma. Gut 2008, 57, 721–723. [Google Scholar] [CrossRef]
- Chow, W.H.; Blaser, M.J.; Blot, W.J.; Gammon, M.D.; Vaughan, T.L.; Risch, H.A.; Perez-Perez, G.I.; Schoenberg, J.B.; Stanford, J.L.; Rotterdam, H.; et al. An Inverse Relation between cagA+ Strains of Helicobacter Pylori Infection and Risk of Esophageal and Gastric Cardia Adenocarcinoma. Cancer Res. 1998, 58, 588–590. [Google Scholar]
- Nobakht, H.; Boghratian, A.; Sohrabi, M.; Panahian, M.; Rakhshani, N.; Nikkhah, M.; Ajdarkosh, H.; Hemmasi, G.; Khonsari, M.; Gholami, A.; et al. Association between Pattern of Gastritis and Gastroesophageal Reflux Disease in Patients with Helicobacter Pylori Infection. Middle East J. Dig. Dis. 2016, 8, 206–211. [Google Scholar] [CrossRef]
- Jones, A.D.; Bacon, K.D.; Jobe, B.A.; Sheppard, B.C.; Deveney, C.W.; Rutten, M.J. Helicobacter Pylori Induces Apoptosis in Barrett’s-Derived Esophageal Adenocarcinoma Cells. J. Gastrointest. Surg. 2003, 7, 68–76. [Google Scholar] [CrossRef]
- Wu, J.C.Y.; Chan, F.K.L.; Ching, J.Y.L.; Leung, W.; Hui, Y.; Leong, R.; Chung, S.C.S.; Sung, J.J.Y. Effect of Helicobacter Pylori Eradication on Treatment of Gastro-Oesophageal Reflux Disease: A Double Blind, Placebo Controlled, Randomised Trial. Gut 2004, 53, 174–179. [Google Scholar] [CrossRef]
- Malfertheiner, P. Helicobacter Pylori Eradication does not Exacerbate Gastro-Oesophageal Reflux Disease. Gut 2004, 53, 312–313. [Google Scholar] [PubMed]
- Xue, Y.; Zhou, L.; Lin, S.; Hou, X.; Li, Z.; Chen, M.; Yan, X.; Meng, L.; Zhang, J.; Lu, J. Effect of Helicobacter Pylori Eradication on Reflux Esophagitis Therapy: A Multi-Center Randomized Control Study. Chin. Med. J. 2015, 128, 995–999. [Google Scholar]
- Moschos, J.M.; Kouklakis, G.; Vradelis, S.; Zezos, P.; Pitiakoudis, M.; Chatzopoulos, D.; Zavos, C.; Kountouras, J. Patients with Established Gastro-Esophageal Reflux Disease might Benefit from Helicobacter Pylori Eradication. Ann. Gastroenterol. 2014, 27, 352–356. [Google Scholar] [PubMed]
- Wiklund, A.; Santoni, G.; Yan, J.; Radkiewicz, C.; Xie, S.; Birgisson, H.; Ness-Jensen, E.; von Euler-Chelpin, M.; Kauppila, J.H.; Lagergren, J. Risk of Esophageal Adenocarcinoma After Helicobacter Pylori Eradication Treatment in a Population-Based Multinational Cohort Study. Gastroenterology 2024, 167, 485–492.e3. [Google Scholar] [PubMed]
- Soheili, M.; Keyvani, H.; Soheili, M.; Nasseri, S. Human Papilloma Virus: A Review Study of Epidemiology, Carcinogenesis, Diagnostic Methods, and Treatment of all HPV-Related Cancers. Med. J. Islam. Repub. Iran 2021, 35, 65. [Google Scholar]
- Milano, G.; Guarducci, G.; Nante, N.; Montomoli, E.; Manini, I. Human Papillomavirus Epidemiology and Prevention: Is there Still a Gender Gap? Vaccines 2023, 11, 1060. [Google Scholar] [CrossRef]
- Chesson, H.W.; Dunne, E.F.; Hariri, S.; Markowitz, L.E. The Estimated Lifetime Probability of Acquiring Human Papillomavirus in the United States. Sex Transm. Dis. 2014, 41, 660–664. [Google Scholar]
- Thomas, M.; Pim, D.; Banks, L. The Role of the E6-p53 Interaction in the Molecular Pathogenesis of HPV. Oncogene 1999, 18, 7690–7700. [Google Scholar]
- Boyer, S.N.; Wazer, D.E.; Band, V. E7 Protein of Human Papilloma Virus-16 Induces Degradation of Retinoblastoma Protein through the Ubiquitin-Proteasome Pathway. Cancer Res. 1996, 56, 4620–4624. [Google Scholar]
- Moody, C.A.; Laimins, L.A. Human Papillomavirus Oncoproteins: Pathways to Transformation. Nat. Rev. Cancer 2010, 10, 550–560. [Google Scholar] [CrossRef]
- Lakshmi, S.; Rema, P.; Somanathan, T. P16ink4a is a Surrogate Marker for High-Risk and Malignant Cervical Lesions in the Presence of Human Papillomavirus. Pathobiology 2009, 76, 141–148. [Google Scholar]
- Ishikawa, M.; Fujii, T.; Saito, M.; Nindl, I.; Ono, A.; Kubushiro, K.; Tsukazaki, K.; Mukai, M.; Nozawa, S. Overexpression of p16INK4a as an Indicator for Human Papillomavirus Oncogenic Activity in Cervical Squamous Neoplasia. Int. J. Gynecol. Cancer 2006, 16, 347–353. [Google Scholar] [CrossRef]
- Ang, K.K.; Harris, J.; Wheeler, R.; Weber, R.; Rosenthal, D.I.; Nguyen-Tân, P.F.; Westra, W.H.; Chung, C.H.; Jordan, R.C.; Lu, C.; et al. Human Papillomavirus and Survival of Patients with Oropharyngeal Cancer. N. Engl. J. Med. 2010, 363, 24–35. [Google Scholar]
- Leeman, J.E.; Li, J.; Pei, X.; Venigalla, P.; Zumsteg, Z.S.; Katsoulakis, E.; Lupovitch, E.; McBride, S.M.; Tsai, C.J.; Boyle, J.O.; et al. Patterns of Treatment Failure and Postrecurrence Outcomes among Patients with Locally Advanced Head and Neck Squamous Cell Carcinoma After Chemoradiotherapy using Modern Radiation Techniques. JAMA Oncol. 2017, 3, 1487–1494. [Google Scholar]
- Ravenda, P.S.; Zampino, M.G.; Fazio, N.; Barberis, M.; Bottiglieri, L.; Chiocca, S. Human Papillomavirus in Anal Squamous Cell Carcinoma: An Angel rather than a Devil? Ecancermedicalscience 2015, 9, 529. [Google Scholar]
- Wang, W.; Wang, Y.; Lee, C.; Chang, C.; Lo, J.; Kuo, Y.; Hsu, Y.; Mo, L. The Impact of Human Papillomavirus Infection on the Survival and Treatment Response of Patients with Esophageal Cancers. J. Dig. Dis. 2015, 16, 256–263. [Google Scholar] [CrossRef]
- Leeman, J.E.; Li, Y.; Bell, A.; Hussain, S.S.; Majumdar, R.; Rong-Mullins, X.; Blecua, P.; Damerla, R.; Narang, H.; Ravindran, P.T.; et al. Human Papillomavirus 16 Promotes Microhomology-Mediated End-Joining. Proc. Natl. Acad. Sci. USA 2019, 116, 21573–21579. [Google Scholar]
- Rieckmann, T.; Tribius, S.; Grob, T.J.; Meyer, F.; Busch, C.; Petersen, C.; Dikomey, E.; Kriegs, M. HNSCC Cell Lines Positive for HPV and p16 Possess Higher Cellular Radiosensitivity due to an Impaired DSB Repair Capacity. Radiother. Oncol. 2013, 107, 242–246. [Google Scholar]
- Overgaard, J.; Eriksen, J.G.; Nordsmark, M.; Alsner, J.; Horsman, M.R. Plasma Osteopontin, Hypoxia, and Response to the Hypoxia Sensitiser Nimorazole in Radiotherapy of Head and Neck Cancer: Results from the DAHANCA 5 Randomised Double-Blind Placebo-Controlled Trial. Lancet Oncol. 2005, 6, 757–764. [Google Scholar]
- Zhang, D.; Zhang, W.; Liu, W.; Mao, Y.; Fu, Z.; Liu, J.; Huang, W.; Zhang, Z.; An, D.; Li, B. Human Papillomavirus Infection Increases the Chemoradiation Response of Esophageal Squamous Cell Carcinoma Based on P53 Mutation. Radiother. Oncol. 2017, 124, 155–160. [Google Scholar]
- Syrjänen, K.; Pyrhönen, S.; Aukee, S.; Koskela, E. Squamous Cell Papilloma of the Esophagus: A Tumour Probably Caused by Human Papilloma Virus (HPV). Diagn. Histopathol. 1982, 5, 291–296. [Google Scholar] [PubMed]
- Syrjänen, K.J. Histological Changes Identical to those of Condylomatous Lesions found in Esophageal Squamous Cell Carcinomas. Arch. Geschwulstforsch. 1982, 52, 283–292. [Google Scholar]
- Liyanage, S.S.; Rahman, B.; Ridda, I.; Newall, A.T.; Tabrizi, S.N.; Garland, S.M.; Segelov, E.; Seale, H.; Crowe, P.J.; Moa, A.; et al. The Aetiological Role of Human Papillomavirus in Oesophageal Squamous Cell Carcinoma: A Meta-Analysis. PLoS ONE 2013, 8, e69238. [Google Scholar] [CrossRef] [PubMed]
- Yong, F.; Xudong, N.; Lijie, T. Human Papillomavirus Types 16 and 18 in Esophagus Squamous Cell Carcinoma: A Meta-Analysis. Ann. Epidemiol. 2013, 23, 726–734. [Google Scholar] [CrossRef]
- Hardefeldt, H.A.; Cox, M.R.; Eslick, G.D. Association between Human Papillomavirus (HPV) and Oesophageal Squamous Cell Carcinoma: A Meta-Analysis. Epidemiol. Infect. 2014, 142, 1119–1137. [Google Scholar] [CrossRef] [PubMed]
- Petrick, J.L.; Wyss, A.B.; Butler, A.M.; Cummings, C.; Sun, X.; Poole, C.; Smith, J.S.; Olshan, A.F. Prevalence of Human Papillomavirus among Oesophageal Squamous Cell Carcinoma Cases: Systematic Review and Meta-Analysis. Br. J. Cancer 2014, 110, 2369–2377. [Google Scholar] [CrossRef]
- Petrelli, F.; De Santi, G.; Rampulla, V.; Ghidini, A.; Mercurio, P.; Mariani, M.; Manara, M.; Rausa, E.; Lonati, V.; Viti, M.; et al. Human Papillomavirus (HPV) Types 16 and 18 Infection and Esophageal Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. J. Cancer Res. Clin. Oncol. 2021, 147, 3011–3023. [Google Scholar] [CrossRef]
- Ludmir, E.B.; Stephens, S.J.; Palta, M.; Willett, C.G.; Czito, B.G. Human Papillomavirus Tumor Infection in Esophageal Squamous Cell Carcinoma. J. Gastrointest. Oncol. 2015, 6, 287–295. [Google Scholar]
- Syrjänen, K.J. HPV Infections and Oesophageal Cancer. J. Clin. Pathol. 2002, 55, 721. [Google Scholar]
- Syrjänen, K. Geographic Origin is a Significant Determinant of Human Papillomavirus Prevalence in Oesophageal Squamous Cell Carcinoma: Systematic Review and Meta-Analysis. Scand. J. Infect. Dis. 2013, 45, 1–18. [Google Scholar]
- Lee, H.K.; Kwon, M.J.; Ra, Y.J.; Lee, H.S.; Kim, H.S.; Nam, E.S.; Cho, S.J.; Park, H.-R.; Min, S.K.; Seo, J.; et al. Significance of druggable targets (PD-L1, KRAS, BRAF, PIK3CA, MSI, and HPV) on curatively resected esophageal squamous cell carcinoma. Diagn. Pathol. 2020, 15, 126. [Google Scholar] [CrossRef] [PubMed]
- Kimple, A.J.; Torres, A.D.; Yang, R.Z.; Kimple, R.J. HPV-Associated Head and Neck Cancer: Molecular and Nano-Scale Markers for Prognosis and Therapeutic Stratification. Sensors 2012, 12, 5159–5169. [Google Scholar] [CrossRef]
- Michaelsen, S.H.; Larsen, C.G.; von Buchwald, C. Human Papillomavirus shows Highly Variable Prevalence in Esophageal Squamous Cell Carcinoma and no Significant Correlation to p16INK4a Overexpression: A Systematic Review. J. Thorac. Oncol. 2014, 9, 865–871. [Google Scholar] [PubMed]
- Sitas, F.; Egger, S.; Urban, M.I.; Taylor, P.R.; Abnet, C.C.; Boffetta, P.; O’Connell, D.L.; Whiteman, D.C.; Brennan, P.; Malekzadeh, R.; et al. InterSCOPE Study: Associations between Esophageal Squamous Cell Carcinoma and Human Papillomavirus Serological Markers. J. Natl. Cancer Inst. 2012, 104, 147–158. [Google Scholar]
- Salam, I.; Hussain, S.; Mir, M.M.; Dar, N.A.; Abdullah, S.; Siddiqi, M.A.; Lone, R.A.; Zargar, S.A.; Sharma, S.; Hedau, S.; et al. Aberrant Promoter Methylation and Reduced Expression of p16 Gene in Esophageal Squamous Cell Carcinoma from Kashmir Valley: A High-Risk Area. Mol. Cell. Biochem. 2009, 332, 51–58. [Google Scholar] [PubMed]
- Odze, R.; Antonioli, D.; Shocket, D.; Noble-Topham, S.; Goldman, H.; Upton, M. Esophageal Squamous Papillomas. A Clinicopathologic Study of 38 Lesions and Analysis for Human Papillomavirus by the Polymerase Chain Reaction. Am. J. Surg. Pathol. 1993, 17, 803–812. [Google Scholar]
- Chaturvedi, A.K.; Engels, E.A.; Pfeiffer, R.M.; Hernandez, B.Y.; Xiao, W.; Kim, E.; Jiang, B.; Goodman, M.T.; Sibug-Saber, M.; Cozen, W.; et al. Human Papillomavirus and Rising Oropharyngeal Cancer Incidence in the United States. J. Clin. Oncol. 2011, 29, 4294–4301. [Google Scholar] [CrossRef]
- Li, X.; Gao, C.; Yang, Y.; Zhou, F.; Li, M.; Jin, Q.; Gao, L. Systematic Review with Meta-Analysis: The Association between Human Papillomavirus Infection and Oesophageal Cancer. Aliment. Pharmacol. Ther. 2014, 39, 270–281. [Google Scholar]
- Kunzmann, A.T.; Graham, S.; McShane, C.M.; Doyle, J.; Tommasino, M.; Johnston, B.; Jamison, J.; James, J.A.; McManus, D.; Anderson, L.A. The Prevalence of Viral Agents in Esophageal Adenocarcinoma and Barrett’s Esophagus: A Systematic Review. Eur. J. Gastroenterol. Hepatol. 2017, 29, 817–825. [Google Scholar]
- Rajendra, S.; Wang, B.; Snow, E.T.; Sharma, P.; Pavey, D.; Merrett, N.; Ball, M.J.; Brain, T.; Fernando, R.; Robertson, I.K. Transcriptionally Active Human Papillomavirus is Strongly Associated with Barrett’s Dysplasia and Esophageal Adenocarcinoma. Am. J. Gastroenterol. 2013, 108, 1082–1093. [Google Scholar] [CrossRef]
- Rajendra, S.; Wang, B.; Pavey, D.; Sharma, P.; Yang, T.; Lee, C.S.; Gupta, N.; Ball, M.J.; Gill, R.S.; Wu, X. Persistence of Human Papillomavirus, Overexpression of p53, and Outcomes of Patients After Endoscopic Ablation of Barrett’s Esophagus. Clin. Gastroenterol. Hepatol. 2015, 13, 1364–1368.e5. [Google Scholar] [CrossRef] [PubMed]
- Rajendra, S.; Wang, B.; Merrett, N.; Sharma, P.; Humphris, J.; Lee, H.C.; Wu, J. Genomic Analysis of HPV-Positive Versus HPV-Negative Oesophageal Adenocarcinoma Identifies a Differential Mutational Landscape. J. Med. Genet. 2016, 53, 227–231. [Google Scholar]
- Rajendra, S.; Yang, T.; Xuan, W.; Sharma, P.; Pavey, D.; Lee, C.S.; Le, S.; Collins, J.; Wang, B. Active Human Papillomavirus Involvement in Barrett’s Dysplasia and Oesophageal Adenocarcinoma is Characterized by Wild-Type p53 and Aberrations of the Retinoblastoma Protein Pathway. Int. J. Cancer 2017, 141, 2037–2049. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Rani, J.; Tulsyan, S.; Sisodiya, S.; Chikara, A.; Nazir, S.U.; Srivastava, A.; Khan, A.; Dash, N.R.; Saraya, A.; et al. Influence of HPV Infection in Esophageal Cancer: A Systematic Review and Meta-Analysis. Gene Rep. 2022, 28, 101640. [Google Scholar]
- Rajendra, S.; Sharma, P. Causal Link of Human Papillomavirus in Barrett Esophagus and Adenocarcinoma: Are we there Yet? Cancers 2023, 15, 873. [Google Scholar] [CrossRef]
- Shechter, O.; Sausen, D.G.; Gallo, E.S.; Dahari, H.; Borenstein, R. Epstein–Barr Virus (EBV) Epithelial Associated Malignancies: Exploring Pathologies and Current Treatments. Int. J. Mol. Sci. 2022, 23, 14389. [Google Scholar] [CrossRef]
- Ikuta, K.; Satoh, Y.; Hoshikawa, Y.; Sairenji, T. Detection of Epstein-Barr Virus in Salivas and Throat Washings in Healthy Adults and Children. Microbes Infect. 2000, 2, 115–120. [Google Scholar]
- Young, K.A.; Herbert, A.P.; Barlow, P.N.; Holers, V.M.; Hannan, J.P. Molecular Basis of the Interaction between Complement Receptor Type 2 (CR2/CD21) and Epstein-Barr Virus Glycoprotein gp350. J. Virol. 2008, 82, 11217–11227. [Google Scholar] [CrossRef]
- Miller, N.; Hutt-Fletcher, L.M. Epstein-Barr Virus Enters B Cells and Epithelial Cells by Different Routes. J. Virol. 1992, 66, 3409–3414. [Google Scholar] [CrossRef]
- Farrell, P.J. Epstein-Barr Virus and Cancer. Annu. Rev. Pathol. 2019, 14, 29–53. [Google Scholar] [CrossRef]
- Shannon-Lowe, C.; Rickinson, A.B.; Bell, A.I. Epstein-Barr Virus-Associated Lymphomas. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017, 372, 20160271. [Google Scholar] [CrossRef] [PubMed]
- Lung, R.W.; Tong, J.H.; To, K. Emerging Roles of Small Epstein-Barr Virus Derived Non-Coding RNAs in Epithelial Malignancy. Int. J. Mol. Sci. 2013, 14, 17378–17409. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, A.; Monavari, S.H.; Solaymani Mohammadi, F.; Kiani, S.J.; Armat, S.; Farahmand, M. Association between Epstein-Barr Virus Infection and Gastric Cancer: A Systematic Review and Meta-Analysis. BMC Cancer 2020, 20, 493. [Google Scholar] [CrossRef]
- Lu, T.; Guo, Q.; Lin, K.; Chen, H.; Chen, Y.; Xu, Y.; Lin, C.; Su, Y.; Chen, Y.; Chen, M.; et al. Circulating Epstein-Barr Virus microRNAs BART7-3p and BART13-3p as Novel Biomarkers in Nasopharyngeal Carcinoma. Cancer Sci. 2020, 111, 1711–1723. [Google Scholar] [CrossRef]
- Münz, C. Latency and Lytic Replication in Epstein–Barr Virus-Associated Oncogenesis. Nat. Rev. Microbiol. 2019, 17, 691–700. [Google Scholar] [CrossRef]
- Marques-Piubelli, M.L.; Salas, Y.I.; Pachas, C.; Becker-Hecker, R.; Vega, F.; Miranda, R.N. Epstein-Barr Virus-Associated B-Cell Lymphoproliferative Disorders and Lymphomas: A Review. Pathology 2020, 52, 40–52. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, S.; Han, S.; An, J.; Lee, E.; Kim, Y. Clinicopathological and Molecular Characteristics of Epstein-Barr Virus-Associated Gastric Carcinoma: A Meta-Analysis. J. Gastroenterol. Hepatol. 2009, 24, 354–365. [Google Scholar] [CrossRef]
- Cho, Y.J.; Chang, M.S.; Park, S.H.; Kim, H.S.; Kim, W.H. In Situ Hybridization of Epstein-Barr Virus in Tumor Cells and Tumor-Infiltrating Lymphocytes of the Gastrointestinal Tract. Hum. Pathol. 2001, 32, 297–301. [Google Scholar] [CrossRef]
- Sarbia, M.; zur Hausen, A.; Feith, M.; Geddert, H.; von Rahden, B.H.A.; Langer, R.; von Weyhern, C.; Siewert, J.R.; Höfler, H.; Stein, H.J. Esophageal (Barrett’s) Adenocarcinoma is Not Associated with Epstein-Barr Virus Infection: An Analysis of 162 Cases. Int. J. Cancer 2005, 117, 698–700. [Google Scholar] [CrossRef]
- Genitsch, V.; Novotny, A.; Seiler, C.A.; Kröll, D.; Walch, A.; Langer, R. Epstein–Barr Virus in Gastro-Esophageal Adenocarcinomas—Single Center Experiences in the Context of Current Literature. Front. Oncol. 2015, 5, 73. [Google Scholar] [CrossRef]
- Valbuena, J.R.; Retamal, Y.; Bernal, C.; Eizuru, Y.; Corvalan, A. Epstein-Barr Virus-Associated Primary Lymphoepitheliomalike Carcinoma of the Esophagus. Diagn. Mol. Pathol. 2007, 16, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.C.; Pan, C.; Hsu, W.; Ka, H.; Yang, A. Epstein-Barr Virus-Associated Lymphoepithelioma-Like Carcinoma of the Esophagus. Hum. Pathol. 2003, 34, 407–411. [Google Scholar] [PubMed]
- Wu, M.; Wu, X.; Zhuang, C. Detection of HSV and EBV in Esophageal Carcinomas from a High-Incidence Area in Shantou China. Dis. Esophagus 2005, 18, 46–50. [Google Scholar] [PubMed]
- Terada, T. Epstein-Barr Virus Associated Lymphoepithelial Carcinoma of the Esophagus. Int. J. Clin. Exp. Med. 2013, 6, 219–226. [Google Scholar]
- Uesato, M.; Kono, T.; Shiratori, T.; Akutsu, Y.; Hoshino, I.; Murakami, K.; Horibe, D.; Maruyama, T.; Semba, Y.; Urahama, R.; et al. Lymphoepithelioma-Like Esophageal Carcinoma with Macroscopic Reduction. World J. Gastrointest. Endosc. 2014, 6, 385. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, J.; Shen, L.; Zhang, Y. Superficial Esophageal Lymphoepithelioma-Like Carcinoma Treated with Endoscopic Submucosal Dissection: A Case Report. Int. J. Clin. Exp. Pathol. 2020, 13, 1902. [Google Scholar]
- Nakano, T.; Sawada, K.; Mitamura, A.; Suzuki, H.; Sakurai, H.; Miura, T.; Takami, K.; Kondo, N.; Yamamoto, K.; Katayose, Y.; et al. 544. Non-Epstein-Barr Virus Associated Lymphoepithelioma-Like Carcinoma of the Esophagus with Surgical Treatment: A Report of Two Cases. Dis. Esophagus 2022, 35, doac051.544. [Google Scholar]
- Lan, K.; Luo, M. Herpesviruses: Epidemiology, Pathogenesis, and Interventions. Virol. Sin. 2017, 32, 347–348. [Google Scholar]
- Ramanathan, J.; Rammouni, M.; Baran, J.; Khatib, R. Herpes Simplex Virus Esophagitis in the Immunocompetent Host: An Overview. Am. J. Gastroenterol. 2000, 95, 2171–2176. [Google Scholar]
- Spence, I.M. Electron Microscopic Evidence of Herpesvirus in Association with Oesophageal Carcinoma. S. Afr. Med. J. 1985, 68, 103–105. [Google Scholar]
- Griffiths, P.; Reeves, M. Pathogenesis of Human Cytomegalovirus in the Immunocompromised Host. Nat. Rev. Microbiol. 2021, 19, 759–773. [Google Scholar] [PubMed]
- Murakami, D.; Harada, H.; Yamato, M.; Amano, Y. Cytomegalovirus-Associated Esophagitis on Early Esophageal Cancer in Immunocompetent Host: A Case Report. Gut Pathog. 2021, 13, 24. [Google Scholar]
- Geng, H.; Xing, Y.; Zhang, J.; Cao, K.; Ye, M.; Wang, G.; Liu, C. Association between Viral Infection Other than Human Papillomavirus and Risk of Esophageal Carcinoma: A Comprehensive Meta-Analysis of Epidemiological Studies. Arch. Virol. 2022, 167, 1–20. [Google Scholar] [PubMed]
- Ponvilawan, B.; Rittiphairoj, T.; Charoenngam, N.; Rujirachun, P.; Wattanachayakul, P.; Tornsatitkul, S.; Ungprasert, P. Association between Chronic Hepatitis C Virus Infection and Esophageal Cancer: A Systematic Review and Meta-Analysis. J. Clin. Gastroenterol. 2022, 56, 55–63. [Google Scholar] [PubMed]
- Zou, J.; Chen, J.; Xie, X.; Liu, Z.; Cai, X.; Liu, Q.; Wen, J.; Zhang, S. Hepatitis B Virus Infection is a Prognostic Biomarker for Better Survival in Operable Esophageal Cancer: Analysis of 2004 Patients from an Endemic Area in China. Cancer Epidemiol. Biomark. Prev. 2019, 28, 1028–1035. [Google Scholar]
- Chen, C.; Wang, Y.; Huang, C.; Zhou, Z.; Zhao, J.; Zhang, X.; Pan, Q.; Wu, J.; Weng, D.; Tang, Y.; et al. IL-17 Induces Antitumor Immunity by Promoting Beneficial Neutrophil Recruitment and Activation in Esophageal Squamous Cell Carcinoma. Oncoimmunology 2017, 7, e1373234. [Google Scholar]
- Del Valle, L.; White, M.K.; Enam, S.; Piña Oviedo, S.; Bromer, M.Q.; Thomas, R.M.; Parkman, H.P.; Khalili, K. Detection of JC Virus DNA Sequences and Expression of Viral T Antigen and Agnoprotein in Esophageal Carcinoma. Cancer 2005, 103, 516–527. [Google Scholar]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Malaria and some Polyomaviruses (SV40, BK, JC, and Markel Cell Viruses). IARC Monogr. Eval. Carcinog. Risks Hum. 2014, 104, 9–350.
- Kong, J.; Liu, Y.; Qian, M.; Xing, L.; Gao, S. The Relationship between Porphyromonas Gingivalis and Oesophageal Squamous Cell Carcinoma: A Literature Review. Epidemiol. Infect. 2023, 151, e69. [Google Scholar]
- Gao, S.; Yang, J.; Ma, Z.; Yuan, X.; Zhao, C.; Wang, G.; Wei, H.; Feng, X.; Qi, Y. Preoperative Serum Immunoglobulin G and A Antibodies to Porphyromonas Gingivalis are Potential Serum Biomarkers for the Diagnosis and Prognosis of Esophageal Squamous Cell Carcinoma. BMC Cancer 2018, 18, 17. [Google Scholar]
- Meng, F.; Li, R.; Ma, L.; Liu, L.; Lai, X.; Yang, D.; Wei, J.; Ma, D.; Li, Z. Porphyromonas Gingivalis Promotes the Motility of Esophageal Squamous Cell Carcinoma by Activating NF-κB Signaling Pathway. Microb. Infect. 2019, 21, 296–304. [Google Scholar] [CrossRef]
- Chen, M.; Lu, M.; Hsieh, C.; Chen, W. Porphyromonas Gingivalis Promotes Tumor Progression in Esophageal Squamous Cell Carcinoma. Cell. Oncol. 2021, 44, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Liu, J.; He, Y.; Huang, X. Porphyromonas Gingivalis Secretion Leads to Dysplasia of Normal Esophageal Epithelial Cells Via the Sonic Hedgehog Pathway. Front. Cell. Infect. Microbiol. 2022, 12, 982636. [Google Scholar] [CrossRef] [PubMed]
- Groeger, S.; Jarzina, F.; Mamat, U.; Meyle, J. Induction of B7-H1 Receptor by Bacterial Cells Fractions of Porphyromonas Gingivalis on Human Oral Epithelial Cells: B7-H1 Induction by Porphyromonas Gingivalis Fractions. Immunobiology 2017, 222, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Fine, D.H.; Patil, A.G.; Loos, B.G. Classification and Diagnosis of Aggressive Periodontitis. J. Periodontol. 2018, 89, S103–S119. [Google Scholar] [CrossRef]
- Tonetti, M.S.; Greenwell, H.; Kornman, K.S. Staging and Grading of Periodontitis: Framework and Proposal of a New Classification and Case Definition. J. Periodontol. 2018, 89, S159–S172. [Google Scholar] [CrossRef]
- Kawasaki, M.; Ikeda, Y.; Ikeda, E.; Takahashi, M.; Tanaka, D.; Nakajima, Y.; Arakawa, S.; Izumi, Y.; Miyake, S. Oral Infectious Bacteria in Dental Plaque and Saliva as Risk Factors in Patients with Esophageal Cancer. Cancer 2021, 127, 512–519. [Google Scholar] [CrossRef]
- Fan, X.; Alekseyenko, A.V.; Wu, J.; Peters, B.A.; Jacobs, E.J.; Gapstur, S.M.; Purdue, M.P.; Abnet, C.C.; Stolzenberg-Solomon, R.; Miller, G.; et al. Human Oral Microbiome and Prospective Risk for Pancreatic Cancer: A Population-Based Nested Case-Control Study. Gut 2018, 67, 120–127. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, M.; Salazar, C.R.; Hays, R.; Bedi, S.; Chen, Y.; Li, Y. Chronic Periodontal Disease, Periodontal Pathogen Colonization, and Increased Risk of Precancerous Gastric Lesions. J. Periodontol. 2017, 88, 1124–1134. [Google Scholar] [CrossRef]
- Cho, I.; Blaser, M.J. The Human Microbiome: At the Interface of Health and Disease. Nat. Rev. Genet. 2012, 13, 260–270. [Google Scholar] [CrossRef]
- Nomoto, D.; Baba, Y.; Liu, Y.; Tsutsuki, H.; Okadome, K.; Harada, K.; Ishimoto, T.; Iwatsuki, M.; Iwagami, S.; Miyamoto, Y.; et al. Fusobacterium Nucleatum Promotes Esophageal Squamous Cell Carcinoma Progression Via the NOD1/RIPK2/NF-κB Pathway. Cancer Lett. 2022, 530, 59–67. [Google Scholar] [CrossRef]
- Yamamura, K.; Baba, Y.; Nakagawa, S.; Mima, K.; Miyake, K.; Nakamura, K.; Sawayama, H.; Kinoshita, K.; Ishimoto, T.; Iwatsuki, M.; et al. Human Microbiome Fusobacterium Nucleatum in Esophageal Cancer Tissue is Associated with Prognosis. Clin. Cancer Res. 2016, 22, 5574–5581. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, K.; Izumi, D.; Kandimalla, R.; Sonohara, F.; Baba, Y.; Yoshida, N.; Kodera, Y.; Baba, H.; Goel, A. Intratumoral Fusobacterium Nucleatum Levels Predict Therapeutic Response to Neoadjuvant Chemotherapy in Esophageal Squamous Cell Carcinoma. Clin. Cancer Res. 2019, 25, 6170–6179. [Google Scholar] [CrossRef]
- Flanagan, L.; Schmid, J.; Ebert, M.; Soucek, P.; Kunicka, T.; Liska, V.; Bruha, J.; Neary, P.; Dezeeuw, N.; Tommasino, M.; et al. Fusobacterium Nucleatum Associates with Stages of Colorectal Neoplasia Development, Colorectal Cancer and Disease Outcome. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 1381–1390. [Google Scholar] [CrossRef]
- Yang, Y.; Weng, W.; Peng, J.; Hong, L.; Yang, L.; Toiyama, Y.; Gao, R.; Liu, M.; Yin, M.; Pan, C.; et al. Fusobacterium Nucleatum Increases Proliferation of Colorectal Cancer Cells and Tumor Development in Mice by Activating Toll-Like Receptor 4 Signaling to Nuclear Factor−κB, and Up-Regulating Expression of MicroRNA-21. Gastroenterology 2017, 152, 851–866.e24. [Google Scholar] [CrossRef] [PubMed]
- Delsing, C.E.; Bleeker-Rovers, C.P.; van de Veerdonk, F.L.; Tol, J.; van der Meer, J.W.M.; Kullberg, B.J.; Netea, M.G. Association of Esophageal Candidiasis and Squamous Cell Carcinoma. Med. Mycol. Case Rep. 2012, 1, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, T.; Singh, B.S.; Wurster, S.; Jiang, Y.; Bhutani, M.S.; Chatterjee, D.; Kontoyiannis, D.P. The Modern Face of Esophageal Candidiasis in an Oncology Center: Correlating Clinical Manifestations, Endoscopic Grade, and Pathological Data in 323 Contemporary Cancer Patients. J. Infect. 2024, 89, 106172. [Google Scholar] [CrossRef]
- Stoner, G.D.; Gupta, A. Etiology and Chemoprevention of Esophageal Squamous Cell Carcinoma. Carcinogenesis 2001, 22, 1737–1746. [Google Scholar] [CrossRef]
- Adad, S.J.; Etchebehere, R.M.; Hayashi, E.M.; Asai, R.K.; de Souza Fernandes, P.; Macedo, C.F.; Crema, E. Leiomyosarcoma of the Esophagus in a Patient with Chagasic Megaesophagus: Case Report and Literature Review. Am. J. Trop. Med. Hyg. 1999, 60, 879–881. [Google Scholar] [CrossRef]
- Sacerdote de Lustig, E.; Puricelli, L.; Bal, E.; Lansetti, J.C. Association of Chagas Disease and Cancer. Medicina 1980, 40, 43–46. [Google Scholar]
- Oliveira, V.M.d.; Mendes, L.T.; Almeida, D.J.; Hoelz, L.V.B.; Torres, P.H.M.; Pascutti, P.G.; Freitas, G.B.L.d. New Treatments for Chagas Disease and the Relationship between Chagasic Patients and Cancers. Cancer Res. J. 2014, 2, 11–29. [Google Scholar]
Infectious Agent | EAC Risk | ESSC Risk |
---|---|---|
H. pylori | -- | +/0 |
HPV | + | ++ |
EBV | 0 | 0 |
HSV1 | +/0 | +/0 |
CMV | 0 | 0 |
HBV | 0 | +/0 |
HCV | 0 | 0 |
Candida | +/0 | +/0 |
Trypanosoma cruzi | +/0 | +/0 |
Polyoma (JC) virus | +/0 | +/0 |
P. gingivalis | +/0 | + |
A. actinomycetemcomitans | +/0 | + |
F. nucleatum | 0 | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhatt, A.; Zaidi, H.M.; Maitra, R.; Goel, S. Infectious Agents and Esophageal Cancer: A Comprehensive Review. Cancers 2025, 17, 1248. https://doi.org/10.3390/cancers17071248
Bhatt A, Zaidi HM, Maitra R, Goel S. Infectious Agents and Esophageal Cancer: A Comprehensive Review. Cancers. 2025; 17(7):1248. https://doi.org/10.3390/cancers17071248
Chicago/Turabian StyleBhatt, Ahan, Hasan Musanna Zaidi, Radhashree Maitra, and Sanjay Goel. 2025. "Infectious Agents and Esophageal Cancer: A Comprehensive Review" Cancers 17, no. 7: 1248. https://doi.org/10.3390/cancers17071248
APA StyleBhatt, A., Zaidi, H. M., Maitra, R., & Goel, S. (2025). Infectious Agents and Esophageal Cancer: A Comprehensive Review. Cancers, 17(7), 1248. https://doi.org/10.3390/cancers17071248